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Abstract: In this paper, a robust H∞ fault detection filter is designed for a class of discrete-
time nonlinear networked control systems via T-S fuzzy model with multiple bounded state delay
and random packet dropout induced by the limited bandwidth of communication networks. Our
aim in this paper is to analyze and design a robust H∞ full-order fault detection filter, such
that the filtering error dynamics is asymptotically mean-square stable with a prescribed H∞
performance level. Sufficient conditions for the existence of the desired filter are presented.
Finally, an example is given to illustrate the effectiveness and applicability of the proposed new
design method.
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1. INTRODUCTION

Fault detection (FD) has attracted researchers’ attention
over the past decades because of the increasing demand
for high safety and high reliability in many industrial
processes. Fruitful results can be found in several books
Chen et al. (1999), Ding X. (2008) and excellent papers
Jiang et al. (2006), Zhong et al. (2010). Recently, with the
rapid developments in network technologies, the interests
on FD of networked control systems (NCSs) are increasing.

Networked control systems (NCSs) are closed-loop feed-
back control systems, where sensor-controller and controller-
actuator signal link is through a shared network. Com-
pared with conventional systems, NCSs have great ad-
vantages, such as low cost, reduced weight and increased
system agility, which leads to the applications of NCSs
for many fields ranging from DC motors, advanced air-
craft to manufacturing process. However, the introduction
of communication networks also brings communication
constraints to the control systems, e.g., network-induced
delays and packet dropouts, which all might be potential
causes to poor performance, instability, and even faults.
Therefore, many excellent results have been carried out
for NCSs with time delays and data drops. For exam-

⋆ Supported by National Natural Science Foundation of Chi-
na(61104020, 61374130), the Doctoral Program of Higher Ed-
ucation(20113218120010), the Australian Research Council (D-
P140102180), the National Key Basic Research Program, China
(2011CB710706, 2012CB215202), and the 111 Project (B12018).

ples, Dong et al. (2010) develops a robust H∞ filter for
NCSs with multiple stochastic communication delays and
packet dropouts under discrete-time model. Gao et al.
(2008) presents a new approach to solve the problem of
stabilization for networked control systems. Yue et al.
(2009) concerns the design of stabilization controllers for
linear systems with stochastic input delays. The above-
mentioned works focus on the design of controller, observer
and filter. However, it should be noted that faults in actu-
ators, sensors and other components existing in NCSs are
similar to other control systems. Thus, it is important to
study FD schemes for these systems to avoid the failures.
There exist some results to design FD for NCSs. Zhang
et al. (2011) designs a robust FD filter for NCSs with delay
distribution characterization under discrete-time model.
Wang et al. (2009) proposes a fault detection approach for
NCSs with communication constrains. Mao et al. (2007)
develops the scheme of robust FD for networked control
systems with large transfer delays . Unfortunately, the
most research works on FD for NCSs are reported for
linear systems, and only limited results are concerned on
nonlinear systems.

In recent years, many fuzzy control approaches and fault
diagnosis schemes have been developed for nonlinear sys-
tems because of its approximate performance (e.g., see Su
et al. (2012), Zhou et al. (2013), Jiang et al. (2010)). Zhang
et al. (2007) designs the fuzzy filter for signal estima-
tion of nonlinear discrete-time systems with multiple time
delays and unknown bounded disturbances. Tong et al.
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(2013) concerns the problem of adaptive fuzzy tracking
control for a class of multi-input and multi-output strict-
feedback nonlinear systems with both unknown nonsym-
metric dead-zone inputs and immeasurable states. Since
nonlinear systems can be approximated by T-S fuzzy
models, an applicable design scheme of the fault detectors
for nonlinear systems can be transformed into the fault
detection problem for T-S fuzzy systems. On the other
hand, preserving some nonlinearities in T-S fuzzy systems
can make the systems close to the reality. Thus, in this
paper, the nonlinear NCSs via T-S fuzzy model is taken
into account.

