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∗∗ CNRS-L2S-Supélec, 3, rue Joliot-Curie, 91192, Gif-sur-Yvette,
France (e-mail: paolo.mason@lss.supelec.fr)

∗∗∗ INRIA Saclay, Team GECO & CMAP, École Polytechnique,
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Abstract: In this article, we give a collection of converse Lyapunov–Krasovskii theorems for
uncertain time-delay systems. We show that the existence of a weakly-degenerate Lyapunov–
Krasovskii functional is necessary and sufficient condition for the global exponential stability of
the time-delay systems. This is carried out using the switched system transformation approach.
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1. INTRODUCTION

The stability of time-varying delay systems is a problem
of current interest. Two principal approaches in the sta-
bility analysis are the Lyapunov–Krasovskii method and
Lyapunov–Razumikhin method (see e.g. Hale and Lunel
[1993]). A variety of stability criteria, based on these two
approaches, have been developed in this context (see e.g.
Niculescu [2001], Richard [2003], Fridman [2006], Fridman
and Niculescu [2008] and references therein). These criteria
are formulated as linear matrix inequalities (LMIs) which
yield sufficient conditions for stability. Switched system
theory offers a complementary insight in this context.
In Hetel et al. [2008] the authors establish a theoretical
link between the Lyapunov–Krasovskii approach and the
switched system transformation in the context of discrete-
time systems with time-varying delays. They prove that
applying the multiple Lyapunov functions approach to the
switched systems representation is equivalent to using a
general, delay dependent, Lyapunov–Krasovskii functional
for the initial system. This paper shares the same spirit as
Hetel et al. [2008] with the significant difference that it
considers the case of continuous-time systems with time-
varying delays. An important feature of this setting is that
the switched system representation, obtained by standard
functional representation, describes an evolution in an
infinite dimensional space. Converse Lyapunov theorems
for switched systems in Banach and Hilbert spaces were
carried out in Hante and Sigalotti [2011]. In this paper, we
follow the ideas of Hante and Sigalotti [2011], providing a
collection of converse Lyapunov–Krasovskii theorems for
uncertain time-delay systems.

Several converse Lyapunov–Krasovskii theorems have been
presented in the literature for systems described by re-
tarded functional differential equations, in a general (possi-
bly time-varying but not uncertain) setting (see e.g. Huang
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[1989], Gu et al. [2003], Kharitonov and Zhabko [2003],
Karafyllis and Jiang [2010], Pepe and Karafyllis [2013]).

More in the spirit of the results presented here are the
converse Lyapunov theorems for uncertain nonlinear re-
tarded differential equations obtained in Karafyllis [2006],
Karafyllis et al. [2008]. The latter are obtained for a very
general class of dynamics (which in particular are allowed
to be non-autonomous).

In this work, we consider a linear uncertain time-delay
system

ẋ(t) =

p∑
i=1

Aiσ(t)x
(
t− τi

(
σ(t)

))
t ≥ 0 (1)

where x(t) ∈ Rn represents the system state at time t, the
signal σ(·) is a piecewise constant function taking values
in a (possibly infinite) index set S, τi(·) represents the
time-delay function with 0 ≤ τi(σ(t)) ≤ r, and Aiσ is
a n × n matrix for every σ ∈ S, i ∈ {1, ..., p}. We are
interested in properties that are uniform with respect to
σ(·) which plays the role of a switched signal. We give
a collection of converse Lyapunov–Krasovskii theorems
which characterize the uniform exponential stability of the
solutions of (1) in terms of the existence of functionals
with suitable commensurability conditions and decreasing
uniformly along the solutions of (1). One of the novelties
of our results is that these functionals may be weakly-
degenerate, i.e., they may not have a strictly positive norm-
dependent lower bound, in contrast with what is known in
the literature.

