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Abstract: Heterogeneity in cell populations is a major factor in the dynamics of cellular systems
in living tissue or microbial colonies. This heterogeneity needs to be taken into account for the
interpretation of experimental observations as well as in the construction of predictive models
for cellular systems. A common modelling framework for heterogeneous cell population is by
an infinite ensemble of single cell models. The state of a cell population is in this framework
modelled by the distribution of the single cell states. In this paper we study under which
conditions the population model is identifiable, i.e., we can determine the initial distribution of
cell states and parameters from a dynamic output distribution. We derive a necessary condition
on the single cell model based on the classical observability results from linear and nonlinear
control theory. Our results are illustrated via examples. Copyright c© 2014 IFAC.
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1. INTRODUCTION

Living cells, even in genetically homogeneous populations,
show a significant amount of heterogeneity, which makes
a mathematical analysis with an average single cell model
less meaningful. A common case is in biochemical signal
transduction, where the involved proteins are expressed
at different levels within individual cells, thereby leading
to differential cellular responses to a common stimulus
(Avery, 2006; Spencer et al., 2009). We consider models
where heterogeneity is due to initial states and parameters
of cells that are distributed heterogeneously among the
population. These population models are composed of a
dynamic single cell model, which is structurally identical
for all cells in the population, and a probability distri-
bution which describes the heterogeneity in the initial
conditions and parameters (Fredrickson et al., 1967; Ataai
and Shuler, 1985; Ramkrishna, 2000). From biochemical
modelling, we typically obtain the underlying single cell
model as a non-linear system

ż(t) = f(z(t), θ), y(t) = h(z(t), θ), (1)

where z(t) ∈ Rn is the concentration vector of biochemical
species, θ ∈ Rq is the vector of constant parameters of
the reaction kinetics and y(t) ∈ Rm is a measured output
(Hasenauer et al., 2011a).

For simpler notation we transform system (1) into the form

ẋ = F (x), y = H(x) (2)

by introducing the generalized cell state

x := (z1, . . . , zn, θ1, . . . , θq),

and the generalized vector field

F (x) := (f1(x), . . . , fn(x), 0, . . . , 0).

A heterogeneous cell population is then modelled by the
structural dynamics of the underlying single cells (2)
together with the distribution of the generalized initial
conditions

x0 = (z1(0), . . . , zn(0), θ1, . . . , θq). (3)

We denote in the following d := n+q the dimension of the
generalized cell state space.

In many biologically relevant systems, the number of
cells within a population is very high, in the range of
ten thousands to millions of cells. This justifies that we
can model a population with a probabilistic framework,
i.e. we can assume the distribution to be a probability
distribution. The state of the cell population at time t
is thereby commonly described by a dynamic probability
density function

p(t, ·) : Rd → R, x 7→ p(t, x), (4)

where
∫
B
p(t, x) dx is the probability that a cell has an

internal state x ∈ B at time t. It is a well-known
fact that this probability density function is governed by
a partial differential equation (PDE) called population
balance equation (Ramkrishna, 2000) which is derived as

∂p

∂t
(t, x) + divx(F (x)p(t, x)) = 0, (5)

together with the specification of an initial density

p(0, x) = p0(x). (6)

It is remarkable, that although the single cell model is
in general non-linear, the resulting PDE describing the
population is always linear, in the sense that the solution
operator mapping initial density p0 to the solution p(t, ·)
is a linear and bounded operator.
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Let us briefly note that a range of simulation methods has
been developed to solve the population balance equation,
or to compute approximations. With so called individual
based population models (IBPM), the given single cell
model is simulated for a large number of cells, each with
different parameter values, according to the probability
distribution of the initial conditions (3) (Ataai and Shuler,
1985; Henson, 2003). The focus of IBPM usually is on the
single cell level and on a short time scale, where dynamics
of cell division and death are often neglected.

An alternative model formalism, specifically for biotech-
nological applications, is a density based formalism, which
yields a system of partial differential equations, so called
cell population balance models (PBM) (Fredrickson et al.,
1967; Fredrickson and Mantzaris, 2002; Stamatakis, 2010).
Nevertheless it is still in general difficult to solve high
dimensional PDEs, and therefore PBM often employ ex-
tremely simple single cell models or neglect the single cell
dynamics completely by assuming stationarity.