In this paper, the fault detection problem for a discrete-
time nonlinear NCSs with time-varying state delays and
random data dropouts is considered. Based on Lyapunov
functions, sufficient conditions for FD filter design are
established. The designed FD filter can detect the fault
with the limited information successfully.

The paper is organized as follows. Section 2 describes the
system model and presents some assumptions and defini-
tions. TheH∞ FD filter design method based on Lyapunov
functions is derived in section 3. A simulation example is
included in section 4, followed by some concluding remarks
in section 5.

2. PROBLEM STATEMENT

In this paper, we consider the following class of discrete-
time fuzzy systems with sector-bounded nonlinearity:

△Plant Rule i: IF θ1(k) is Fi1 and · · · and θp(k) is Fip,
THEN

xk+1 = A1ig(xk) +A2ixk +Adixk−τk +Biwk + Eifk
zk = C1ig(xk) + C2ixk + Cdixk−τk +D1iwk

yk = Cixk +Diwk

xk = φk, k = −τu,−τu + 1, . . . , 0
i = 1, . . . , r

(1)

where Fij is the fuzzy set, r denotes the number of IF-
THEN rules, θk = [θ1(k), θ2(k), . . . , θp(k)] is the premise
variable vector. xk ∈ Rn is the state vector; zk ∈ Rn1 is the
signal to be estimated; yk ∈ Rn2 is the measured output
vector; wk ∈ Rnw is the unknown disturbance belonging
to l2 ∈ [0,∞) and fk is the fault vector. A1i, A2i, Adi, Bi,
Ci, C1i, C2i, Cdi, Di, D1i, and Ei are all constant matrices
with appropriate dimensions. τk is the time-varying state
delay with lower and upper bounds τl ≤ τ ≤ τu, where
τl and τu are constant positive scalars. φk is a given real
initial sequence on [−τu, 0]. g(xk) is the nonlinear function
satisfying the following assumption.

Assumption 1: The nonlinear function g(·) in system (1)
satisfies

[g(xk)− F1xk]
T [g(xk)− F2xk] ≤ 0, ∀xk ∈ Rn (2)

where F1 ∈ Rn×n and F2 ∈ Rn×n are known real constant
matrices and F = F1 −F2 is a symmetric positive definite
matrix.

According to (2), for any scalar ε > 0, it has

ε

[
x̃k

g(xk)

]T [
ZT F̃1Z ZT F̃2

∗ I

] [
x̃k

g(xk)

]
≤ 0, (3)

where F̃1 = (FT
1 F2 + FT

2 F1)/2, F̃2 = −(FT
1 + FT

2 )/2, and
Z = [I 0].

Consider the measurement signal with random data
dropouts as the following form,

yk = λkCixk +Diwk (4)

where the stochastic variable λk distributes in the known
interval [α, β], (0 ≤ α ≤ β ≤ 1), with its mathematical
expectation E{λk} = ρ and variance Cov{λk} = σ2. α, β,
ρ and σ are known real scalars.

Remark 1: Here, system (4) is used to describe the
random data dropouts induced by the limited bandwidth
as He et al. (2009), which is usually used to describe the
characters of net. When α = β = 1, the data is transferred
successfully. While α = β = 0, the data is loss at all.

The overall fuzzy model can be inferred as follows:

xk+1 =
r∑

i=1

µi(θk)[A1ig(xk) +A2ixk +Adixk−τk

+Biwk + Eifk]

zk =

r∑
i=1

µi(θk)[C1ig(xk) + C2ixk + Cdixk−τk

+D1iwk]

yk =

r∑
i=1

µi(θk)[λkCixk +Diwk]

(5)

where the fuzzy basis functions are given by

µi(θk) =
ηi(θk)∑r
i=1 ηi(θk)

, ηi(θk) = Πp
j=1Fij(θj(k))

Fij(θj(k)) represents the grade of membership value of
θj(k) in Fij . Therefore, µi(θk) has the following basic
property:

ηi(θk) ≥ 0, i = 1, 2, . . . , r,
∑r

i=1 ηi(θk) ≥ 0, ∀k
µi(θk) ≥ 0, i = 1, 2, . . . , r,

∑r
i=1 µi(θk) = 1, ∀k.

