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Abstract: We consider an iterative learning control (ILC) approach to machining with industrial robots.
The robot and the milling process are modeled using system identification methods with a data-driven
approach. Two different model-based ILC algorithms are proposed and subsequently experimentally
verified in a milling scenario. The difference between the two approaches is the required sensors for
acquiring relevant input data for the algorithms. The results from the experiments indicate that the
proposed methods have the potential of significantly decreasing the position errors in robotic machining,
up to 85% in the considered milling scenario.

1. INTRODUCTION

Milling and other machining processes are common tasks in
modern industrial manufacturing. Usually, the milling task is
executed using dedicated computer numerical control (CNC)
machines. The employment of industrial robots for this kind of
operations is of interest, mainly because of the lower investment
cost of a robot cell compared to a CNC machine, but also the
reconfiguration flexibility of the robot. However, the usage of
industrial robots for machining has been limited, as the ma-
chining tolerances generally cannot be met—typical values for
the accuracy that can be achieved are in the range of 1 µm for
CNC machines and approximately two magnitudes higher for
conventional industrial robots. A significant contribution to the
insufficient accuracy in milling tasks performed with industrial
robots is the combination of comparably low stiffness of the
joints in a serial-kinematic manipulator and external process
forces affecting the end-effector. Typically, the robot motion
control is based on distributed feedback from the resolvers in
the individual joint motors. Consequently, the desired arm-side
or task-space measurements are not available. Since a major
part of the induced position deflections in the milling process
appear on the arm-side of the robot joints, they cannot be de-
tected by the joint resolvers. Hence, feedforward control based
on high-accuracy robot and process models or online feedback
from external task-space sensors are required in order to be
able to compensate the arm-side position deviations. External
position and orientation sensors for task-space measurements
with the required accuracy and resolution are typically quite
expensive, compared to the cost of the robot. On the other
hand, wrist-mounted force sensors are a cheaper alternative of
acquiring task-space information of the robot, although relating
the measured data with the position of the robot in a machin-
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Fig. 1. The experimental platform used for evaluation of ILC
in milling scenarios, with the robot holding the workpiece
and a fixed spindle with the milling tool.

ing scenario is not straightforward and requires robot-specific
model information.

Background Previous methods for increasing the accuracy of
robotic machining are primarily based on contact-force control
(Hogan, 1985) and stiffness compensation, e.g., (Wang et al.,
2009; Reinl et al., 2011). Iterative learning control (ILC) has
been proposed as an offline method for achieving higher accu-
racy in motion control for robots (Arimoto et al., 1984), and
later robots with joint and link flexibilities (Miyazaki et al.,
1986; Norrlöf, 2000, 2002; Hakvoort et al., 2007) performing
repetitive tasks. The idea is to measure the position deviations
during the first execution and then update the control inputs
or the specified path and trajectory for subsequent iterations.
Under certain assumptions, convergence of this iterative proce-
dure can be theoretically proven. However, all of the mentioned
references consider situations where the robot end-effector is
moving in free space. In addition, it should be noted that real-
time algorithms for ILC have been proposed (Xu et al., 2010).

Problem Formulation In this paper, the application of ILC for
the geometric robot path in a machining task—such as milling,
deburring, and grinding—is investigated with the purpose of
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increasing the obtained accuracy of the machined parts. The
difference to previous applications of ILC in robotics is the
contact between the workpiece attached to the robot and the
tool on the spindle, which is required for completion of the
machining task. This constitutes a major difficulty in applying
the iterative scheme, since the force interaction between the
tool and the workpiece must be considered when determining
the updated geometric path. The motivation for seeking ILC-
based solutions to the problem of increasing the position accu-
racy in machining is the often batch-oriented nature of modern
production, which comprises significant repetitiveness in the
tasks to be performed. Two different versions of ILC algorithms
are developed and subsequently investigated in milling exper-
iments in this paper; the difference between the two being the
available sensor data. Obviously, with more relevant sensor data
available, higher performance can be achieved. First, ILC is
considered based on arm-side measurements in task-space of
the robot with an optical 6D tracking system, in order to demon-
strate the effectiveness of the strategy for reducing the position
deviations. Then, a model-based ILC algorithm is developed,
which is only based on the internal joint resolver position data
and measurements provided by a wrist-mounted force/torque
sensor attached to the robot end-effector. The latter approach
is appealing, since it eliminates the need for expensive external
tracking systems.