The paper is organized as follows. Section 2 is devoted
to the problem framework, where we discuss the well-
posedness and the switched system representation of sys-
tem (1). The statement of the main results is presented
in Section 3. The main contribution of this paper is given
in Section 4. Section 5 is devoted to the comparison of
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our results with the Lyapunov–Krasovskii theorem given
in Hale and Lunel [1993].

2. PROBLEM FRAMEWORK

Suppose r ≥ 0 is a given real number, Rn is an n-
dimensional linear vector space over the reals with norm
‖ · ‖, C = C([−r, 0],Rn) is the Banach space of continuous
functions mapping the interval [−r, 0] into Rn with the
topology of uniform convergence. We denote the norm of
an element ϕ ∈ C by ‖ϕ‖C = sup−r≤θ≤0 |ϕ(θ)|. Let S
be an index set and consider a family of real matrices
parameterized by S as follows

Q := {Aσ ∈ Rn×n | σ ∈ S}.
Let us associate with Q the linear uncertain time-delay
system

ẋ(t) =

p∑
i=1

Aiσ(t)x
(
t− τi

(
σ(t)

))
(2)

where x(t) ∈ Rn represents the system state at time t, the
signal σ(·) is a piecewise constant function taking values
in S, τ(·) = (τ1(·), · · ·, τp(·)), with 0 ≤ τi(σ) ≤ r, and
Aiσ ∈ Q for every σ ∈ S, i ∈ {1, ..., p}. We are interested
in properties that are uniform with respect to σ(·) which
plays the role of a switched signal.

Let the initial condition be

x(t0 + θ) = ϕ(θ), θ ∈ [−r, 0], (3)

where ϕ(·) ∈ C and t0 ≥ 0. If t ≥ t0, we adopt the standard
notation xt for the history function defined by

xt : θ 7→ x(t+ θ), θ ∈ [−r, 0].

Of special interest is the case in which Q is a bounded
subset of Rn×n, i.e. there exists a positive constant m such
that

|Aσv| ≤ m|v| ∀v ∈ Rn, σ ∈ S. (4)

2.1 Switched system representation

A function x is said to be a solution of system (2) on
[−r,+∞) with initial condition ϕ ∈ C if x is absolutely
continuous on [0,+∞), xt ∈ C([−r, 0],Rn) for every t ≥ 0
and x(t) satisfies system (2), for almost every t ≥ 0. Under
the hypothesis that Q is bounded, it is well-known that
Cauchy problem (2)-(3) has a unique solution for each
initial condition ϕ ∈ C (Hale and Lunel [1993]).

Recall that with any σ ∈ S one can associate a C0-
semigroup Tσ(t) : C → C defined by Tσ(t)(x0) = x(t + ·)
Hale and Lunel [1993]. The evolution operator correspond-

ing to a piecewise constant signal σ(t) =
∑
k≥0

1[tk,tk+1)(t)σk

with t0 ≥ 0, tk < tk+1 for k ≥ 0 is given by

Tσ(·)(t) = Tσk
(t− tk)Tσk−1

(tk − tk−1)...Tσ0
(t1 − t0)

for each t ∈ [tk, tk+1). In order to define the evolution in
this sense one just needs a family of C0-semigroups. This
is exactly the notion of switched system

xt = Tσ(·)(t)x0,

xt0 = ϕ ∈ C,
(5)

considered in Hante and Sigalotti [2011] for general Banach
spaces.

3. STATEMENT OF THE MAIN RESULTS

The notion of uniform exponential stability is recalled in
the following definition.

Definition 1. We say that system (2) is uniformly expo-
nentially stable, with respect to ‖ · ‖C , if there exist con-
stants a ≥ 1 and b > 0 such that for every initial condition
ϕ ∈ C the solution of (2) exists for every t ∈ [t0,+∞) and
satisfies

‖xt‖C ≤ ae−b(t−t0)‖ϕ‖C , t ≥ t0, σ(·)-uniformly. (6)

Here and in the following, σ-uniformly means that the
constants a, b do not depend on the choice of the piecewise
constant σ : [0,∞)→ S.