Alongside the modelling, recent work has also considered
the problem of parameter estimation in population models.
A typical goal is to estimate the distribution for the
initial conditions (3) from experimental data in the form
of so-called population snapshots (Waldherr et al., 2009;
Hasenauer et al., 2011a,b). Population snapshots are direct
measurements of an output density function representing a
marginalization of the cell density function p(t, x). While
the algorithms to estimate the initial density from such
measurements are quite efficient, there is currently a
lack of theoretical analysis tools. Most importantly, it is
unknown under what conditions it is in principle possible
to perform such an estimation. While there is a broad
literature on identifiability of single cell models (Farina
et al., 2006; Raue et al., 2009), we are not aware of any
results concerning identifiability of the population models
discussed above.

In this paper, we study the relation between identifiability
of the underlying single cell model (1) and the identifia-
bility of the population model (5). A plausible conjecture
is that identifiability of the single cell model would be a
necessary condition for the identifiability of the population
model. The main contribution of this paper is to provide
a theoretical framework in which this conjecture is proved
rigorously. Our proof is based on a measure theoretical
approach to population models, which is introduced in
the next section, before we present the main results in
Section 3.

2. POPULATION MODELS IN THE MEASURE
THEORETICAL APPROACH

In this section we introduce our probabilistic framework in
which we describe heterogeneous cell populations (Zeng,
2013). We consider a probability space consisting of the
sample space Rd, the corresponding Borel algebra B on Rd

and a probability measure P0. Additionally we shall always
assume that the probability measure P0 has a probability
density p0 ∈ L1(Rd,R), i.e.

P0(B) =

∫
B

p0 dµ for all B ∈ B,

where µ denotes the Lebesgue measure.

(Rd, B(Rd), P0)

HΦt

(Rm, B(Rm), PH(t))

Fig. 1. Illustration of the measure theoretical situation
(Zeng, 2013).

As motivated in the introduction, we model heterogeneous
cell populations through random initial value problems

ẋ = F (x), x0 ∼ P0,

y = H(x),
(7)

where F : Rd → Rd is the vector field of the generalized
single cell dynamics, P0 is the probability measure of the
generalized initial conditions and H : Rd → Rm is the
output mapping. Let us also introduce Φt : Rd → Rd as
the time-t-mapping associated to the flow of ẋ = F (x),
i.e.,

Φt : x0 7→ x(t;x0). (8)

In typical experiments, such as flow cytometry, we obtain
for fixed points tk in time, measurement outputs y(i)(tk)
for a large number of cells. It is to be stressed that in the
measurement process we cannot control which particular
cell to measure but for a given instant of time we really can
only measure outputs of a large number of cells. This is
crucial as it means that there are no single cell trajectories
at hand, rendering the problem non-trivial.

Given this type of measurements, however, one can use
for example density estimation (Silverman, 1986) to con-
struct an approximation of the probability distribution of
the random output y(t), which we shall denote PH(t).
In other words, we have y(t) ∼ PH(t). Knowing this
output distribution PH(t), it is our goal to reconstruct the
initial distribution P0. Let us therefore first discuss the
connection between both distributions, cf. (Zeng, 2013).

From probability theory we know that PH(t) is the so-
called push-forward distribution of the initial distribution
P0 under the composition HΦt. This circumstance will be
briefly repeated in more detail in the following with the
help of Figure 1. There, on the left-hand side we depict
the probability space that describes the randomness in the
initial conditions x0. Roughly speaking, the randomness in
the initial conditions is propagated to the output y(t), and
this is clearly via the mapping HΦt. Therefore we have
defined on the left probability space the random variable
HΦt(x) taking values on a second probability on the right.
The randomness in the outputs y(t) is then described by
PH(t) on the right probability space, which is given as the
canonical push-forward distribution as follows

PH(t)(By) := P0((HΦt)
−1(By)), (9)

for each By ∈ B(Rm). Our measure theoretical framework
is now complete and we can proceed to study under which
conditions on our measurement function H we can recon-
struct the initial distribution from the distributions of the
output. This problem is termed identifiability problem.
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3. IDENTIFIABILITY OF POPULATION MODELS

3.1 Definition of structural identifiability

For the above setup, several methods have been proposed
for estimating the initial probability distribution P0 from
knowledge of PH(t) (Waldherr et al., 2009; Hasenauer
et al., 2011a,b; Zechner et al., 2012). Even though Zechner
et al. (2012) report an identifiability problem found by
direct simulation, these estimation methods paid little
attention to identifiability properties. In this section we
introduce for the first time the concept of structural
identifiability of a heterogeneous cell population and derive
criteria based on the underlying single cell models. The key
to our investigation is the measure theoretical approach
introduced in the previous section.

Since the generalized cell state x contains both the species
concentrations and the parameters, we can relate identifi-
ability of the single cell model (1) to observability of the
extended model (2). We propose a definition of structural
identifiability of a heterogeneous population, which is mo-
tivated from the notion of indistinguishability in non-linear
observability theory in the finite-dimensional case (Zeng,
2013).