This paper is organized as follows: Section 2 presents the
modeling of the robot and the milling process, a subsequent
identification procedure for the required models, and the details
of the proposed ILC algorithms. The experimental setup and the
obtained results from ILC applied to milling in aluminium are
presented in Sec. 3. The obtained results are commented upon
and the method as such is contrasted to other approaches for
increasing the robotic machining accuracy in Sec. 4. The paper
is summarized in Sec. 5, where conclusions also are drawn.

2. METHOD

In order to provide a basis for the design of model-based ILC
algorithms, the robot and the effects of the milling process
on the robot are modeled using system identification methods
(Johansson, 1993).

2.1 System Modeling and Identification

As mentioned in Sec. 1, the main difficulty when milling with
an industrial robot is the deflections that occur because of pro-
cess forces that act on the robot end-effector, which in turn
result in position errors at the end-effector. In order to model
this dynamic compliance relation, it is considered as being com-
posed of two different inherently coupled phenomena; the de-
flection of the robot when a force is applied to its end-effector,
and the process forces arising when milling is performed. The
model for the first phenomenon aims to link the applied force
with the deflection by the robot—i.e., the relationship which is
commonly modeled using Hooke’s Law (Ugural and Fenster,
2003) or generalizations thereof—while the second model in-
tends to relate the path traversed by the robot end-effector with
the forces that appear during the milling. The block diagram of
the complete model of the robotic milling system is presented
in Fig. 2. The model variables and subsystems of the block
diagram are:

• r: position reference for each spatial coordinate;

GR

GK GM

yr + ynr

f
d
+

Fig. 2. Block diagram of the milling system model.

• yr: Cartesian position of the robot computed from joint
resolvers;

• yn: actual Cartesian position of the robot;
• d: deflection disturbance caused by the milling process-

forces;
• f: measured forces on the end-effector along the three

Cartesian axes;
• GR: model of the controlled robot in Cartesian space (in-

cluding the internal joint-position feedback controllers).
More specifically, the transfer function from r to yr when
the robot is moving in free space;

• GM: model relating yn to f—i.e., the model describing the
process forces in the milling task;

• GK : compliance model relating the applied force f and the
deflection d of the robot in Cartesian space.

The following relations formalize the modeling approach de-
scribed in the previous paragraph and illustrated in Fig. 2:

yn = GR r+d, d = GK f, f = GM yn. (1)

Robot Identification A model GR of the controlled robot mo-
tion in Cartesian space is estimated using system identification
methods. Since the controlled robot motion is considered only
in a limited Cartesian workspace in the milling task 1 , linear
models can be justified. In particular, a chirp excitation-signal
is applied along each direction, and the response in position is
measured. Using a time-series modeling approach, third-order
discrete-time dynamic models are identified and subsequently
used in the ILC algorithm. The models capture the inherent
resonant character of the mechanical structure, which is a result
of the joint and link flexibilities of the robot.

Deflection Model Identification As stated earlier in this sec-
tion, the purpose of the model GK is to relate the deflections ex-
hibited by the robot with the forces applied on its end-effector.
For the identification of this compliance dynamics, the main
idea is to compare the behavior of the system when the robot
end-effector is moving in free-space, and there are no external
forces acting on the robot end-effector, to the case when the
milling is performed and process forces are required. Thus,
the identification procedure is composed of two experiments,
where the same geometric reference path is chosen in both:

• Robot holding a workpiece and moving in free space;
• Robot holding a workpiece and performing milling.

The sensor data signals to be recorded for identification pur-
poses during the experiments are:

• The forces acting on the end-effector (f);
• The estimated position of the robot end-effector, com-

puted from the joint-motor resolvers using the forward
kinematics of the robot (yr);

1 Considering that the robot configuration influences the controlled dynamics
of the robot end-effector, configuration-dependent linear parameter-varying
models or nonlinear models (and thus nonlinear ILC methods) explicitly ac-
counting for this property are required if larger workspaces are to be considered.
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• The arm-side position of the robot end-effector measured
by an external tracking system (yn).

The required sensor data can be collected during the initial
uncompensated ILC iteration using the nominal geometric path,
thus avoiding the need for separate identification experiments
prior to application of the ILC iterations.

