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Abstract: For the first time, a distributed output feedback control scheme is presented which
combines distributed model predictive control with distributed moving horizon estimation.
More specifically, we combine the iterative methods of sensitivity-driven distributed model
predictive control (S-DMPC) with sensitivity-driven partition-based moving horizon estimation
(S-PMHE). To that end, S-PMHE is extended such that it can handle inputs of S-DMPC.
The resulting distributed output feedback scheme is then applied to an alkylation benchmark
process from the literature. We find that its control performance is comparable to that of fully
centralized MPC and MHE but our distributed output feedback scheme is faster.

1. INTRODUCTION

Distributed approaches to model predictive control (MPC)
and moving horizon estimation (MHE) have become active
research topics in the process control community. These
distributed MPC (DMPC) and distributed or partition-
based MHE (DMHE / PMHE) 1 algorithms describe sev-
eral communicating MPC and MHE agents, each assigned
to a particular subsystem of the overall process. There-
fore, these distributed control and estimation schemes are
naturally suited for spatially distributed systems, such as
irrigation channels [Negenborn et al., 2009], and chemical
processes consisting of a number of interacting unit op-
erations [Liu et al., 2010]. Since each DMPC and PMHE
problem considers only a subset of the variables of the
centralized problem, a reduction in computation time is
also expected. Computation time is further decreased by
iterative approaches which try to solve the DMPC and
PMHE problems in parallel. Finally, current research aims
to make the design of distributed control solutions simpler
and more robust. To that end, the plug-and-play behaviour
of individual agents is currently under study [Riverso et al.,
2012, Riverso et al., 2013].

Distributed control and estimation schemes are also the
subject of extensive literature reviews. For instance, dis-
tributed MPC methods are reviewed by Scattolini [2009]
and more recently by Christofides et al. [2013]. The latter
paper also briefly treats distributed state estimation. In
particular, Farina et al. [2010] contributed a number of
prominent PMHE algorithms. Schneider et al. [2013] pre-
sented an alternative approach based on sensitivity-driven
coordination, called S-PMHE.

Overall, it is striking that most papers on DMPC assume
state feedback whereas most papers on PMHE work with
autonomous systems or open-loop inputs. The practically
more important case of distributed output feedback is
rarely treated in the literature. Notable exceptions are

1 Farina et al. [2010] distinguish between distributed and partition-
based MHE.

papers that combine DMPC with centralized estimators,
such as Zheng et al. [2009], Hu and El-Farra [2013], or com-
binations with distributed Luenberger observers [Venkat
et al., 2005, Farina and Scattolini, 2011, Giselsson, 2013],
or with distributed Kalman filters [Venkat et al., 2006,
Mercangöz and Doyle III, 2007, Menighed et al., 2009,
Roshany-Yamchi et al., 2013]. Interestingly, and to the
best of our knowledge, DMPC was not yet combined with
PMHE, even though both rely on distributed optimization
techniques. In this work, we will close this gap and discuss
optimal distributed output feedback control by combin-
ing sensitivity-driven DMPC (S-DMPC) [Scheu and Mar-
quardt, 2011] and S-PMHE [Schneider et al., 2013].

To this end, we first recall both methods briefly. Since S-
PMHE was not yet applied to non-autonomous systems,
we will present an extended theory in order to apply
the method to linear discrete-time systems with external
inputs as well. Finally, we validate our distributed output
feedback approach on a case study.

2. PROBLEM FORMULATION

We consider an optimal tracking control problem for the
following overall system Σ:

˙̃x(t) = f(x̃(t), ũ(t)), x̃(0) = x̃0, (1a)

ỹ(tk) = h(x̃(tk)) + v(tk), (1b)

where x̃(t) ∈ Rn is the state at time t with initial
condition x̃0, ũ(t) ∈ Rr are the inputs, and ỹ(tk) ∈ Rm

are the measurements at sampling time tk, corrupted
by measurement noise v(tk) ∈ Rm. Let us denote the
deviation of the state, input, and measured variables from
the steady state (xs, us, ys) as x = x̃−xs, u = ũ−us, and
y = ỹ − ys.
Suppose now that Σ consists of N interacting subsystems
Σi, i.e. i ∈ N = {1, ..., N}. Then, a linearized form of Σ in
terms of its subsystems Σi is given as

ẋi(t) =
∑
j∈N

(Aijxj(t) +Bijuj(t)) , xi(0) = xi,0, (2)
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∀i ∈ N . x(t) = 〈x1(t), . . . , xN (t)〉 2 , with xi(t) ∈ Rni ,
is the state vector, and u(t) = 〈u1(t), . . . , uN (t)〉 is the
aggregated input vector, where ui(t) ∈ Rri is the local
input vector of subsystem Σi. A = [Aij ]i,j∈N , with Aij ∈
Rni×nj , refers to the system matrix, and B = [Bij ]i,j∈N ,
with Bij ∈ Rni×rj , denotes the input matrix.

