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Abstract: Online prediction of glucose concentration is of importance for blood glucose control in 

diabetes. For conventional modeling methods, model identification has to be repeated with sufficient data 

collected for each subject. This may cause repetitive cost and burden for patients and clinician and requires 

a lot of modeling efforts. Here, a rapid model development strategy is proposed using the idea of model 

migration for new subjects. First, a base model is obtained which can be empirically identified from any 

subject or constructed by priori knowledge. Then parameters of inputs in the base model are properly 

revised based on a small amount of data from new subjects. These issues are investigated by developing 

auto-regressive models with exogenous inputs (ARX) based on thirty in silico subjects. Some important 

issues relating to model adjustment performance are also checked, referring to the data used for model 

parameter adjustment and the interaction of two inputs, etc. The rapid modeling method is compared with 

subject-dependent models developed based on a large number of data with respect to on-line short-term 

(30min) glucose prediction accuracy. 

Keywords: rapid model identification, autoregressive with exogenous inputs (ARX), model migration, 

Type 1 diabetes mellitus (T1DM), glucose prediction. 



1. INTRODUCTION 

Characterized by the inability of the body to regulate blood 

glucose concentration, Type I diabetes mellitus (T1DM) has 

been recognized as one of the most serious diseases in the 

world. Due to autoimmune destruction of the pancreatic β-

cells, people with T1DM may not maintain their blood 

glucose concentration within a normal range (e.g., 70-120 

mg/dL before meal and less than 160 mg/dL after meal) 

without appropriate treatment with exogenous insulin. The 

research of artificial pancreas has changed the traditional 

treatment way of diabetes mellitus and brought hope to the 

diabetes subjects. Glucose monitoring and prediction are the 

basis and key in artificial pancreas. Online glucose prediction 

has been an important issue in blood glucose control in 

diabetes. Therefore, the identification of simple, accurate 

glucose prediction models has been drawing increasing 

attention. Many empirical (or “data-driven”) modelling 

techniques have been developed and successfully applied to 

glucose prediction (Zanderigo F et al., 2007; Reifman J et al., 

2007; Finan D.A. et al., 2009). 

In general, the existing dynamic empirical models can be 

divided into two types, linear models and nonlinear models, 

as summarized by Finan and colleagues (Finan D.A. et al., 

2009). Linear model that represented by autoregressive (AR) 

and autoregressive with exogenous inputs (ARX) have 

received a wide range of applications due to their simple 

model structure and calculation. For AR modelling, only 

CGM data are employed in the model and future glucose 

concentrations are simply expressed as linear combinations 

of recent glucose measurements. The ARX models are an 

extension of AR models that reflect the relationship between 

glucose and exogenous inputs by including inputs signals into 

the model structure, e.g., insulin delivery and meal 

carbohydrate (CHO) estimates. For different subjects, their 

glucose levels may response differently to the exogenous 

inputs, revealing their different physiological reactions and 

life styles. Difference between subjects may make the 

existing ARX prediction model developed from one subject 

invalid for new subjects. The conventional modelling 

methods are to re-conduct clinical trials, re-collect modelling 

data, and re-identify new prediction models for new subjects. 

Subject-specific ARX models (Finan D.A. et al., 2009 and 

Zhao et al., 2011, 2012) have been developed and evaluated 

for in silico and clinical subjects. The effects of key design 

issues, such as the degree of input excitation, model orders 

and prediction horizons, have also been checked. 

In contrast to the widespread development of personalized 

glucose prediction models, there is a limited body of work 

concerning the analysis of inter-subject variability for 

glucose prediction. In particular, Gani et al. (2010) and Zhao 

et al. (2013) have mentioned and verified the concept of a 

universal or global AR model of glucose prediction for 

T1DM. The model can be identified based on glucose data 

for a single subject and then used to make short-term (30-

min-ahead) glucose predictions for other subjects without any 

need of model customization. Their results indicated that the 

predictive capability of the AR models (i.e., glucose 

autocorrelation) was not affected by inter-subject differences. 

However, for the development of glucose prediction model, 

exogenous inputs are very important factors, which are also 

the basis for the practical application of glucose control. Zhao 

et al. (2013, 2014) have pointed out that ARX prediction 

models were not global when two exogenous inputs, insulin 
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delivery and meal CHO estimates, were included in the 

model structure. This well supports the fact that different 

subjects may give different glucose responses to exogenous 

inputs due to diverse physique, changes of life styles or 

physiological function. Based on the above discussion, to get 

an accurate ARX prediction model, conventional methods 

require repetitive model development for different subjects 

with a large number of data, which may cause burden for 

patients and clinicians and also may be inefficient, time-

consuming and uneconomical. 

In this paper, a rapid model development strategy is 

proposed using model migration method for new subjects 

with type 1 diabetes. First, the existing model describing the 

old subject is defined as a base model and the model to be 

identified for a new subject is defined as a new model. The 

base model can be obtained by empirical modelling for one 

subject with a large number of data or can be a mechanistic 

model obtained by solid first-principle knowledge and good 

understanding of subjects. In the current research, we focus 

on empirical model development using measurement data. 