Definition 1. (Zeng, 2013). A population model is called
structurally identifiable, if the following implication holds:

(∀ t ≥ 0 : PH(t;P′0) = PH(t;P′′0)) ⇒ P′0 = P′′0 , (10)

where P′0 and P′′0 are arbitrary probability distributions.

Thus, if a population model is structurally identifiable, the
equality of the output distributions for all times should
imply the equality of the underlying initial distributions.

Due to the definition of the output distribution (9), this is
equivalent to the statement that the equality

P′0((HΦt)
−1(By)) = P′′0((HΦt)

−1(By)),

for all t ≥ 0 and all By ∈ B(Rm) implies P′0 =P′′0 . Finally,
since we assume that the probability measures P′0 and
P′′0 have probability densities, we can rewrite structural
identifiability as the following property: If the equality∫

(HΦt)−1(By)

p′0 dµ =

∫
(HΦt)−1(By)

p′′0 dµ (11)

holds true for all t ≥ 0 and for all By ∈ B(Rm), then we
have equality of the densities p′0 and p′′0 in L1-sense.

3.2 Structural identifiability with a linear cell model

A necessary condition In this section, for purposes of
illustration, we first confine ourselves to linear single cell
models, i.e. we assume that F (x) = Ax and H(x) = Cx
with n × n-matrix A and m × n-matrix C. As we will
see, in this case it is quite straightforward to relate the
structural identifiability of a cell population model to the
observability of the underlying single cell model.

Theorem 1. (Necessary condition (Zeng, 2013)). Suppose a
given cell population model is structurally identifiable,
i.e. equality (11) for all t ≥ 0 and for all By ∈ B(Rm)
does imply the equality p0

′ = p0
′′. Then (A,C) has to be

observable.

Proof. Our proof strategy is to show that under the
assumption that (A,C) is not observable, there exist

probability densities p0
′ 6= p0

′′ for which equation (11) is
true. First we fix an arbitrary probability density p0

′.

It is well-known that the pair (A,C) not being observable
is equivalent to the fact that the observability map

CeA(·) : x0 7→ CeA(·)x0 = y(·)
is not injective, or equivalently (due to linearity), that

kerCeA(·) =
⋂
t≥0

kerCeAt is non-trivial.

Therefore we can pick a non-zero vector v ∈
⋂

t≥0 kerCeAt,
and given that define our second probability density by

p0
′′(x) := p0

′(x+ v).

Now we have p0
′ 6= p0

′′, while for all t ≥ 0 and By ∈ B(Rm)
we have∫

(CeAt)−1(By)

p0
′′(x) dµ =

∫
(CeAt)−1(By)

p0
′(x+ v) dµ

=

∫
v+(CeAt)−1(By)

p0
′ dµ.

Lastly, we observe that

v + (CeAt)−1(By) = (CeAt)−1(By),

since v ∈ kerCeAt for all t ≥ 0. Thus we have shown
that (11) is true for all t ≥ 0 and By ∈ B(Rm), while
p0
′ 6= p0

′′. 2

Example: A simple gene expression model We study the
single cell model given by

ż = k − z, (12)

where z corresponds to protein concentration and the
constant parameter k is the translation rate, which is
assumed to be heterogeneous among cells.

As an illustration we compare measurement of k and mea-
surement of z, which correspond to the output matrices

C ′ = (0 1) and C ′′ = (1 0) . (13)

We quickly see that (A,C ′) is not observable, while (A,C ′′)
is observable. As already noted in the proof of Theorem 1,
non-observability of (A,C ′) is equivalent to the fact that
the intersection of the kernels kerC ′eAt is non-trivial.
Due to dimensional reasons we conclude that for all
t ≥ 0 the kernels kerC ′eAt are identical. Therefore, for
arbitrary By ∈ B(Rm), the set (C ′eAt)−1(By) consists of
a combination of parallel strips as indicated in Figure 2.
In this particular case the strips happen to be horizontal.

In conclusion, equality (11) is not strong enough to enforce
p0
′ = p0

′′ for the output matrix C ′. An initial density can
be translated parallel to the x1-axis without affecting the
output densities over time.