For the purpose of residual generation, the following filter
can be constructed:

x̂k+1 =

r∑
j=1

µj(θk)[Gj x̂k +Kjyk]

ẑk =
r∑

j=1

µj(θk)Lj x̂k

(6)

where x̂k is the observer state vector, ẑk is an estimation
for zk. Gj , Kj and Lj are the parameters to be deter-
mined. By defining x̃k = [xT

k x̂T
k ]

T , z̃k = zk − ẑk and
dk = [fT

k wT
k ]

T , the filter-error dynamic system can be
obtained:

x̃k+1 =
[
Ã0 + (λk − ρ)Ā0

]
x̃k + ÃdZx̃k−τk

+B̃0g(xk) + B̄0dk
z̃k = C̃0x̃k + C̄dZx̃k−τk + D̃0g(xk) + D̄0dk

(7)

where

Ã0 =
r∑

i=1

r∑
j=1

µi(θk)µj(θk)

[
A2i 0

ρKjCi Gj

]
:=

[
A2 0

ρKC G

]

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11648



Ā0 =

r∑
i=1

r∑
j=1

µi(θk)µj(θk)

[
0 0

KjCi 0

]
:=

[
0 0

KC 0

]

Ãd =
r∑

i=1

r∑
j=1

µi(θk)µj(θk)

[
Adi

0

]
:=

[
Ad

0

]

B̃0 =
r∑

i=1

r∑
j=1

µi(θk)µj(θk)

[
A1i

0

]
:=

[
A1

0

]

B̄0 =
r∑

i=1

r∑
j=1

µi(θk)µj(θk)

[
Ei Bi

0 KjDi

]
:=

[
E B
0 KD

]

C̃0 =
r∑

i=1

r∑
j=1

µi(θk)µj(θk) [C2i −Lj ] := [C2 −L ]

C̄d =

r∑
i=1

r∑
j=1

µi(θk)µj(θk)Cdi := Cd

D̄0 =
r∑

i=1

r∑
j=1

µi(θk)µj(θk) [ 0 D1i ] := [ 0 D1 ]

D̃0 =

r∑
i=1

r∑
j=1

µi(θk)µj(θk)C1i := C1.

Considering the existence of the stochastic variable λk, we
recall the definition of stochastic stability in the mean-
square sense for the filter-error system.

Definition 1 Mao X. (1997): The FD filter-error dynam-
ic system (7) is said to be asymptotically mean-square
stable if, with dk = 0, for any initial conditions,

lim
k→∞

E{∥x̃k∥2} = 0 (8)

Due to the existence of the random variable λk, in the rest
of the paper, our aim is to design a robust full-order FD
filter (6) for system (5). For all disturbance dk and the
random variable λk, determine the FD filter-gain matrix
Gj , Kj and Lj , such that FD filter-error system satisfies
both the following requirements:

1) The FD filter-error system (7) is asymptotically mean-
square stable.

2) Under the zero-initial conditions, the FD filer-error z̃k
satisfies

∞∑
k=0

E{∥z̃k∥2} < γ2
∞∑
k=0

E{∥dk∥2} (9)

for all nonzero dk, where γ > 0 is a prescribed scalar.

To detect the system faults, the residual evaluation func-
tion is selected as

J(k) =

{
k0+Le∑
s=k0

rTs rs

}1/2

, Jth = sup
wk∈l2,Fk=0

J(k) (10)

where k0 is the initial evolution time instant; Le is the
evolution time steps and Jth is the threshold. Based on
this, the occurrence of faults can be detected by

{
J(k) < Jth ⇒ no fault occurs

J(k) ≥ Jth ⇒ alarm for fault
(11)

From (11), it can be seen that the threshold Jth is
proportional to the performance index γ. For the no fault
case, γ determines the influence of the disturbance to FD
filter. The smaller γ is, the better of the robustness of FD
filter to the disturbance will be.

