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Abstract: For most practical nonlinear state estimation problems, the conventional nonlinear
filters do not usually work well for some cases, such as inaccurate system model, sudden change
of state-interested and unknown variance of measurement noise. In this paper, an adaptive
cubature strong tracking information filter using variational Bayesian (VB) method is proposed
to cope with these complex cases. Firstly, the strong tracking filtering (STF) technology is
used to integrally improve performance of cubature information filter (CIF) aiming at the first
two cases and an iterative scheme is presented to effectively evaluate a strong tracking fading
factor. Secondly, the VB method is introduced to iteratively evaluate the unknown variance
of measurement noise. Finally, the novel adaptive cubature information filter is obtained by
perfectly combining the STF technology with the VB method, where the variance estimation
provided by the VB method guarantees normal running of the strong tracking functionality.

Keywords: Nonlinear system, unknown variance of measurement noise, cubature information
filter, strong tracking filtering, variational Bayesian.

1. INTRODUCTION

Nonlinear filtering or state estimation is a popular topic
in various fields such as signal processing, target tracking,
data fusion and control all the time (Chandra and Gu
et al, 2011; Ge and Wen et al, 2013; Xu and Zhang et
al, 2012; Li and Wang, 2012; Musicki and Song et al,
2012; Xu and Ding et al , 2013; Li and Jia, 2012). Due
to complexity of nonlinear systems and finiteness of ways
to deal with nonlinear filtering, the study on nonlinear
filtering are suffering many difficulties and challenges in
theory and applications and currently it gets a slow rate
of progress. For most of practical target tracking systems
composed of many distributed sensors, the tracking models
are usually nonlinear. To realize excellent fusion tracking
performance, it is basic and important to design high-
powered nonlinear filters which can cope with many com-
plex application problems. In recent decades, the nonlinear
filtering under the minimum mean square error (MMSE)
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sense has been paid many attention from many researchers
and engineers (Dallil et al, 2013; Ristic and Arulampalam,
2010; Arasaratnam and Haykin, 2009; Sun and Tang, 2013;
Chandra and Gu et al, 2013; Ge and Xu et al, 2014; Zhou
and Li et al, 2010). But, it is still a difficult problem how
to obtain high performance estimation when parameters
of estimation systems are not accurate and unknown and
sudden change of state appears (Chen, 2008).

The Kalman filter (KF) proposed originally by R.E
Kalman only deals with state estimation of linear dynamic
systems and it is optimal in the sense of linear mini-
mum mean square error when system models are accurate
(LMMSE)(Kalman,1960; Ge and Wen et al, 2012; Han et
al, 2010). Consequently, for the nonlinear state estimation,
the extended Kalman filter (EKF)(Jwo and Wang, 2007;
Lee, 2008; Xu and Zhang et al, 2012), the unscented
Kalman filter (UKF)(Julier and Uhlmann, 2004), and the
cubature Kalman filter (CKF)(Arasaratnam and Haykin,
2009) were sequentially presented to deal with state esti-
mation of nonlinear systems. From the current research
results, the CKF has the best performance among the
three nonlinear filter mentioned above. Later in Chandra
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and Gu et al (2013), the associated information filters
CIF and SRCIF were proposed. For the case with two
kind of correlated noises, the design of cubature Kalman
estimators and fusion algorithms has been developed (Ge
and Xu et al, 2013; Ge and Wen et al, 2014).