Considering the other choice of output, the pair (A,C ′′) is
observable, and the intersection of the kernels kerC ′′eAt

is trivial. We end up in a situation in which by varying
t and By we can obtain any strip as hinted in Figure 3.
From the measurement, we know the integral of the initial
density over any of these strips. The identification problem
then consists in reconstructing the initial density from
the integrals. This is a tomographic problem (Markoe,
2006) and can be handled with tomographic reconstruction
methods, as we discuss in a more recent manuscript (Zeng
et al., 2014).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1719



x1

x2

By

(C ′eAt)−1(By)

Fig. 2. For given By the set (C ′eAt)−1(By) is always a
combination of parallel strips stretching to infinity
(Zeng, 2013).

x1

x2

Fig. 3. We can choose t ≥ 0 and By ∈ B(Rm) such that
(C ′′eAt)−1(By) is any strip depicted in this figure
(Zeng, 2013). Due to the arrangement of the strips
and the fact that the integral of p0

′ − p0
′′ along each

strip is zero, we would expect that p0
′ − p0

′′ = 0, i.e.
the identifiability of the cell population.

3.3 Structural identifiability with a non-linear cell model

A necessary condition in the non-linear case Let us
now turn to the structural identifiability with a non-
linear single cell model. The result here is analogous to
the linear case: Observability of the single cell model is
a necessary condition for the structural identifiability of
the population model. In the non-linear case, a significant
range of observability definitions exists. Here, we use a
definition based on observability codistributions (Hermann
and Krener, 1977).

Definition 2. The single cell model (2) is observable, if the
observability codistribution

Q = {dH, dLFH, . . . , dL
d−1
F H} (14)

has dimension equal to d.

It is shown in Isidori (1995) that this condition implies
a stratification of the state space, where any two initial
conditions from the same stratum are indistinguishable
with the output y=H(x), i.e., they yield the same output
function over time.

Theorem 2. Suppose that the cell population model (7) is
structurally identifiable. Then the single cell model (2) has
to be observable.

Proof. Similarly as in the proof of the linear case, we
construct a translocation of the probability density for
the initial conditions which does not change the output

densities. To this end, we first need to transform the model
to suitable coordinates.

Non-observability of the single cell model (2) implies that
the observability codistribution Q has dimension d−p < d.
As shown in (Isidori, 1995, Section 1.9), this implies that
there exists a (local) coordinate transformation such that
the system’s dynamics are given by

ξ̇1 = F̃1(ξ1, ξ2)

ξ̇2 = F̃2(ξ2)

y = H̃2(ξ2) =: H̃(ξ),

(15)

with ξ1 ∈ Rp and ξ2 ∈ Rd−p. We note that any probability
measure P0 as introduced in Section 2 can be represented
by a probability density function p̃ over the space of the
transformed coordinates ξ= (ξ1, ξ2) and vice versa. Thus,
consider an arbitrary density p̃0

′(ξ) and let

p̃0
′′(ξ) = p̃0

′(ξ + v), (16)

with non-zero vector v ∈ span({e1, . . . , ep}), where ei
denotes the i’th unit vector of Rd. Due to the structure
of the system (15), we have

(H̃Φ̃t)(ξ) ∈ B̃y ⇔ (H̃Φ̃t)(ξ + v) ∈ B̃y. (17)

This implies that

v + (H̃Φ̃t)
−1(B̃y) = (H̃Φ̃t)

−1(B̃y). (18)

Finally we find that∫
(H̃Φ̃t)−1(B̃y)

p̃0
′′(ξ) dµ =

∫
(H̃Φ̃t)−1(B̃y)

p̃0
′(ξ + v) dµ

=

∫
v+(H̃Φ̃t)−1(B̃y)

p̃0
′(ξ) dµ.

Writing this equality in original coordinates, we see that
it is nothing but (11). Thus the system is not structurally
identifiable. 2

Example: A more detailed model of gene expression A
more detailed model of gene expression compared to the
previous example (12) includes transcription and transla-
tion as separate steps, yielding the differential equation

ż1 = k1 − z1

ż2 = k2z1 − z2,
(19)

where z1 is the mRNA concentration and z2 the protein
concentration. Heterogeneity among individual cells is
observed in the transcription rate, represented by the
parameter k1 in the model (19), and has been attributed to
differences in the current metabolic state of individual cells
(das Neves et al., 2010). A similar level of heterogeneity
presumably affects the translation rate, represented by k2

in the model (19). According to (2), we get the extended
single cell model

ż1 = k1 − z1

ż2 = k2z1 − z2

k̇1 = 0

k̇2 = 0,

(20)

with generalized cell state x = (z1, z2, k1, k2). Due to
the product k2z1 of a heterogeneous parameter and an
intracellular variable, this model is non-linear.