3. FD FILTER DESGIN

In this section, we aim to develop an innovative approach
to guarantee the FD filter-error system (7) satisfying the
requirements 1) and 2). The following theorem provides
a sufficient condition for the existence of a full-order FD
filter for system (5).

Theorem 1. Consider system (5) with a full-order FD filter
of the form (6). Given a prescribed H∞ attenuation level
γ > 0. If there exist matrixes P = PT > 0, Q = QT > 0
and a constant scalar ε > 0 such that the following
inequality holds:

Ω =

Ω11 Ω12 Ω13 Ω14

∗ Ω22 Ω23 Ω24

∗ ∗ Ω33 Ω34

∗ ∗ ∗ Ω44

 < 0 (12)

where

Ω11 = ÃT
0 PÃ0 + σ2ĀT

0 PĀ0 − P − εZT F̃1Z

+C̃T
0 C̃0 + νZTQZ, Ω12 = ÃT

0 PÃd + C̃T
0 Cd,

Ω13 = ÃT
0 PB̃0 − εZT F̃2 + C̃T

0 D̃0,

Ω14 = ÃT
0 PB̄0 + C̃T

0 D̄0, Ω22 = ÃT
d PÃd −Q+ CT

d Cd,

Ω23 = ÃT
d PB̃0 + CT

d D̃0, Ω24 = ÃT
d PB̄0 + CT

d D̄0

Ω33 = B̃T
0 PB̃0 − εI + D̃T

0 D̃0, Ω34 = B̃T
0 PB̄0 + D̃T

0 D̄0,

Ω44 = B̄T
0 PB̄0 − γ2I + D̄T

0 D̄0, ν = τu − τl + 1,

then the FD filter-error system (7) is asymptotically mean-
square stable with the prescribed H∞ attenuation level
bound γ given in (9).

Proof. Consider the following Lyapunov functions:

V (x̃k) = V1(x̃k) + V2(x̃k) + V3(x̃k)

V1(x̃k) = x̃T
k Px̃k, V2(x̃k) =

k−1∑
i=k−τk

x̃T
i Z

TQZx̃i

V3(x̃k) =

k−τl∑
j=k−τu+1

k−1∑
i=j

x̃T
i Z

TQZx̃i (13)

where P = PT > 0 and Q = QT > 0. From the characters
of the random variable λk, it has:

E{λk − ρ} = 0, E{[λk − ρ]2} = σ2 (14)

For dk = 0, the difference of each Lyapunov functions can
be calculated from (7):

E{∆V1}=E{V1(x̃k+1)} − V1(x̃k)
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=

[
x̃k

Zx̃k−τk
g(xk)

]T [
M1 M2 M3

∗ M4 M5

∗ ∗ M6

][
x̃k

Zx̃k−τk
g(xk)

]
E{∆V2}=E{V2(x̃k+1)} − V2(x̃k)

≤E
{
x̃T
kZ

TQZx̃k − x̃T
k−τk

ZTQZx̃k−τk

+

k−τl∑
i=k+1−τu

x̃T
i Z

TQZx̃i

}
E{∆V3}=E{V3(x̃k+1)} − V3(x̃k)

=E
{
(τu − τl)x̃

T
k Z

TQZx̃k

−
k−τl∑

i=k+1−τu

x̃T
i Z

TQZx̃i

}
where M1 = ÃT

0 PÃ0 + σ2ĀT
0 PĀ0 − P , M2 = ÃT

0 PÃd,

M3 = ÃT
0 PB̃0, M4 = ÃT

d PÃd, M5 = ÃT
d PB̃0 and

M6 = B̃T
0 PB̃0. Further, we obtain that

E{∆V }=E{∆V1}+ E{∆V2}+ E{∆V3}

≤ ζTk

 M̃1 M2 M3

∗ M̃4 M5

∗ ∗ M6

 ζTk (15)

where ζTk =
[
x̃T
k x̃T

k−τk
ZT gT (xk)

]
, M̃1 = ÃT

0 PÃ0 +

σ2ĀT
0 PĀ0 − P + νZTQZ, M̃4 = ÃT

d PÃd −Q.