The tracking system data acquired during the free-space experi-
ment, with only inertial forces from the workpiece affecting the
robot end-effector, are subtracted from the data obtained during
the milling experiment. Hence, the remaining quantity is the
difference between the actual robot path in the milling and the
free-space motion—i.e., the deflection to be modeled—because
of the milling. Then, models of order eight were fitted for each
Cartesian axis, with the force as input and the deflection on
the arm-side as output, using the N4SID subspace algorithm
(van Overschee and De Moor, 1994), with the implementation
in the System Identification Toolbox (Ljung, 2010) in MAT-
LAB. For simplicity it is assumed that the orientation of the
workpiece is constant during the milling. This means that the
fixed coordinate system in Fig. 1 is used throughout the paper.
Considering the milling geometry for the current setup, see
Fig. 1, the majority of the material removal will be performed
in the X-Z–plane, and it is therefore clear that the significant
position deviations will occur along these axes. Hence, without
loss of generality, the focus in the presentation here is on these
axes. Figures 3 and 4 show the experimental data and the output
of the models for the X and Z axes, respectively. The fit of the
models GK to the data is computed using the normalized root-
mean square error (NRMSE), which are 41% and 59% for the X
and Z axis, respectively. As can be observed in the figures, the
fit of the models to the experimental data is satisfying, capturing
the major parts of the compliance dynamics. Figure 5 shows the
Bode diagram of the identified model along the Z axis, where it
can be seen that for stationarity and low frequencies the model
is basically a constant gain, as anticipated from a system that
adheres to Hooke’s Law. For frequencies of the input signal at
approximately 12 Hz the dynamics exhibit a significant reso-
nance. In addition, minor resonances are observed as a result of
the flexibilities in the attachment of the workpiece to the robot
end-effector. This motivates why a static deflection model is
not sufficient in a machining scenario; rather a dynamic model
is required if dynamic errors with frequencies above the first
eigenfrequency of the robot are to be compensated.

Process-Force Model Identification Intuitively, it is natural
to assume that the force required during the milling is related
to the amount of material that is being removed. This idea has
been used to develop a controller capable of keeping the process
force constant for time-varying milling conditions (Sörnmo
et al., 2012a). The modeling approach proposed in that paper is
adopted here. If it is assumed that the surface of the workpiece
is smooth, the amount of material per time unit that is fed to the
milling tool is proportional to the feed rate of the workpiece.
Consequently, the force will be approximately proportional to
the feed rate and can thus be considered as a damping—i.e., as
a gain multiplied by the derivative of the input. As an intuitive
motivation for this proposal, it is realized that if the workpiece
velocity is zero, the force will eventually become zero when
all the nearby material has been removed and nothing opposes
the rotation of the milling tool. Considering the geometry for
the cutting process in the milling scenario shown in Fig. 1,
it follows that the force along the Cartesian X axis is to be
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Fig. 3. Measured deflections and model output (GK) — X axis.
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Fig. 4. Measured deflections and model output (GK) — Z axis.

10
−3

10
−2

10
−1

M
a
g
n
it
u
d
e
 (

a
b
s
)

10
−2

10
−1

10
0

10
1

10
2

−225

−180

−135

−90

−45

0

45

P
h
a
s
e
 (

d
e
g
)

Bode Diagram of the Deflection Model

Frequency  (Hz)

Fig. 5. Bode diagram of the model GK along the Z axis.

modeled with the velocity along the Z axis as input, with a
corresponding result for the force along the Z axis and the X
component of the velocity. This observed behavior might be
counter-intuitive, but follows directly from the cutting process
dynamics. Based on the motivation above, models of the form

GM(s) = K
s

(1+ τs)2 , (2)

where K is a gain, and a double pole with time constant τ

(chosen short compared to the dominant milling dynamics)
have been included in order to have a strictly proper transfer
function and thus avoiding amplification of high-frequency
noise in the numerical implementation of the ILC algorithm.
It is here assumed that the workpiece is in contact with the
tool for the duration of the milling task, and consequently that
process forces arise when having nonzero velocities. Figures 6
and 7 depict the measured forces and the output of the models
for the X and Z axes respectively. The NRMSE fit of the
models to the data are given by 47% and 56% for the X and
Z axis, respectively. The models exhibit acceptable fit to the
experimental data for both axes, which indicate that the models
capture the essential dynamics of the system with some minor
discrepancies in the static gain for parts of the milling task.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9329



0 10 20 30 40 50 60 70

−40

−20

0

20

40
Forces − X axis

Time [s]

F
o
rc

e
 [
N

]

 

 

Experimental Data Model

Fig. 6. Measured process forces and model output (GM) — X
axis.
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Fig. 7. Measured process forces and model output (GM) — Z
axis.
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Fig. 8. Block diagram of the ILC-controlled milling system.