Remark 1. Because of the linear nature of system (2),
one can easily check that (2) is uniformly exponentially
stable if and only if it is uniformly asymptotically stable.
We recall that system (2)-(3) is uniformly asymptotically
stable, if for every R > 0 there exit r > 0 such that, for
every solution x(·), ‖ϕ‖C < r implies ‖xt‖C < R, and if,
moreover, the solutions of (2) converge to zero uniformly
(i.e., there is a constant δ > 0, independent of t0 and
σ, such that for every ε > 0, there is a ζ(ε) such that
‖ϕ‖C < δ implies ‖xt‖C < ε for every t ≥ t0 + ζ and
σ ∈ S).

Remark 2. By definition of Tσ(·)(t), we have that sys-
tem (2) is uniformly exponentially stable if and only if
there exist constants α > 0 and β > 0 such that

‖Tσ(·)(t)‖L(C) ≤ αe−β(t−t0), t ≥ t0, σ(·)-uniformly. (7)

From now on, without loss of generality, we will assume
t0 = 0.

For a function V : C → [0,∞) we define the generalized
derivatives

DσV (x) = lim
t→0

sup
V (Tσ(t)x)− V (x)

t
,

and

DσV (x) = lim
t→0

inf
V (Tσ(t)x)− V (x)

t
,

noting the possibility that DσV (x), DσV (x) =∞ for some
x ∈ C and σ ∈ S.

The main result of this paper is the following theorem.

Theorem 1. Consider system (2). Under the assumption
that Q is a bounded subset of Rn×n, i.e. that condition
(4) holds, the following statements are equivalent:

(i) System (2) is uniformly exponentially stable, with
respect to ‖ · ‖C .

(ii) There exists a function V : C → [0,∞) such that√
V (·) is a norm on C,

c‖ϕ‖2C ≤ V (ϕ) ≤ c‖ϕ‖2C
for some constants c, c > 0 and

DσV (ϕ) ≤ −‖ϕ‖2C , σ ∈ S, ϕ ∈ C.
(iii) There exists a continuous function V : C → [0,∞)

such that
V (ϕ) ≤ c‖ϕ‖2C

for some constant c > 0 and

DσV (ϕ) ≤ −|ϕ(0)|2, σ ∈ S, ϕ ∈ C.
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Clearly, a Lyapunov function V (·) satisfying condition
(iii) does not necessarily satisfy the stronger conditions
appearing in condition (ii). Hence, condition (iii) is better
suited for proving the global uniform exponential stability
of a linear uncertain time-delay system, while condition
(ii) provides more information on a linear uncertain time-
delay system that is known to be globally uniformly
exponentially stable, by tightening the properties satisfied
by V (·).

4. SUFFICIENT CONDITIONS FOR STABILITY:
WEAKLY-DEGENERATE LYAPUNOV–KRASOVSKII

FUNCTIONAL

In this section we establish two equivalence results for the
global uniform exponential stability of system (2). The
first equivalence is a straightforward application of [Hante
and Sigalotti, 2011, Theorem 3] which gives a necessary
and sufficient condition for the global uniform exponential
stability for switched system of the form (5). The second
one is given through a degenerate Lyapunov–Krasovskii
functional.

4.1 Uniform exponential boundedness and first converse
Lyapunov–Krasovskii theorem

In this section we give a first converse Lyapunov–
Krasovskii theorem. Before that, we show that the solu-
tions of (2) are σ(·)-uniformly exponentially bounded, i.e,
there exist M,w > 0 such that

‖Tσ(·)(t)‖L(C) ≤Mewt, t ≥ 0, σ(·)-uniformly. (8)

This property, which is a necessary condition for the σ(·)-
uniform exponential stability of the switched system (5),
plays a crucial role in the following.

The σ(·)-uniform exponential boundedness of the solutions
of (2) is given by the following lemma.