Substituting (3) into (15), one can obtain

E{∆V (x̃k)} ≤ E{∆V (x̃k)}

− E

{
ε

[
x̃k

g(xk)

]T [
ZT F̃1Z ZT F̃2

∗ I

] [
x̃k

g(xk)

]}

= ζTk

 M̃1 − εZT F̃1Z M2 M3 − εZT F̃2

∗ M̃4 M5

∗ ∗ M6 − εI

 ζk

:= ζTk Ξζk (16)

Using Theorem 1, one can verify that

Ξ < −

 C̃T
0 C̃0 C̃T

0 Cd C̃T
0 D̃0

∗ CT
d Cd CT

d D̃
T
0

∗ ∗ D̃T
0 D̃0

 < 0 (17)

Thus, for all dk = 0, we have E{∆V (x̃k)} < 0, that is
system (7) is asymptotically stable in the mean-square
sense.

Next, for any nonzero dk, it follows from (7), (12) and (16)
that

E{∆V (x̃k)}+ E{z̃Tk z̃k} − γ2E{dTk dk}
≤ E

{
ξTk Ωξk

}
< 0 (18)

where ξk :=
[
x̃T
k x̃T

k−τk
ZT gT (xk) dTk

]T
. Now, summing

up this relationship from 0 to ∞ with respect to k yields

∞∑
k=0

E{z̃Tk z̃k} <
∞∑
k=0

γ2E{dTk dk} − E{V∞}+ E{V0}(19)

Since the system (7) is asymptotically mean-square stable,
it is obvious that (9) holds under the zero initial condition.
This concludes the proof. 2

Theorem 1 provides a sufficient condition for the design of
the FD filter, which contains the coupled matrix variables.
To overcome the difficulties caused by the coupling in (12),
a decoupling techniques as Gao et al. (2005) is used, by
which, (12) can be transformed into a new form.

Corollary 1. Consider system (5) with a full-order FD
filter of the form (6). Given a prescribed scalar γ > 0, if
there exist matrixes P̄ = P̄T > 0, Q = QT > 0, F >
0, K̄, Ḡ, L̄ and a constant scalar ε > 0 such that the
following LMI holds:

Π11 0 Π13 0 Π15 Π16 Π17

∗ −Q 0 0 CT
d Π26 0

∗ ∗ −εI 0 D̃T
0 Π36 0

∗ ∗ ∗ −γ2I D̄T
0 Π46 0

∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ Π66 0
∗ ∗ ∗ ∗ ∗ ∗ Π77


< 0 (20)

where

Π11 =

[
νQ− P̄ − εF̃1 −F

−F −F

]
, Π13 =

[
−εF̃2

0

]
,

Π15 =

[
CT

2

−L̄T

]
, Π17 = σ

[
CT K̄T CT K̄T

0 0

]
,

Π16 =

[
AT

2 P̄ + ρCT K̄T AT
2 F + ρCT K̄T

ḠT ḠT

]
,

Π26 =
[
AT

d P̄ AT
d F

]
, Π36 =

[
AT

1 P̄ AT
1 F

]
,

Π46 =

[
ET P̄ ETF

BT P̄ +DT K̄T BT P̄ +DT K̄T

]
,

Π66 = Π77 =

[
−P̄ −F
−F −F

]
.

Proof. Suppose condition (12) holds for matrices PT =

P > 0, Q = QT > 0, Ã0, Ā0, Ãd, B̃0, B̄0, C̃0, D̃0, D̄0 and
Z = [ I 0 ]. Using Schur complement Boyd et al. (1997),
one can show that (12) is equivalent to



Π̄11 0 −εZT F̃2 0 C̃T
0 ÃT

0 P σĀT
0 P

∗ −Q 0 0 CT
d ÃT

d P 0

∗ ∗ −εI 0 D̃0 B̃T
0 P 0

∗ ∗ ∗ −γ2I D̄T
0 B̄T

0 P 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −P 0
∗ ∗ ∗ ∗ ∗ ∗ −P


< 0 (21)

where Π̄11 = νZTQZ−P − εZT F̃1Z. Let the matrix P be

partitioned as P =

[
P̄ S̄
S̄ W̄

]
, where P̄ > 0, W̄ > 0 and S̄

is invertible. Define the invertible matrix J =

[
I 0
0 S̄W̄−1

]
.