2.2 ILC Algorithms

In this section, two different ILC update algorithms are derived
and theoretically justified. The first relies on external arm-side
measurements in task-space, while the second only relies on
end-effector force/torque data.

Arm-Side Measurement ILC In order to reduce the magnitude
of the position errors during the milling task iteratively, the first
approach proposed is to apply an ILC algorithm using the arm-
side position measurements, provided by an optical tracking
system, as the output of the system. The fundamental idea of the
ILC algorithm in the milling context is to improve the previous
reference path sent to the system by adding a certain quantity to
this path, based on the measured error in the previous execution.
The update is performed such that the expected output in the
next iteration is closer to the desired milling path. Figure 8
shows a block diagram of the considered ILC system. Since
the arm-side position is measured, the output yn,k is directly
measurable for each iteration k. For this ILC scheme, the model
of the controlled system is

yn,k = GR (r+uilc
k )+GKGM yn,k. (3)

The terms of this relation may be reorganized into

yn,k = (I −GKGM)−1GR (r+uilc
k ), (4)

in order to cast the model on the form
yn,k = Tr r+Tu uilc

k , (5)

where Tr = Tu = (I−GKGM)−1GR. With this relation, the well-
known model-based ILC algorithm, e.g., described in (Norrlöf,
2000), can be applied:

uilc
k+1 = Q (uilc

k +L ek), (6)
where k is the iteration index, the position error is defined
as ek = r − yn,k, L is an approximate inverse of the transfer
function from r to yn,k, and Q is a low-pass or bandpass filter
with suitably chosen frequency properties. In particular, the
choice of Q is based on the desired frequency range for the
ILC compensation. A further consideration here is the model
accuracy for the frequencies of interest, which may imply a cut-
off frequency close to the first eigenfrequency of the system.

In order to make the numerical computations more robust, the
ILC update law is reformulated as follows

uilc
k+1 = Q (uilc

k + L̃ (I −GKGM) ek), (7)

where L̃ is chosen as an approximate inverse of GR. The relation
(7) is obtained by rewriting (6) and explicitly accounting for
the structure of the system model (compare with the relation in
(3)), but avoiding the inversion of the term related to the milling
process dynamics. If GR contains unstable zeros, the inverse
can, for instance, be determined by mirroring these zeros in the
unit circle prior to computing the inverse.

Force Measurement ILC As shown in the previous para-
graph, the assumption on explicit arm-side measurements led
to a straightforward formulation of an ILC algorithm. Unfortu-
nately, the sensors required for these kinds of measurements are
expensive and not commonly available in manufacturing indus-
try today. Consequently, it is of interest to develop a method ca-
pable of, to some extent, estimating the arm-side measurements
without such a sensor. As stated previously, the position errors
that occur because of the milling process-forces are not visible
using only the joint-position resolvers of the robot. Hence, to
eliminate the need for arm-side measurements, an extra sensor
that (together with appropriate models) can estimate the arm-
side position errors is required. A wrist-mounted force/torque
sensor is a cheaper alternative to high-precision optical tracking
systems. Consequently, the proposed second approach is to con-
struct a model-based estimation ŷn,k of the position deviations
using the joint-position resolver measurements and the force
sensor measurements according to

ŷn,k = yr,k +GKfk, (8)
to replace the arm-side position measurements yn. Using this
relation, the error signal used in the ILC algorithm is

ek = r− ŷn,k = r−yr,k −GKfk, (9)
and the subsequent update law is then equivalent to (7).

3. RESULTS

In this section, the experimental setup used for evaluation of the
ILC algorithms in milling experiments is described. Moreover,
experimental results obtained from applying the proposed ILC
strategies to milling in aluminium are presented and evaluated.