Let us consider the measurement of the protein concentra-
tion as output, defined as

y = H(x) = z2. (21)
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In order to test for observability of (20) with this output,
we construct the observability map q given by

(y, ẏ, ÿ,
...
y ) = q(z1, z2, k1, k2) (22)

and check for its rank (Nijmeijer and van der Schaft,
1990). Thereby, a non-maximal rank of q corresponds to
a dimension of the observability codistribution Q smaller
than d. As derivatives of y, we obtain

ẏ = k2z1 − z2

ÿ = k2k1 − 2k2z1 + z2...
y = −2k2k1 + 3k2z1 − z2.

(23)

Thus the observability map q for this model only depends
on the three distinct terms z2, k2k1, and k2z1, and its
rank is at most 3. Thus, the extended system (20) is not
observable through the output y, and the corresponding
cell population model is not structurally identifiable.

Based on the output derivatives in (23), we note that for
the single cell model, two initial conditions x′ and x′′ which
are related by

z′1 = αz′′1
k′1 = αk′′1
k′2 = α−1k′′2 ,

(24)

with α 6= 0, yield the same output trajectory y(t). From
this observation, we can construct two different initial
densities p′0(x) and p′′0(x) for the population model, which
yield the same output densities PH(t) over time.

We propose that any two initial densities p′0(x) and p′′0(x)
which are related by

p′′0(z1, z2, k1, k2) = cp′0(αz1, z2, αk1, α
−1k2) (25)

yield the same output distributions PH(t) over time.
Thereby, c is a normalization factor to ensure that∫

R4

p′′0(x) dµ = 1. (26)

A simulation of the population model with the nominal
and perturbed initial densities has been performed with
an approach based on sampling of the initial condition,
numerical solution of the single cell model, and subsequent
density estimation for the output variable (Hasenauer
et al., 2011a). The initial distribution chosen here assigns
a probability according to the density functions shown in
Figure 4 to the variables k1, k2, and z1(0), and probability
1 to the initial condition z2(0)=0. We used 1000 samples
per initial density for the simulations of this example. The
density functions shown in Figure 4 are density estimates
from the samples which were used in the simulations. Small
ripples in the density functions are an effect of sampling
and subsequent density estimation. Figure 5 illustrates
that the resulting output densities for the nominal initial
density p′0 and the perturbed initial density p′′0 are identical
over time. The slight differences between the nominal and
perturbed output densities seen in Figure 5 are due to the
sampling-based simulation approach.

The example illustrates the close correspondence between
observability of the single cell model and identifiability of
the population model. Based on an observability analysis
of the single cell model (20), we could construct indistin-
guishable initial densities for the population model even
without resorting to the coordinate transformation and
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(k
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Nominal and perturbed density in k2
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1.5
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2.5

3.0

3.5

4.0

p 0
(z

1
)

Nominal and perturbed density in z1

Fig. 4. Initial density functions. Blue full lines show the
nominal initial density function p′0, a log-normal dis-
tribution centered at the expected values E[z1(0)] =1,
E[k1] = 1, and E[k2] = 1 with a standard deviation
of 0.1. Red dashed lines show the perturbed initial
density function p′′0 , where k1 and z1(0) have been
scaled by a factor 0.5, and k2 by a factor 2.

the shifting of the initial density in the transformed coor-
dinates used in the proof of Theorem 2.

4. CONCLUSIONS

We studied the identifiability problem for density-based
population balance models. Our study employed a measure
theoretical approach, where the state of the population is
described within a probability space. With this approach,
we proposed a notion of identifiability which is comparable
with observability for finite-dimensional systems.
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Fig. 5. Output density functions pH(t) at different points
in time. Full lines: simulation from nominal initial
density p′0. Dashed lines: simulation from perturbed
initial density p′′0 .

Our main result is having shown that identifiability of the
single cell model is a necessary condition for identifiability
of the population model. Here, identifiability of the single
cell model is understood as observability of an extended
single cell model with trivial dynamics for the model
parameters. The key step in the proof is to show that
non-identifiability of the single cell model means that the
initial density in the population model can be translated
within the unobservable subspace without any effect on
the output density over time. With non-linear single cell
models, the translation can be done in an appropriately
chosen coordinate system for the single cell model. In the
example, we have shown that an identifiability analysis
of the single cell model yields valuable insights into in-
distinguishable initial densities even without the formal
construction used in the proof.

It is intriguing to speculate that identifiability of the single
cell model should also be sufficient for identifiability of the
population model. However, a sufficient condition based
on tomography theory that we discovered recently (Zeng
et al., 2014) only asserts identifiability of the population
model for a sufficiently high number of measured variables.
That still leaves a gap between the necessary and sufficient
conditions to be explored further.
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