Performing congruence transformations to (21) by

diag{JT , I, I, I, I, JT , JT } yields (20) with changes of vari-
ables as:

F = S̄W̄−1S̄, K̄ = S̄K, Ḡ = S̄GW̄−1S̄, L̄ = LW̄−1S̄.

This ends the proof. 2
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With the aid of the above corollary, we are now in a
position to present the filter gain design algorithm.

Theorem 2. Given system (5) with a full-order H∞ FD
filter in the form of filter (6) exists, if there exist matrices
P̄ = P̄T > 0, QT = Q > 0, F > 0, K̄j , Ḡj , L̄j and a
constant scalar ε > 0 such that the following LMIs holds
for a given scalar γ > 0:

Φij +Φji < 0, i ≤ j (22)

where

Φij =



Γ11 0 Γ13 0 Γ15 Γ16 Γ17

∗ −Q 0 0 CT
di Γ26 0

∗ ∗ −εI 0 CT
1i Γ36 0

∗ ∗ ∗ −γ2I Γ45 Γ46 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ Γ66 0
∗ ∗ ∗ ∗ ∗ ∗ Γ77


Γ11 =

[
νQ− P̄ − εF̃1 −F

−F −F

]
, Γ13 =

[
−εF̃2

0

]
,

Γ15 =

[
CT

2i

−L̄T
j

]
, Γ17 = σ

[
CT

i K̄
T
j CT

i K̄
T
j

0 0

]
,

Γ16 =

[
AT

2iP̄ + ρCT
i K̄

T
j AT

2iF + ρCT
i K̄

T
j

ḠT
j ḠT

j

]
,

Γ26 =
[
AT

diP̄ AT
diF

]
, Γ36 =

[
AT

1iP̄ AT
1iF

]
,

Γ46 =

[
ET

i P̄ ET
i F

BT
i P̄ +DT

i K̄
T
j BT

i P̄ +DT
i K̄

T
j

]
,

Γ45 =

[
0

DT
1i

]
, Γ66 = Γ77 =

[
−P̄ −F
−F −F

]
In this case, the FD filter parameters in filter (6) are given
by

Kj = F−1K̄j , Gj = F−1Ḡj , Lj = L̄j . (23)

Proof. Set△(k) =
∑r

i=1 µi△i, where△ denotes matrices
A1, A2, Ad, B, C, C1, C2, Cd, D, D1, K̄, Ḡ or L̄. For
simplicity, denote the matrix on the left side of inequality
(20) by Φ(k). Then, from (22), one can obtain that

Φ(k) =
r∑

i=1

µi

r∑
j=1

µjΦij

=

r∑
i=1

µ2
iΦii +

r∑
i<j

µiµj(Φij +Φji) < 0 (24)

From Corollary 1, the H∞ FD filter design problem has
been solved, and the parameter matrix functions are given
by K = S̄−1K̄, G = S̄−1ḠS̄−1W̄ , L = L̄S̄−1W̄ , where
W̄ > 0, S̄ is invertible and F = S̄W̄−1S̄. Under the
transformation S̄−1W̄ x̃k, the FD filter matrix functions
can be of the following form:

K = S̄−1W̄ (S̄−1K̄) = F−1K̄,

G = S̄−1W̄ (S̄−1ḠS̄−1W̄ )W̄−1S̄ = F−1Ḡ,

L = (L̄S̄−1W̄ )W̄−1S̄ = L̄. (25)

Hence, the parameter matrices in filter (6) are given by
(23). The proof is completed. 2

Remark 2: Since the mean value and the variance of the
random variable λk are known, the parameters of FD filter
can be solved through Theorem 1 and Theorem 2. For the
sensors, we just consider the same rate of the data drops.
It is well-known that each channel has its own drop rate,
i.e., the λk for each sensor is different. The obtained results
can be extend to the case of the different drop rate.