These nonlinear filters generally require known and ac-
curate systematic parameters and work poorly with the
sudden change of state (Zhou, 1999; Li and Ge, 2010; Ge
and Li et al, 2011). For the two cases, the common result
is that the used system in filtering process mismatches the
practical one. Accordingly, adaptive filtering and robust
filtering technologies have been presented to improve esti-
mation performance and some effective nonlinear filtering
methods have been established (Zhou, 1999; Wang, 2010;
Luo et al, 2012; Blom and Bar-Shalom, 1988; Ge and Li et
al, 2011; Deisenroth and Turner et al, 2012; Hajiyev and
Soken, 2014). Among these methods, the strong tracking
filtering (STF) is relatively popular. Its basic idea is to
increase prediction error covariance by using a fading
factor, which is related to the current measurement in-
novation and can adaptively adjust the gain matrix in the
STF. Thereby, the so-called strong tracking performance is
taken (Jwo and Wang, 2007). For the target maneuvering
or the sudden change of state with inaccurate variance of
measurement noise sequence, the STF can be also used to
improve the estimation performance. Unfortunately, the
inaccurate variance cannot be estimated and corrected in
real-time. In the current work, variational Bayesian (VB)
method has been presented to dynamically estimate the
inaccurate or unknown variance, but the ability to deal
with the target maneuvering or the sudden change of state
is weak for the adaptive filter with only the VB method
(Sarkka, 2009; Ge and Wen et al, 2014).

As a matter of fact, for most of practical target track-
ing systems, the inaccurate or unknown variance of the
measurement noise and the sudden change of the state
appear synchronously. In order to obtain high estimation
performance, it is necessary to require that nonlinear filters
have two abilities which are to estimate the inaccurate
measurement noise variance in real time and to have the
strong tracking ability on the sudden change of the tar-
get state. So, we propose a nonlinear filter based on an
information filtering form of the cubature Kalman filter
(Chandra and Gu et al, 2011; Ge and Xu et al, 2014) by
combining the STF with the VB method for a kind of non-
linear system with an unknown variance of measurement
noise in this paper. The proposed filter not only has the
strong tracking functionality on the sudden change of state
but can estimate the unknown variance of measurement
noise online.

The rest of the paper is organized as follows. We provide
the problem formulation in Section 2. A cubature strong
tracking information filter (CSTIF) is proposed in Section
3. Section 4 presents an adaptive CSTIF using the VB
method, which is called VB-ACSTIF. In Section 5, a brief
analysis is given. Simulation examples are demonstrated
in Section 6. Finally, we conclude the paper.

2. PROBLEM FORMULATION

Consider a kind of nonlinear dynamic system expressed by

{
xk = fk−1(xk−1) +wk,k−1

zk = hk(xk) + vk
(1)

where k ≥ 1 is the time index, and zk ∈ ℜp×1 is a mea-
surement vector of xk ∈ ℜn×1 which is the system state.
fk−1(xk−1) and hk(xk) are both differentiable functions.
wk,k−1 ∈ ℜn×1 and vk ∈ ℜp×1 are zero mean Gaussian
white noises and{

E{wk,k−1w
T
k,k−1} = Qk,k−1, E{wk,k−1v

T
k } = 0

E{vkv
T
k } = Rk = diag(σ2

1,k, σ
2
2,k, · · · , σ2

p,k)
(2)

where Rk is unknown. The initial state x0 with mean x̂0|0
and variance P0|0 is unrelated to wk,k−1 and vk.

Aiming at various complex situations in practical systems,
a desirable universal nonlinear filter should have four
features: 1) The basic nonlinear filter should be high-
performance. 2) It should have an expression that can
be computed efficiently and can be easily extended to
multisensor case (Lee, 2008; Ge and Wen et al, 2013). 3)
The strong tracking performance and favorable robustness
can be taken for the cases with inaccurate system model
and the sudden change of state, and the computation of
Jacobian matrices should be avoided in solving for the
fading factor. 4) For the case with the unknown variance of
measurement noise, it can evaluate this variance online. In
this paper, we design a nonlinear filter by combining the
STF with VB method based on the CIF. For this novel
nonlinear filter, the VB method guarantees the normal
running of the STF functionality by providing an estimate
of the unknown variance Rk at every time.