Lemma 2. Under the assumption that Q is a bounded
subset of Rn×n, the solutions of (2) are σ(·)-uniformly
exponentially bounded.

Proof. Let ϕ ∈ C. By integrating system (2) and using
equation (4), one has for every t ≥ 0 and every µ ∈ [−r, 0]

|x(t+ µ)| ≤max{‖ϕ‖C , |ϕ(0)|+
∫ t+µ

0

m‖xs‖Cds}

≤ ‖ϕ‖C +m

∫ t+µ

0

‖xs‖Cds,

that is

‖xt‖C ≤ ‖ϕ‖C +m

∫ t

0

‖xs‖Cds.

Thanks to Gronwall’s Lemma, we have the following
inequality

‖xt‖C ≤ ‖ϕ‖Cemt, (9)

which implies that the solution of (2) is σ(·)-uniformly
exponentially bounded in C. Which ends the proof. 2

Due to the σ(·)-uniform exponential boundedness of the
solutions of (2), a direct application of [Hante and Siga-
lotti, 2011, Theorem 3] gives a first necessary and sufficient
condition for the global uniform exponential stability of
(2). This is given by the following theorem.

Theorem 3. Under the assumption that Q is a bounded
subset of Rn×n, we have that system (2) is uniformly
exponentially stable, with respect to ‖ · ‖C , if and only

if there exists a function V : C → [0,∞) such that
√
V (·)

is a norm on C,
V (ϕ) ≤ c‖ϕ‖2C ,

for some constant c > 0 and

DσV (ϕ) ≤ −‖ϕ‖2C , σ ∈ S, ϕ ∈ C.

Proof. The proof results directly from Lemma 2 and [Hante
and Sigalotti, 2011, Theorem 3] together. 2

4.2 Degenerate Lyapunov–Krasovskii functional

In this section we give a second converse Lyapunov–
Krasovskii theorem. The crucial step to do this is given by
the following lemma proved in Hante and Sigalotti [2011],
which extends a result obtained in Triggiani [1994] in the
framework of strongly continuous semigroups, to switched
system of the form (5).

Lemma 4. Let (X, ‖·‖X) be a Banach space. Assume that

(i) there exist constants M ≥ 1 and w > 0 such that

‖Tσ(·)(t)‖L(X) ≤Mewt, t ≥ 0, σ(·)-uniformly,

(ii) there exist a constant c ≥ 0 and some p ∈ [1,+∞)
such that∫ +∞

0

‖Tσ(·)(t)x‖pX ≤ c‖x‖
p
X , x ∈ X, σ(·)-uniformly.

Then there exist constants K ≥ 1 and µ > 0 such that

‖Tσ(·)(t)‖L(X) ≤ Ke−µt, t ≥ 0, σ(·)-uniformly.

The second equivalence result is given by the following.

Theorem 5. Under the assumption that Q is a bounded
subset of Rn×n, we have that system (2) is uniformly
exponentially stable, with respect to ‖ · ‖C , if and only
if there exists a continuous function V : C → [0,+∞)
such that

V (ϕ) ≤ c‖ϕ‖2C , (10)

for some constant c > 0 and

DσV (ϕ) ≤ −|ϕ(0)|2, σ ∈ S, ϕ ∈ C. (11)

Proof. Suppose that there is a continuous function V :
C → [0,+∞) such that conditions (10)-(11) hold. From
Lemma 2, we know that the solutions of system (2)
are σ-uniformly exponentially bounded, i.e, there exists
constants M ≥ 1 and w > 0 such that equation (8) holds.
Then, thanks to Lemma 4, it suffices to prove that there
exists a constant c > 0 such that∫ +∞

0

‖xt‖Cds ≤ c‖ϕ‖C , ϕ ∈ C, σ(·)-uniformly, (12)
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to conclude the global exponential stability of system (2).
For all σ ∈ S, ϕ ∈ C and for t ≥ 0, we have