Due to physical limits of actuators and operational restric-
tions, the contoller has to cope with the additional input
and state constraints 3

umin
i ≤ ui(t) ≤ umax

i , (3a)

xmin
i ≤ xi(t) ≤ xmax

i , ∀i ∈ N , (3b)

which are naturally considered by MPC. The DMPC will
be formulated for the continuous-time model (2) to allow a
(possibly) flexible parameterization of the input variables.

Since we do not assume state feedback in this work,
we require an estimate of the current state. Such an
estimate is conveniently computed on arrival of each new
measurement sample. To be consistent with the sampling
nature of the measurements, we prefer a discrete-time LTI
model for state estimation. Similar to (2), it is given in
terms of the subsystems Σi as follows:

xi(k + 1) =
∑
j∈N

(
Ad

ijxj(k) +Bd
ijuj(k)

)
, xi(0) = xi,0,

(4a)

y�i (k) =
∑
j∈N

Cd
ijxj(k) + vi(k), (4b)

∀i ∈ N , where the superscript d indicates the discrete-
time setting, k is shorthand for tk, and the sampling time
is given as ∆t = tk − tk−1. Also, Cd = [Cd

ij ]i,j∈N denotes

the output matrix, with Cd
ij ∈ Rmi×nj . Depending on the

discretization of the optimal, continuous-time inputs, the
system matrices in (4) can be derived systematically from
these in (2). For instance, a zero-order hold can be used
in case of piecewise constant inputs.

3. DISTRIBUTED MPC FORMULATION

The distributed MPC algorithm used in this paper is
S-DMPC as presented by Scheu and Marquardt [2011].
This algorithm was found to be a competitive DMPC
scheme in a recent benchmark [Alvarado et al., 2011]. We
present the distributed MPC formulation here, while the
sensitivity-driven solution approach will be presented later
in Section 5.

The control objectives discussed in Section 2 can be
summarized in the optimal control problem for the overall
system Σ at time tk

min
u

Φ ,
∑
i∈N

Φi(xi, ui) (5a)

s.t. Φi =
1

2

∫ tk+tp

tk

xTi Qixi + uTi Riui dt, (5b)

ẋ = Ax+Bu, x(tk) = xk, (5c)

0 ≤ D〈x, u〉+ e, (5d)

on a finite (receding) horizon [tk, tk + tp], with a separable
(or additive), quadratic objective function (cf. Eq. (5a))

2 〈a, . . . , b〉 is used as a shorthand for [aT , . . . , bT ]T .
3 Output constraints could be considered as well if output equations
were added to the controller model.

and symmetric positive definite weighting matrices Qi and
Ri. The input and state constraints (3) are gathered in
Eq. (5d) with D = 〈D1, . . . , DN 〉 and e = 〈e1, . . . , eN 〉.
Note, that the constraints need not to be separable allow-
ing the implementation of appropriate terminal regions.

By means of a proper discretization of the inputs ui, e.g.
a piecewise constant realization, the ODEs can be solved
and the optimal control problem (5) can be transcribed
into the following QP [Scheu and Marquardt, 2011]:

min
z

∑
i∈N

Φi (6a)

s.t. Φi(z) =
1

2
zTTiz + Siz + const, (6b)

0 ≥ gi(z) = Diizi +
∑

j∈N\i

Dijzj + di, (6c)

∀i ∈ N , where zi indicates the parameters for the dis-
cretization of the input variables ui.

4. PARTITION-BASED MHE WITH INPUTS

Originally, S-DMPC required state feedback for closed-
loop operation. However, if the process state is not readily
available at every sampling instant, it must be estimated
from available measurements. Since centralized estimators
are inconsistent with the goals of distributed control, we
will rather employ a partition-based MHE scheme.