3.1 Experimental Setup

The experimental platform used to perform the milling ex-
periments comprises an ABB IRB2400 industrial robot (ABB
Robotics, 2012) with an S4CPlus control cabinet, a spindle
holding the milling tool, a Nikon K600 optical tracking system
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Fig. 9. The reference and measured milling paths for the iterations in the experimental evaluation of the two ILC algorithms (left
– arm-side measurement ILC; right – force measurement ILC). The measurements were carried out using the optical tracking
system for both figures, but these measurements were only used for evaluation in the force-based ILC algorithm.

(Nikon Metrology, 2010) for task-space measurement of the
workpiece position, and a JR3 force/torque sensor of model
100M40A. The optical tracking system has an absolute accu-
racy of 50–75 µm for the current measurement configuration.
Figure 1 shows a photo of the platform, including the definition
of the fixed world Cartesian coordinate system used throughout
the experiments. Thus, all superscripts denoting the reference
frame are omitted for notational convenience. As seen in Fig. 1,
a fixed milling spindle was used and the aluminium workpiece
(type Al7075) was attached to the robot, which moved along
the trajectory required for the milling task to be executed. For
low-level access to the robot joint controllers and integration of
external sensor data with the robot controller, the ExtCtrl inter-
face (Blomdell et al., 2010) developed at Lund University was
employed. Low-level access to the robot controller is beneficial
in order to ensure synchronization of the reference and output
over the ILC iterations. The specific milling task considered
here was to machine a square with a depth-of-cut of 2 mm;
the reference milling path used for the experiments is displayed
in Fig. 9. With the described experimental setup, the available
measurement signals for each of the Cartesian axes were:

• yr: estimated position of the robot tool, computed from the
joint-angle resolvers using forward kinematics;

• yn: arm-side position of the robot tool measured with the
optical tracking system;

• f: force acting on the tool, measured by the wrist-mounted
force/torque sensor.

3.2 Experimental Results

The milling experiments were performed on the setup described
in the previous paragraph. The results obtained using the two
different ILC algorithms are described separately.

Arm-Side Measurement ILC Figure 10 displays the evolution
of the measured position errors with each ILC iteration along
the Cartesian coordinate axes (see Fig. 1), while Fig. 11 depicts
the normalized magnitude of the errors, defined as the sum
of the absolute values of the error in each sample divided by
the total error in the first execution (iteration 0). The measured
milling paths in each iteration are displayed in the left plot in
Fig. 9. As can be observed, the most significant error reduction
is obtained already in the first iteration, as can be anticipated by
the use of a model-based ILC algorithm. As expected from the
direct measurement of the arm-side position of the robot, this
approach is capable of removing the offsets present along the
X and Y axes. The Z axis also exhibits a significant decrease of
the magnitude of the errors, although smaller than the reduction
obtained along the other two axes. This may be attributed to the
fact that the error magnitude already a priori was smaller, since
there was no clearly visible offset error along this axis and only
process-induced dynamic errors needed to be compensated.

Force Measurement ILC Figure 12 displays the errors ob-
tained using the ILC approach with only force measurements,
and Fig. 13 shows the evolution of magnitude over iterations.
The milling paths (measured using the optical tracking system)
in each iteration are displayed in the plot to the right in Fig. 9.
It is clear from Fig. 12 that this approach is not capable of
detecting and correcting constant offset errors, but is able to
reduce the magnitude of the dynamic errors caused by the
process forces in the milling task. For this reason, the error
decrease achieved with this algorithm is measured as deviations
from the offset level. Figure 13 displays the magnitude of the
position deviations around the offset, the latter computed as the
mean of the error for each axis. In the plot, a decrease of the
error can be observed for each axis. The results obtained with
this approach are, not surprisingly, less significant than those
attained using arm-side measurements, but the method clearly
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Fig. 10. Errors for each iteration k during milling using the arm-
side measurement ILC.
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Fig. 11. Magnitude of the error for each ILC iteration k using
the arm-side measurement ILC algorithm.

shows its capability of reducing the dynamic component of
the errors arising as a result of the process forces. Obviously,
considering the absolute error the arm-side measurement ILC
algorithm is superior even though a significant decrease of the
error is achieved also for the force measurement ILC algorithm.