Remark 3: The H∞ fault detection filter design for
nonlinear networked control systems can be readily found
by solving the following problem: Minimize γ2 subject to
(22) and (23), which can be solved by the LMI tool box in
MATLAB.

4. ILLUSTRATIVE EXAMPLE

In this section, we give an illustrative example to demon-
strate the effectiveness of presented method. Consider a
T-S fuzzy system with three plant rules (r = 3) whose
membership functions are shown in Figure 1. The param-
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Fig. 1. Membership functions of the T-S fuzzy system

eters of the system are given as follows:

A11 =

[
1 0.31
0 0.33

]
, A21 =

[
0 0.5
0.2 0.3

]
, B1 =

[
−1
2

]
Ad1 =

[
0 0.2
0.1 0.2

]
, E1 =

[
0.8
1

]
, C11 = [ 0.2 0 ]

C21 = [ 0.2 0.5 ] , D11 = 0.15, C1 = [ 0.8948 0.8 ]

A12 =

[
1 0.29
0 0.30

]
, A22 =

[
0 0.4
0.3 0.2

]
, B2 =

[
−1
2

]
Ad2 =

[
0.1 0
0.2 0.3

]
, E2 =

[
1
0

]
, C12 = [ 0.1 0 ]

C22 = [ 0.3 0.4 ] , D12 = 0.15, C2 = [ 0.827 0.8 ]

A13 =

[
0.9 0.35
0 0.28

]
, A23 =

[
0 0.45

0.154 0.24

]
, B3 =

[
−1
2

]
Ad3 =

[
0.1 0.2
0.2 0

]
, E3 =

[
1
0

]
, C13 = [ 0.15 0 ]

C23 = [ 0.24 0.48 ] , D13 = 0.15, C3 = [ 0.8366 0.8 ]

D1 = D2 = D3 = 1, Cd1 = Cd2 = Cd3 = 0

g(xk) = 0.5sin(xk)

Suppose that the probabilistic variable λk meets uniform
distribution in interval [0.5 1], from which the expectation
and variance can be easily calculated as ρ = 0.75, σ =
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0.144. The unknown disturbance wk is assumed to be white
noise with power of 0.5. The fault signal fk is simulated as
1 that occurs from 100 to 200 steps. Select γ = 0.98. Using
Theorem 2, the H∞ filtering parameters can be calculated
through the LMI toolbox:

K1 =

[
−0.1144
−0.0790

]
, G1 =

[
−0.0405 −0.0305
−0.0257 −0.0203

]
,

L1 = [−0.2650 −0.1636 ]

K2 =

[
−0.0915
−0.1218

]
, G2 =

[
−0.0219 −0.0195
−0.0305 −0.0289

]
,

L2 = [−0.2902 −0.2261 ]

K3 =

[
−0.0922
−0.1035

]
, G3 =

[
−0.0270 −0.0263
−0.0313 −0.0309

]
,

L3 = [−0.2875 −0.3102 ] .

Simulation results with the initial conditions xk = [0 0],
x̂k = [0 0] are shown in Figure 2 and Figure 3. From Figure
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Fig. 2. Residual estima-
tion based on com-
mon Lyapunv func-
tion
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Fig. 3. Residual evolu-
tion based on com-
mon Lyapunov func-
tion

3, it can be seen that the residual evolution increases
quickly when the fault fk ̸= 0. Choosing appropriate Jth,
the fault fk can be detected as soon as its occurrence.

5. CONCLUSION

The problem of FD for a class of nonlinear NCSs with
probabilistic data dropout and time-varying delay has
been considered in this paper. Based on Lyapunov function
approach, sufficient conditions for the FD filter design are
established in terms of a set of LMIs, which guarantees the
mean-square stability of the FD filtering-error systems,
as well as prescribed H∞ performance requirement. By
solving a LMIs, we obtain the FD filter parameters. In
the future, the work about the fault diagnosis and fault-
tolerant control for more general nonlinear models will be
developed.
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