The following derivation of S-PMHE is close to the one
presented by Schneider et al. [2013]. However, the novel
aspect here is that the resulting algorithm will be able to
consider past inputs from the controller to the plant along
the estimation horizon. This extension finally allows us to
run S-PMHE in closed loop with S-DMPC.

To that end, we first formulate the centralized MHE
(CMHE) optimization problem for system Σ. For the
current time instant, indexed k′, CMHE computes an
estimate of the process state x(k) from K measurement
samples y�(k), k ∈ {k0, . . . , k′ − 1}, k0 = k′ − K, on a
moving estimation horizon:

min
∆x(k0),x,w,v

1

2

∥∥∆x(k0)
∥∥2

P̃
+

k′−1∑
k=k0

‖w(k)‖2Q̃ + ‖v(k)‖2R̃


(7a)

s.t. x(k0) = x̄(k0) + ∆x(k0), (7b)

x(k + 1) = Adx(k) +Bdu(k) + w(k), (7c)

y�(k) = Cdx(k) + v(k). (7d)

Note that in the beginning, i.e. when k′ ≤ K, the problem
is solved on a growing horizon, processing only those
measurements up to time tk′−1, i.e. k0 = 0 in (7). Above,
we have further introduced the a-priori estimate of the
state at the beginning of the horizon, x̄(k0). We also
defined vectors of state estimates x = 〈x(k0), . . . , x(k′)〉
and of estimated measurement noise v = 〈v(k0), . . . , v(k′−
1)〉. In addition to the variables in the nominal process
model (1), process noise w = 〈w(k0), . . . , w(k′ − 1)〉 is
estimated here to account for model uncertainties, such
as, e.g., linearization errors. Finally, P̃ ∈ Rn×n, Q̃ ∈ Rn×n

and R̃ ∈ Rm×m are weighting matrices, assumed to be
symmetric and positive semi-definite.
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Note that this CMHE formulation is slightly different from
the one presented in Schneider et al. [2013], where an a-
posteriori state estimate is computed. Here, an a-priori
state estimate is computed. In fact, (7) is identical to the
formulation of Rao et al. [2001], except for the factor 1⁄2
which does not alter the resulting optimal state estimate.
A particular advantage of this a-priori CMHE for closed-
loop control is that the estimator can begin to solve the
CMHE problem directly after the measurement at time
tk′−1 is available; possibly finishing the state estimation
and subsequent estimation-based control input calculation
before time tk′ . Thus, the control inputs can be directly
applied at the next sampling time, without further delay.

In order to fully appreciate S-PMHE later, it is useful to
derive an even more compact formulation of CMHE. Since
this derivation is mostly a matter of rearranging terms
in (7), it is omitted here for space reasons. However, all
steps are very similar to those shown by Schneider et al.
[2013]. The only major difference is the definition of the
auxiliary variable X̄i(k

0): To account for known external
inputs, X̄i(k

0) must be redefined here as

X̄i(k
0) =

〈
x̄i(k

0),
∑
j∈N

Bijuj(k
0), . . . ,

∑
j∈N

Bijuj(k
′ − 1)

〉
.

We finally obtain the compact CMHE formulation:

min
z

∑
i∈N

Φi (8a)

s.t. Φi =
1

2

∑
j∈N

zT
i Tijzj , (8b)

ci = Aiizi +
∑

j∈N\i

Aijzj +Xi = 0, (8c)

where ∀i ∈ N . zi are the subsystem partitions of the
decision variables ∆x(k0), x, w, and v in (7).

5. SENSITIVITY-DRIVEN SOLUTION APPROACH
AND DISTRIBUTED OUTPUT FEEDBACK

In the previous two sections, the centralized MPC and
MHE problems were reformulated in Eqs. (6) and (8) as
quadratic programs. Each of these QPs contains objective
functions and constraints that are coupled in terms of
subsystem optimization variables. To solve this kind of
optimization problem in a distributed manner, we present
in this section an iterative, sensitivity-driven algorithm.
This algorithm solves, in every iteration l, and for each
subsystem i ∈ N , the following optimization problem:

z
[l+1]
i = arg min

zi

Φ∗i (9a)

s.t. Φ∗i = Φi +

 ∑
j∈N\i

∂ Φj

∂zT
i

∣∣∣∣
z[l]

+
(
λ

[l]
j

)T ∂ cj
∂zT

i

∣∣∣∣
z[l]

+
(
µ

[l]
j

)T ∂ gj
∂zT

i

∣∣∣∣
z[l]

]
(zi − z

[l]
i ),

(9b)

0 = ci, (9c)

0 ≥ gi. (9d)

λ
[l]
i and µ

[l]
i are the Lagrange multipliers. As the number of

iterations increases, the algorithm converges towards the
optimal solutions zi, i ∈ N . In this work, we terminate the
algorithm after a fixed number of iterations L.
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Fig. 1. Process flow diagram for alkylation of benzene.