3. CUBATURE STRONG TRACKING
INFORMATION FILTER

3.1 Cubature Information Filter

In this subsection, an information form of the CKF, the
cubature information filter (CIF), is briefly reviewed. Gen-
erally, nonlinear state estimators under Kalman filtering
frame solve a set of equations that contain conditional
expectations on x̂k|k−1, Pk|k−1, ẑk|k−1, x̂k|k, and Pk|k.
The main difference is how to compute these conditional
expectations in details. The CKF solves for these variables
based on the following cubature rule∫

ℜn

fk−1(x)N(x;µ, P )dx ≈ 1

2n

2n∑
i=1

fk−1(µ+
√
Pξi), (3)

where
√
P is the square root of the covariance P , and

ξi =
√
n[1]i where [1]i is the ith column of point set

(Arasaratnam and Haykin, 2009; Ge and Xu et al, 2014).

The CIF is obtained by embedding CKF in an extended
information filter (EIF) framework (Chandra and Gu et
al, 2013). It not only has good computational performance
but is most useful in multisensor fusion (Ge and Xu et al,
2014). The formulas of the CIF are reviewed as follows:

Time Update

1) Evaluate information matrix and information state
vector

Yk|k−1 = P−1
k|k−1, ŷk|k−1 = Yk|k−1x̂k|k−1, (4)
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where if let Zk−1 be a set of zl(l = 1, 2, · · · , k−1), we have

Pk|k−1 = E{[xk − x̂k|k−1][xk − x̂k|k−1]
T |Zk−1}

=
1

2n

2n∑
i=1

X∗
i,k|k−1X

∗T
i,k|k−1 − x̂k|k−1x̂

T
k|k−1

+Qk,k−1,

(5)

x̂k|k−1 = E{xk|Zk−1} =
1

2n

2n∑
i=1

X∗
i,k|k−1, (6)

X∗
i,k|k−1 = fk−1(x̂k−1|k−1 +

√
Pk−1|k−1ξi), (7)

Measurement Update

2) Compute the cubature points and the propagated
cubature points (i = 1, 2, ..., 2n)

Xi,k|k−1 =
√
Pk|k−1ξi + x̂k|k−1, Zi,k|k−1 = hk(Xi,k|k−1),(8)

3) Evaluate the predicted measurement

ẑk|k−1 = E{zk|Zk−1} =
1

2n

2n∑
i=1

Zi,k|k−1, (9)

4) Estimate the cross-covariance

Pxz,k|k−1 =
1

2n

2n∑
i=1

Xi,k|k−1Z
T
i,k|k−1 − x̂k|k−1ẑ

T
k|k−1, (10)

5) Evaluate information state contribution Ik and its
associated information matrix ik

Ik = HT
kR

−1
k Hk, ik = HT

kR
−1
k (υk +Hkx̂k|k−1), (11)

where Hk and υk are pseudo measurement matrix and
innovation vector respectively, and

Hk = PT
xz,k|k−1Y

T
k|k−1, υk = zk − ẑk|k−1, (12)

6) Evaluate the estimated information vector and the
information matrix

Yk|k = Yk|k−1 + Ik, ŷk|k = ŷk|k−1 + ik, (13)

7) Evaluate final estimate x̂k|k and its covariance Pk|k

x̂k|k = Yk|kŷk|k, Pk|k = Y−1
k|k, (14)

3.2 Cubature Strong Tracking Information Filter

We propose a cubature strong tracking information filter
by combing the strong tracking filter with the CIF in this
subsection. Although the CIF has better computational
efficiency than the CKF, it still requires accurate system
parameters in order to achieve good estimation result as
with the CKF. To address the problem, we introduce
the strong tracking filtering technology to improve the
tracking result of the CIF with the inaccurate system
model. Then, for the CIF, a modified state prediction error
covariance with the fading factor λk is given as follows

Pk|k−1 = λk(
1

2n

2n∑
i=1

X∗
i,k|k−1X

∗T
i,k|k−1 − x̂k|k−1x̂

T
k|k−1)

+Qk,k−1,

(15)

where the fading factor λk can be solved by minimizing
Pk|k with constraint E{υk+dυ

T
k } = 0 (k = 1, 2, · · · ; d ≥ 1).