V (xt)− V (x0) ≤ −
∫ t

0

|xs(0)|ds, (13)

as it follows from (11) (see for instance Hagood and
Thomson [2006]). Using the fact that V is positive, one
deduces the following inequality∫ t

0

|x(s)|ds ≤ c‖ϕ‖C , t ≥ 0 (14)

from equation (13). In the sequel, we deduce from equa-
tion (14) that the property (12) holds. Let s ≥ r. There
exists τs ∈ [−r, 0] such that ‖xs‖C = |x(s+τs)|. Let N ≥ 1
be a natural number. There exists 1 ≤ js ≤ N such that

0 ≤ τs +
r

N
js ≤

r

N
.

We have that

|x(s+ τs)| ≤
∣∣∣x(s− js r

N

)∣∣∣+

∫ s+τs

s− r
N js

|ẋ(θ)|dθ

≤
∣∣∣x(s− js r

N

)∣∣∣+m
r

N
‖xs‖C[−2r,0]

≤
N∑
j=1

∣∣∣x(s− j r
N

)∣∣∣+m
r

N
‖xs‖C[−2r,0].

Remark that we have∫ t

r

‖xs‖C[−2r,0]ds =

∫ t−r

0

‖xs‖C[−r,r]ds

≤
∫ t−r

0

‖xs‖C[−r,0]ds+

∫ t−r

0

‖xs‖C[0,r]ds

≤
∫ t

0

‖xs‖C[−r,0]ds+

∫ t

r

‖xs‖C[−r,0]ds

≤ 2

∫ t

0

‖xs‖C[−r,0]ds,

and remark that∫ t

r

N∑
j=1

∣∣∣x(s− j r
N

)∣∣∣ ds ≤ N ∫ t

0

|x(s)| ds,

then∫ t

r

‖xs‖Cds ≤ N
∫ t

0

|x(s)| ds+ 2m
r

N

∫ t

0

‖xs‖Cds,

which implies together with equation (9) that

(1− 2m
r

N
)

∫ t

0

‖xs‖Cds ≤
∫ r

0

‖xs‖Cds+N

∫ t

0

|x(s)| ds,

from which we conclude that for sufficiently large N , we
have ∫ t

0

‖xs‖Cds ≤ c1
∫ t

0

|x(s)|ds+ c2‖ϕ‖Cds, (15)

with

c1 =
N

1− 2m r
N

and c2 =
emr − 1

m
(
1− 2m r

N

) .
Equations (14) and (15) together imply that∫ t

0

‖xs‖Cds ≤ c3‖ϕ‖Cds, (16)

with c3 = cc1 + c2. When t tends to +∞ we deduce that∫ +∞

0

‖xt‖Cds ≤ c3‖ϕ‖Cds, (17)

which concludes, thanks to Lemma 4, the proof of the
global uniform exponential stability of system (2).
Conversely, suppose that system (2) is uniformly exponen-
tially stable with respect to ‖ · ‖C . Then, from Theorem 3,

there exists a function V : C → [0,∞) such that
√
V (·) is

a norm on C,
V (ϕ) ≤ c‖ϕ‖2C

for some constant c > 0 and

DσV (ϕ) ≤ −‖ϕ‖2C , σ ∈ S, ϕ ∈ C. (18)

From the fact that |ϕ(0)| ≤ ‖ϕ‖C , equation (18) implies

DσV (ϕ) ≤ −|ϕ(0)|2, σ ∈ S, ϕ ∈ C,
which ends the proof. 2

4.3 Proof of Theorem 1

Theorem 1 states that the existence of a function V : C →
[0,∞) such that,

c‖ϕ‖2C ≤ V (ϕ) ≤ c‖ϕ‖2C
for some constants c, c ≥ 0 and

DσV (ϕ) ≤ −‖ϕ‖2C , σ ∈ S, ϕ ∈ C,
is a necessary and sufficient condition for the uniform
exponential stability of system (2). It also states that
this functional may not have a strictly positive norm-
dependent lower bound. Theorem 1 is a direct consequence
of our previous results together with [Hante and Sigalotti,
2011, Theorem 6]. In fact, Theorem 5 gives the equivalence
(i) ⇔ (iii). The second equivalence (i) ⇔ (ii) arises
directly from [Hante and Sigalotti, 2011, Theorem 6].
Hence the proof of Theorem 1.