4. DISCUSSION

As an alternative to previous methods for increasing the accu-
racy of robotic machining, we have proposed and experimen-
tally verified two ILC algorithms. As mentioned in Sec. 1, the
batch-oriented nature of modern production induces significant
repetitiveness in the tasks to be performed, thus enabling the
possibility of improving the performance of the task from work-
piece to workpiece. In addition, the use of model-based ILC
enables fast convergence rates, thus minimizing the amount
of sub-standard pieces produced during the learning process.
According to the error convergence depicted in Figs. 11 and 13,
it seems plausible to estimate that a single sub-standard piece
for the arm-side ILC and two pieces for the force-based ap-
proach are required. Both of the presented ILC algorithms result
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Fig. 12. Errors for each iteration k during milling using the
force measurement ILC algorithm. The dashed black lines
indicate the offset levels along each axis.
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Fig. 13. Magnitude of the deviations around the offset for each
ILC iteration k with the force measurement ILC algorithm.

in a significantly increased accuracy. However, the accuracy
has not reached the performance offered by CNC machines or
that achieved with approaches using additional hardware, such
as a macro/micro configuration considered in (Sörnmo et al.,
2012b). Still, both methods do improve the accuracy; a decrease
of approximately 50% of the uncompensated error is achieved
with the force measurement approach. Hence, the results ob-
tained by milling with industrial robots can be improved at a
moderate extra cost, particularly using the force-based method
that only requires a force/torque sensor.

With the arm-side measurement ILC algorithm, the measure-
ment accuracy of the optical tracking system provides a lower
limit on the accuracy that can be achieved in the milling. Thus,
since a mean average error of 58 µm was reached, the algorithm
can be considered as successful. In addition, to some extent,
individual variations in the workpieces used in the experiment
and the effect of the wear of the tool also introduced non-
repetitive errors and disturbances that the ILC algorithm cannot
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compensate. The main limitation of the force-based approach is
its inability of reducing constant offsets also present in the free-
space motion. However, other methods might be used to correct
these kinematic calibration errors, see for instance (Chen et al.,
2008). Another shortcoming is the fact that compensation for
errors in the model GK relating the force and the deflection is
not accounted for in the ILC scheme, since there is no external
measurement of the arm-side position of the robot. Considering
that an accurate model is required in order to obtain satisfying
results, it is beneficial to complement the system identification
approach with a stiffness calibration procedure in order to mea-
sure the static and low-frequency properties of the compliance
model with high accuracy. In order not to require an external
position measurement device, the calibration procedure should
keep the arm-side position of the robot tool fixed, and measure
the forces emerging when small movements of the joints are
performed, see (Lehmann et al., 2013).

Observing Fig. 9 closer, a small number of peaks are observed
at certain points along the milling path in the plot for the force
measurement ILC approach. This might seem to suggest an
instability in the algorithm, as they are apparently not present in
the position measurement approach. This is not the case, how-
ever, since the reference paths computed by the algorithm do
not exhibit this behavior. The most likely explanation for these
deviations is the interaction of the aluminium chips emitted
from the cutting process with the optical tracking system, as
Fig. 10 also exhibits peaks but of lower magnitude. In order to
eliminate these stochastic measurement deviations, an outlier
detection algorithm should be integrated in the ILC iterations.

A natural question for the future applicability of the method is
the generality of the models required for the ILC algorithms.
The deflection model GK obviously depends on the robot in use
and the specific configuration, but given that the same limited
workspace is used for all milling operations, it can be consid-
ered independent of the path traversed in the milling. Hence, a
modeling effort should be carried out in order to characterize
the robot in the configuration used for the milling operations,
but the identified model could be used for multiple machining
tasks in a limited workspace. In turn, the process-force model
GM does depend on the milling conditions, so different models
are required for different tasks. In this paper, a data-driven
modeling approach has been used; however, different models
available in the machining literature relating the process forces
with the milling conditions could be used as well, see, e.g.,
(Grote and Antonsson, 2009).

5. CONCLUSIONS

Two model-based ILC-based algorithms have been presented
with the aim of reducing the position errors in machining tasks
with robots. The first method was based on the measurement of
the position of the arm-side of the robot in task space, and the
second method used process force measurements. The experi-
mental results obtained from milling experiments in aluminium
showed a clear superiority of the algorithm based on arm-side
position measurements. An error decrease of approximately
85% was obtained with this algorithm. In turn, the force-based
approach was not capable of eliminating constant errors, such
as calibration deficiencies, in the position of the robot. Despite
this fact, the algorithm was capable of significantly attenuating
the dynamic errors caused by the process forces in the milling—
approximately 50% decrease of the dynamic position error was
achieved—at a lower investment cost in sensors.
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