This iterative, sensitivity-driven solution approach can
be applied to both the MPC problem, Eq. (6), and
the MHE problem, Eq. (8), with small modifications:
In case of Eq. (6), there are no equality constraints
(9c) and thus no Lagrange multipliers λ. The resulting
distributed control algorithm is called S-DMPC. In case
of Eq. (8), we have neither inequality constraints (9d)
nor corresponding Lagrange multipliers µ. The resulting
partition-based estimation algorithm is called S-PMHE.

To achieve distributed output feedback, the most recent
measurements are first processed by S-PMHE to compute
an estimate of the current state. This state estimate is sub-
sequently used by S-DMPC as the initial state to compute
optimal inputs. Upon arrival of a new measurement, this
procedure is repeated.

Finally, note that the MPC and MHE problems cannot be
solved simultaneously as one large QP. Doing so would
result in unwanted interactions between the estimated
states and optimized inputs. For example, instead of
minimizing the output error, the ”optimal” state estimate
may be chosen close to the desired state set point in order
to minimize the control objective. Erroneously assuming
that the set point has been reached, inadequate control
actions will be taken and the true plant state may diverge.

6. CASE STUDY: ALKYLATION OF BENZENE

6.1 Process description & control objective

We illustrate our distributed output feedback approach
on a simulated chemical process for the alkylation of
benzene 4 , depicted in Fig. 1. The plant consists of four
continuous stirred-tank reactors (CSTR) and one flash
separator; it produces ethylbenzene (C), and in addition
the by-product diethylbenzene (D), by reaction of benzene
(A) and ethene (B). A and B are fed into the cascaded
CSTR 1-3, while D is fed into CSTR 4. The model consists
of material balances for each component, an energy bal-
ance for each unit of the plant, nonlinear reaction kinetics,
and a nonlinear model of the phase equilibrium in the
flash separator. We assume all volumetric feed flows to
be constant, while the heat flows are assumed to be the
manipulated variables ui(t).

4 The corresponding process model was first presented by Liu et al.
[2010]. However, this work uses the modified model developed by
Scheu and Marquardt [2011].
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The simulated test cycle consists of one setpoint change:
Starting from an operating point defined by the temper-
atures T0 = [443.0, 437.1, 428.4, 433.1, 457.6] K, the goal
is to stabilize the plant at its steady-state with Ts =
[472.32, 472.35, 472.39, 472.00, 472.49] K.

6.2 Controller & estimator configuration

The full nonlinear model described above is used exclu-
sively to simulate the plant. For control and estimation,
linear models (2) and (4) are derived. For optimization-
based control of each unit i of the plant, we consider
the objective function Φi (cf. Eq. (5b)) with weighting
matrices Qi = diag[1, 1, 1, 1, 1] and Ri = 10−8. The inputs
ui(t) are discretized by a piecewise constant approximation
with a horizon length of five samples. The sampling time
is ∆t = 5 sec. Finally, the inputs are constrained with
|u1| < 0.75 MJ/s, |u2| < 0.5 MJ/s, |u3| < 0.5 MJ/s,
|u4| < 0.6 MJ/s, |u5| < 0.6 MJ/s.

The MHE horizon comprises K = 5 measurement samples.
Due to this sampling, MHE uses the discrete-time model
(4). The corresponding system matrices are obtained from
the continuous-time model (2) through a zero-order hold.
By this procedure, the one-to-one assignment between
inputs and their corresponding subsystems is obliterated.
Thus, in the discrete-time model each input affects more
than one subsystem.