A popular suboptimal solution of λk is computed by
dynamically using measurement innovation (Zhou, 1999;
Ge and Li et al, 2011). Unfortunately, the fading factor
cannot be directly computed by using the fundamental
suboptimal formulas for the CIF. This is because the
computation of Hk and λk depend on each other at this
moment when we try to avoid the computation of the
Jacobian matrix. For this problem, an iterative method
is presented to compute λk in real time. The iterative
formulas of λj

k(1 ≤ j ≤ N1) are as follows:

λj
k =

{
1, j = 1
λj,k, 2 ≤ j ≤ N1

, λj,k =

{
cj,k, cj,k > 1
1, cj,k ≤ 1

, (16)

where cj,k = Tr(Nj,k)/Tr(Mj,k), and{
Nj,k = Vj−1

0,k − κ0Rk −Hj−1
k Qk,k−1(H

j−1
k )T

Mj,k = Hj−1
k Φk,k−1Pk−1|k−1Φ

T
k,k−1(H

j−1
k )T ,

, (17)

Vj−1
0,k =

 υj−1
1 (υj−1

1 )T , k = 1

ρ1V0,k−1 + υj−1
k (υj−1

k )T

1 + ρ0
, k > 1,

(18)

where Φk,k−1 = fk−1(xk−1)
∂xk−1

|xk−1=x̂k−1|k−1
, 0 < ρ0 ≤ 1

and κ0 ≥ 1. υj−1
k and Hj−1

k are the innovation vector
and the pseudo measurement matrix taken respectively
in (j − 1)th iteration. Finally, λk = λN1

k . Then, the
new cubature information filter is called Cubature Strong
Tracking Information Filter (CSTIF). We summarize the
procedure of the CSTIF as follows:

i) Evaluate x̂k|k−1 in terms of Eqs.(7) and (6)

ii) Set j = 1 and N1, and iteration loop begins

◦ Iteration Loop

iii) If j = 1(λ1
k = 1), H1

k and υ1
k can be taken by directly

using Eqs.(4)-(10) and (12), and go to x).

iv) If 2 ≤ j ≤ N1, then evaluate λj
k by using Eqs.(16)-(18)

v) Compute the state prediction error covariance Pj
k|k−1

Pj
k|k−1 = λj

k(
1

2n

2n∑
i=1

X∗
i,k|k−1X

∗T
i,k|k−1 − x̂k|k−1x̂

T
k|k−1)

+Qk,k−1,

(19)

vi) Evaluate

Yj
k|k−1 = (Pj

k|k−1)
−1, ŷj

k|k−1 = Yj
k|k−1x̂k|k−1, (20)

vii) Evaluate the measurement prediction and innovation

ẑjk|k−1 =
1

2n

2n∑
i=1

Zj
i,k|k−1, υj

k = zk − ẑjk|k−1, (21)

where {
Zj

i,k|k−1 = hk(X
j
i,k|k−1)

Xj
i,k|k−1 =

√
Pj

k|k−1ξi + x̂k|k−1,
(22)

viii) Compute the cross-covariance

Pj
xz,k|k−1 =

1

2n

2n∑
i=1

Xj
i,k|k−1(Z

j
i,k|k−1)

T

− x̂k|k−1(ẑ
j
k|k−1)

T ,

(23)
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ix) Evaluate the pseudo measurement matrix

Hj
k = (Pj

xz,k|k−1)
T (Yj

k|k−1)
T , (24)

x) If j ≤ N1, let j = j + 1 and go to iv); else go to xi).