5. DISCUSSION

We compare here the results obtained in the previous
section with the Lyapunov–Krasovskii theorem given in
Hale and Lunel [1993]. Let us recall that the latter con-
cerns general retarded functional differential equation of
the form

ẋ = f(t, xt). (19)

Theorem 6. Suppose that f : R×C → Rn is a continuous
function. Suppose that for any bounded set B, f maps
R × B into a bounded set of Rn, and u, v, w : [0,+∞) →
[0,+∞) are continuous nondecreasing functions, u(s) and
v(s) are positive for s > 0, and u(0) = v(0) = 0. If there
is a continuous function V : R× C → R such that

u(|ϕ(0)|) ≤ V (t, ϕ) ≤ v(‖ϕ‖C)

DV (t, ϕ) ≤ −w(|ϕ(0)|)
then the solution x = 0 of equation (6) is uniformly stable.
If u(s) → +∞ as s → +∞, the solutions of equation (6)
are uniformly bounded. If w(s) > 0 for s > 0, then the
solution x = 0 is uniformly asymptotically stable.

Of course, this theorem is not given for switched systems
and the uniformity property mentioned is with respect to
the initial condition. In Pepe and Karafyllis [2013] the
authors show that the existence of a Lyapunov–Krasovskii
functional is a necessary and sufficient condition for the
uniform global asymptotic stability and the global ex-
ponential stability of autonomous systems described by
neutral functional differential equations in Hale’s form.
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One can verify that the proof of Theorem 6 can be
straightforwardly modified to consider system (2), and this
is reformulated by the following theorem.

Theorem 7. Consider system (2). If there is a continuous
function V : C → R such that

c|ϕ(0)|2 ≤ V (ϕ) ≤ c‖ϕ‖2C (20)

for constants c, c > 0 and

DσV (ϕ) ≤ −|ϕ(0)|2, σ ∈ S, ϕ ∈ C (21)

then system (2) is uniformly exponentially stable, with
respect to ‖ · ‖C .

Thanks to our previous results, we can give a converse
version for Theorem 7. More precisely, Theorem 1 implies
that if system (2) is uniformly exponentially stable, with
respect to ‖ · ‖C , then there exists a continuous function
V : C → R such that equations (20)-(21) hold.

6. CONCLUSION

In this work we give a collection of converse Lyapunov–
Krasovskii theorems for uncertain time-delay systems.
These results, which are summarized by Theorem 1, are
essentially given by Theorems 3 and 5. By Theorem 3, we
show that the existence of a squared norm V (·) on C, with
suitable commensurability conditions, is a necessary and
sufficient condition for the uniform exponential stability
of system (2). Theorem 5 represents our main result,
where the assumption that V (·) is a squared norm on
C is dropped. One of the novelties of our results is that
these functionals may not have a strictly positive norm-
dependent lower bound, in contrast with what is known in
the literature.

Concerning the differences between conditions (ii) and
(iii) appearing in the statement of Theorem 1, we already
noticed that a Lyapunov function V (·) satisfying condition
(iii) does not necessarily satisfy the stronger condition
(ii). Hence, condition (iii) is better suited for proving the
global uniform exponential stability of a linear uncertain
time-delay system, while condition (ii) provides more
information on a linear uncertain time-delay system that
is known to be globally uniformly exponentially stable, by
tightening the properties satisfied by V (·).
Finally, a comparison of our results with the Lyapunov–
Krasovskii theorem given in Hale and Lunel [1993] is
discussed in Section 5. These results are carried out using
the switched system transformation approach.
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