In the following, three different measurement configura-
tions are considered: In the first configuration C1, all states
are assumed to be measured, i.e. all matrices Cd

i ∈ R5×5

are identity matrices. In practice, this configuration re-
quires temperature and composition measurements inside
each CSTR and in the separation unit. The condition num-
ber of the corresponding linear discrete-time observability
matrix is 66.7, promising accurate state estimation.

In the second configuration C2, only temperature and total
density are measured on every unit. This is resembled
by Cd

i matrices containing the molar masses of each
component in g mol−1:

Cd
i =

[
0 0 0 0 1

78.11 28.05 106.17 134.22 0

]
.

In contrast to C1, this configuration would not require
expensive composition measurement devices, such as spec-
trometers, but rather simple density probes. However, the
loss of information is reflected by a much larger condition
number of the observability matrix of 1.2×106.

In the third configuration C3, the total density is only
measured at the flash separator. In addition, the temper-
atures inside all units are measured. This measurement
configuration is least expensive but also yields the least
information, indicated by a very large condition number
of the discrete-time observability matrix of 6.5×108.

To keep computations simple, P̃ in (7) was kept constant
on all horizons. In particular, we first computed the steady
state Riccati covariance matrix Ps from Ad and Cd, as well
as from Q̃−1 and R̃−1. The diagonal elements of Q̃ and
R̃ were tuned to reflect zero-mean Gaussian process and
measurement noise with expected standard deviations of
1% of the steady state values xs and ys: Q̃ii = 1×104/x2

s,i,

i ∈ {1, . . . , n}, and R̃ii = 1 × 104/y2
s,i, i ∈ {1, . . . ,m}.

This heuristic was inspired by Schneider and Georgakis
[2013] and aims to compensate for the different orders of

magnitude of the state and output variables involved. P̃
was then formed from the diagonal blocks of P−1

s to reduce
coupling between the S-PMHE subsystem computations.

6.3 Closed-loop simulation results

We apply the proposed distributed output feedback
scheme to the alkylation process. After simulating the
process for tf = 3000 seconds, we evaluate its performance
based on three key indicators. First, we evaluate the MPC
objective function Φ in (5a) using the true states and
inputs to the process. A lower value of Φ indicates a
successful control performance and a fast transition to the
desired set point. Second, we analyse the estimation error
e. In order to have a scalar indicator, we take the norm of
the estimation error at every time sample:

e =
∥∥〈‖x(0)− x̂(0)‖2 , . . . , ‖x(kf )− x̂(kf )‖2

〉∥∥
2
.

Note that each combination of control and estimation
scheme leads to a different closed-loop trajectory of the
plant. Thus, estimation quality and control performance
are not independent: Certain combinations of measure-
ment configurations, measurement noise, initial state es-
timate and control actions may lead to state trajectories
that give a small estimation error even when the estima-
tor itself is poor. The third performance indicator is the
total computation time t̄ for one simulation. Even though
some computations in S-DMPC and S-PMHE could be
computed in parallel, the current implementation is se-
quential: In every iteration, the independent optimization
problems of all subsystems are computed sequentially. All
computations were performed in Matlab 2011b (64 bit) on
a single fixed core of a 3.2 GHz Intel i5 desktop computer.

As a reference, we simulate a scenario similar to the one
reported by Scheu and Marquardt [2011], i.e. the case
with centralized MPC (CMPC) as a controller and state
feedback. The resulting objective function value is Φ =
2.347×109. The corresponding input and state trajectories
can be found elsewhere [Scheu and Marquardt, 2011].

We now compare the performance of a fully distributed
output feedback scheme using S-DMPC and S-PMHE with
one iteration each to a fully centralized scheme using
CMPC and CMHE. We distinguish two cases: the nominal
case without measurement noise and a noisy case with
zero-mean Gaussian measurement noise with covariance
R̃−1, i.e. the same covariance as used for tuning the moving
horizon estimators. For the three different measurement
configurations discussed earlier, the results are shown in
Table 1. Not surprisingly, we find that both the overall con-
trol performance as well as the estimation errors are better
in the centralized setting than in the distributed case. Even
though the estimation error of the distributed scheme is
at most 37 times as large as the best centralized solution,
the largest difference in control performance across all
configurations is only less than 10%. This indicates a cer-
tain robustness of the controllers with respect to possibly
poor state estimates. The quality of the state estimates
highly depends on the measurement configuration. In line
with the degree of observability computed earlier, the best
state estimates are obtained when all states are measured.
However, and in contrast to the observability analysis,
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Centralized output feedback Distributed output feedback (1 it.)
C1 C2 C3 C1 C2 C3