◦ Iteration Over

xi) Let Hk = HN1+1
k , υk = υN1+1

k , V0,k = VN1

0,k, Yk|k−1 =

YN1+1
k|k−1 and ŷk|k−1 = ŷN1+1

k|k−1.

xii) Evaluate x̂k|k andPk|k according to Eqs.(11),(13),(14).

Clearly, the fading factor can be effectively evaluated
by the iterative computation of the pseudo-measurement
matrix. At the same time, by introducing the time-variant
fading factor based on the newest innovation, the CIF can
have the adaptive strong tracking functionality and good
robustness to the sudden change of state and inaccuracy
of system model. Here, the variance Rk should be known
in order to guarantee the normal running of the CSTIF.
Accordingly, for the case with the unknown variance Rk,
the CSTIF does not work. Then, it is necessary to estimate
Rk online before performing the CSTIF.

4. ADAPTIVE CSTIF USING VARIATIONAL
BAYESIAN

4.1 Adaptive CIF Using Variational Bayesian

An adaptive cubature information filter by using the
variational Bayesian method (VB-ACIF) is proposed to
simultaneously estimate the system state and the unknown
variance of the measurement noise based on the CIF
in this subsection. The VB method uses many known
distributions to approximate joint posterior distribution
p(xk,Rk|Zk) of state and measurement noise variance,
namely (Sarkka, 2009)

p(xk,Rk|Zk) ≈ N(xk|x̂k|k,Pk|k)

×
p∏

l=1

Inv −Gamma(σ2
l,k|αl,k|k−1, βl,k|k−1),

(25)

Then, the procedure of the VB-ACIF with an iterative
estimation of the unknown Rk is summarized as follows:

I) Evaluate global parameters prediction

αk|k−1 = ϱ .αk−1, βk|k−1 = ϱ .βk−1, (26)

where ′.′ indicates the point operation in Matlab software,
and

αk = [α1,k · · · αp,k]
T , βk = [β1,k · · · βp,k]

T , (27)

ϱk = [ϱ1,k · · · ϱp,k]
T , (28)

II) Parameters update: αk = 1/2+αk|k−1 and β0
k = βk|k−1.

III) Set m = 0 and N2, and the iterative process begins.

IV) Iteratively evaluate the variance Rk

R̂
m

k = diag(βm
k ./αk) = diag((σ̂m

1,k)
2, · · · , (σ̂m

p,k)
2), (29)

V) Evaluate state estimate x̂m+1
k|k and the associated co-

variance Pm+1
k|k in terms of Eqs.(4)-(14) by using R̂

m

k .

VI) If m < N2, then

βm+1
k = βk|k−1 + (zk −Hkx̂

m+1
k|k ).2/2

+ diag(HkP
m+1
k|k HT

k )/2,
(30)

Afterwards, let m = m+1 and go to III); else R̂k = R̂
N2

k .

4.2 VB-ACSTIF

In this subsection, a powered adaptive nonlinear filter is
proposed by embedding the iterative esimation of Rk in
the CSTIF given in Section 3 and is called VB-ACSTIF.
From Eq.(30), every interation of estimating Rk depends
on the state estimate and its associated covariance. For
the CSTIF, the computation of the state estimate and the
covariance requires the knowledge of λk, which iterative e-
valuation depends on Rk. Thereby, the combination of the
VB method and the STF also suffers the interdependent
problem on the computation of some variables. To address
this problem, we only send the iteration estimate result

R̂
0

k to the estimation of λk so that the strong tracking
functionality in the VB-ACSTIF can normally work.

The procedure of the VB-ACSTIF is as follows:

1) Evaluate R̂
m

k in terms of steps I)-IV) in subsection 4.1.

2) If m = 0, let Rk = R̂
0

k and go to 3); else go to 5).

3) Estimate x̂k|k−1 by using step i) in subsection 3.2.

4) Iteratively evaluate Hk, υk,V0,k,Yk|k−1 and ŷk|k−1 in

terms of steps ii)-ix) in subsection 3.2.