Φnom 2.347× 109 2.373× 109 2.371× 109 2.356× 109 2.576× 109 2.578× 109

Φ∼ 2.344× 109 2.387× 109 2.396× 109 2.363× 109 2.541× 109 2.565× 109

enom 639.6 4147.8 3953.5 2525.8 22988.8 22941.5
e∼ 3250.3 9208.6 5735.3 4170.3 22796.0 23331.9

Table 1. Comparison of measurement configurations C1 - C3. The subscript ∼ indicates the
presence of measurement noise.

configuration C2 does not always outperform C3 in terms
of estimation performance. This can only be explained
by favourable interactions of the estimation results with
the control input computations. Finally, we see that the
effect of measurement noise on the control performance is
small. Since the estimators know the true covariance, they
compensate the measurement noise very well.

We now focus our analysis on the scenario with measure-
ment noise of known covariance and measurement con-
figuration C3. This time, the estimators are provided an
initial state estimate whose values are 10% larger than the
initial state of the plant. Some input and state trajectories
resulting from the combination of CMPC with CMHE and
from S-DMPC with S-PMHE, each of which uses a single
iteration, are shown in Fig. 2. More combinations are given
in Table 2. We find that good control performance can
be achieved with distributed solutions. In particular, by
comparing the two cases with CMHE we see that S-DMPC
is already comparable to CMPC at only one iteration.
More attention must be paid to choosing the right number
of iterations for S-PMHE. Since in this scenario, the initial
state estimate is off from the true initial state, good state
estimation performance is important. This becomes clear
from Table 2 as well: Increasing the iterations of S-PMHE
both improves estimation and control performance. Over-
all, it appears as if the combination of S-DMPC with one
iteration with S-PMHE with two iterations comes closest
to the performance of a fully centralized solution.

The first two rows of Table 2 deserve an additional
remark. There, CMPC with CMHE slightly outperforms
CMPC with state feedback. This may seem irritating but
can be explained by the fact that the overall control
performance is computed for the full simulation while
the on-line objective function of MPC is only a short
time approximation of an optimal control problem on a
longer horizon. Thus, it may turn out at the end of the
simulation that suboptimal control inputs caused by poor
state estimates were in fact a good choice.

Finally, the computation times are quite remarkable. Even
though they can be reproduced only with an accuracy
of ±5%, the fully centralized set-up is the most time-
consuming. More specifically, and judging from the two
CMHE simulations, CMHE seems to be the bottleneck.
Overall, we find that using distributed output feedback is
faster than centralized output feedback, even if the dis-
tributed algorithms are computed sequentially. Neglecting
communication overhead and assuming that each subprob-
lem could be solved in parallel on different CPUs, a further
speed-up is expected. For instance, the distributed set-up
with two iterations would solve five times as fast as the cen-
tralized set-up. Considering the well-known deterioration
of control performance resulting from computation delay,

Control (it.) Estimation (it.) Φ e t̄

CMPC State feedback 2.347× 109 0.0 49
CMPC CMHE 2.339× 109 8078.2 153
CMPC S-PMHE (1) 2.625× 109 23495.0 88
S-DMPC (1) State feedback 2.346× 109 0.0 57
S-DMPC (1) CMHE 2.339× 109 8362.9 162
S-DMPC (1) S-PMHE (1) 2.605× 109 23133.7 94
S-DMPC (1) S-PMHE (2) 2.364× 109 7667.5 130
S-DMPC (2) S-PMHE (2) 2.398× 109 9063.4 143

Table 2. Comparison of different output feed-
back schemes for configuration C3 with mea-
surement noise and +10% error in the initial
state estimate. Iteration number in brackets.

the proposed distributed output feedback scheme seems to
be a promising alternative.

7. CONCLUSIONS

A novel distributed output feedback scheme was presented
which uses S-PMHE for estimation and S-DMPC for con-
trol. Both methods employ the same iterative, sensitivity-
driven solution approach to compute optimal state esti-
mates and control inputs in a distributed manner. On a
simulated alkylation process for the production of benzene,
the distributed scheme performed comparative to fully
centralized output feedback while being much faster. The-
oretical proofs for these promising closed-loop properties
remain challenges for future work.
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