5) Evaluate x̂m+1
k|k and Pm+1

k|k by using R̂
m

k , Hk and υk.

6) If m < N2, compute βm+1
k according to Eq.(30), let

m = m+ 1 and go to 1); else go to 7).

7) Let x̂k|k = x̂N2

k|k, Pk|k = PN2

k|k, R̂k = R̂
N2

k and βk = βN2

k .

2

Actually, the VB-ACSTIF is formed by combining the
CSTIF and the VB and this combination is naturally a
reciprocally embedded process of the CSTIF algorithm
and the VB method. In other words, the strong tracking
functionality and the variational Bayesian method influ-
ence each other in the final VB-ACSTIF.

5. SIMULATION EXAMPLE

In this section, a simulation example with Bearings-only
tracking is demonstrated. For this tracking system, t-
wo sensors are placed at the same level and their dis-
tance D = 1000m. It assumes that the interested tar-
get moves with a constant velocity and the target state
xk = [xk νx,k yk νy,k]

T , namely it follows the CV model.
Then, the state model is linear and

xk = Φk,k−1xk−1 +wk,k−1 (31)

where the system transfer matrix

Φk,k−1 =

 1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 (32)
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and the covariance matrix of the process noise

Qk,k−1 =


T 3/

3
T 2/

2 0 0
T 2/

2 T 0 0

0 0 T 3/
3
T 2/

2
0 0 T 2/

2 T

× 0.5(m3/s2) (33)

Two right angle measurements θ1,k, θ2,k to the same
target can be respectively taken by the two sensors.
By intersecting both angles, we can get the nonlinear
measurement equation as follows

zk =

[
θ1,k
θ2,k

]
=


arccos

[
xk√

x2
k + y2k

]

arccos

[
xk −D√

(xk −D)2 + y2k

]
+ vk (34)

and x̂0|0 = [0 5 0 5]T , P0|0 = diag(8 1 8 1), N1 = 3,
ρ0 = 0.95, and κ0 = 4. For the VB method in Example
2, the corresponding parameters are N2 = 2, ϱ = [1 −
e−8; 1 − e−8], α0 = [1; 1], and β0 = [0.05; 0.1]. From
time 50 to 60, sudden changes of xk and yk are set with
50 and 20 magnitudes respectively. All results are means
of Monte-Carlo simulations.

Example 1

This example is used to validate the proposed VB-ACSTIF
with unknown variance of measurement noise sequence. A
given value Rk = diag( 1

200
1

200 ) × π/180 is only used to
generate simulation data. The results see Fig.1 to Fig.3.
From Fig.1 to Fig.2, we know that the VB-ACSTIF is
better than the VB-ACIF without the strong tracking
ability on the estimation accuracy. It is apparent because
the VB-ACSTIF has the strong tracking function when
the sudden changes appear but the VB-ACIF does not. In
addition, Fig.3 shows that the VB-ACSTIF can estimate
effectively the unknown variance of measurement noise
because it has the variational Bayesian module which
can be used to evaluate the variance of measurement
noise in real time. Furthermore, the variance estimation
of the unknown measurement noise converges. However,
the estimation accuracy of this variance depends closely
on the initial value.

6. CONCLUSION

In this paper, the design of nonlinear state filters is devel-
oped in order to effectively cope with complex tracking cas-
es and further improve estimation performance. The final
nonlinear filter can be applied to dynamically estimate the
system state by closely combining the STF with the VB
method based on the cubature information filter when the
sudden change of system state and the unknown variance
of measurement noise appear simultaneously. Certainly,
this combination is not simply an integration and is ac-
tually a closely embedded structure. There are some open
topics, which include to study the associated multisensor
fusion, to extend these filters to a more complex case with
two kinds of correlated noises, and to discuss comparisons
of variance estimations of the unknown measurement noise
with different basic nonlinear filters and performance influ-
ence from different initial values on the variance estimation
of the unknown measurement noise and so forth.
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