Considering that responses to exogenous inputs may change 

across different subjects due to their different excitations, 

parameters of the base model are properly revised so that the 

updated model can be used for a new subject. Of particular 

interest, are first what and how much data are required for 

model migration so that more information can be extracted; 

second how to determine adjusting step and adjusting 

direction to capture the difference between the new subject 

and the base model. These issues are investigated by 

developing ARX models based on thirty in silico subjects 

using University of Virginia/University of Padova 

(UVA/Padova) metabolic simulator. The rapid modeling 

method is compared with subject-dependent model for on-

line short-term (0-60min) glucose prediction. 

2. METHODOLOGY 

2.1 Standard ARX Prediction Models 

In this paper, ARX modelling technique based on least 

squares (LS) algorithm (Ljung, 1999) is used to develop 

empirical prediction models. The general form of the LS-

based ARX model used in this paper can be described as, 
1 1 1

( ) ( ) ( )
ins mealk k k k k k

A q g B q i C q m  
  

 
            (1) 

where 
k

g  denotes glucose concentration at sampling time k . 

insk k
i


 and 

mealk k
m


are bolus insulin and meal CHOs consumed 

at sampling time 
ins

k k  and 
m eal

k k  respectively. Bolus 

insulin and meal CHOs are considered as two exogenous 

inputs while basal insulin that stays invariables is left out in 

the ARX model for simplicity. 
ins

k  and 
m eal

k , which can be 

different for different subjects, are the input time delays.   

is a constant bias term and 
k

  is random disturbance at time 

k . 1
( )A q

 , 1
( )B q

  and 1
( )C q

  represent the coefficients of 

glucose concentration, bolus insulin and CHOs respectively 

which can be identified by LS algebra (Ljung, 1999). 1
q

  is 

the backward shift operator, i.e., 1

1k k
q g g



 . For example, if 

the order of the 1
( )A q

  polynomial is n , then 1
( )A q

  can be 

described as, 

1 1 2

0 1 2
( )

n

n
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2.2 Rapid Model Development using Model Migration 
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Fig. 1. The illustration of model migration method 

For model migration, the foundation is first to detect how 

different or similar two subjects are and what kind of 

difference they have. As mentioned before, despite that 

different subjects may response differently to the exogenous 

inputs, certain glucose dynamics remain the same. Previous 

work (Zhao et al., 2013) have demonstrated that an AR 

prediction model developed for data from one subject is also 

valid for other subjects without any customization. That is, 

they revealed that glucose autocorrelations are similar across 

subjects. Therefore, the glucose dynamics of each subject can 

be separated into subject-dependent part and subject-

independent part in the present work. Correspondingly, the 

model parameters of historical glucose data (i.e., 1
( )A q

 ) in 

ARX model are the same for different subjects. However, the 

model parameters of exogenous inputs (i.e., 1
( )B q

  and 

1
( )C q

 ) plus bias term (  ) in ARX model may be different, 

whose sizes directly reflect the response magnitudes. Based 

on the above analysis, the idea of model migration as shown 

in Figure 1 can be used to rapidly develop the prediction 

model for new subjects by proper model parameter 

adjustment. Clearly, analysis of these common glucose 

dynamics and taking advantage of the existing prediction 

model for one subject can allow fewer data and minimal 

priori knowledge to be required and make the model 

development for new subjects more efficient and economical. 

By model migration, it is hoped that the proposed rapid 

modelling method can present similar prediction accuracy in 

comparison with subject-dependent modelling method but 

cost less modelling burden. 

The general idea of rapid prediction model development is 

described as below. First, a base model is available which can 

be empirically identified from any subject or constructed by 

priori knowledge of one subject. In the present work, LS 

algebra is used to develop ARX prediction model for one 

subject based on a large number of data, including both 

glucose data and two exogenous inputs. In general, the 

existing base model is good for glucose prediction for the 
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current subject but fails to get satisfying prediction accuracy 

for the other subjects although they have the same model 

structure. To customize this base model so that it can be used 

for glucose prediction for new subjects, model parameters for 
1

( )B q
  and 1

( )C q
 ) plus bias term (  ) in Eq. (1) should be 

adjusted based on only a small number of data from new 

subjects. In fact, the differences between subjects indicate 

that prediction relationship of the new subject is simply a 

shift and re-scale of that for the old subject, then the new 

model can be described as a slope and bias correction (SBC) 

to the base model. 

Given a base model

Apply the base model to 

the new subject

Accuracy is 

acceptable

Increase       , decrease       

or adjust    

B C



Increase       , decrease       

or adjust    
BC



New model

No

Yes

Yes

No

Prediction value>Measurement No

Fig. 2. The flowchart of new model development for new 

subjects 

The flowchart of model parameter adjustment procedure is 

shown in Figure 2. The specific rapid modeling procedure is 

described as below. 

(1), The base model is obtained by ordinary LS algebra 

based on a larger number of glucose and exogenous input 

data, which is described as shown in Eq. (1). The two inputs 

and bias term have different influences on glucose level. In 

general, insulin can decrease glucose level while meal will 

increase glucose level. The bias will compensate for the left 

prediction ability. 

(2), The difference of input excitations between the old 

subject and a new subject should be evaluated so as to 

determine the adjustment direction of model parameters. For 

the new subject, only a small number of measurement data 

are available. In general, the available new data should cover 

information of inputs and their influences on glucose level so 

that the difference of input excitation between the old subject 

and the new subject can be captured and used to guide model 

parameter adjustment. First, the base model is directly 

applied to the new subject for glucose prediction with a small 

number of data with no customization. The predicted glucose 

values are indicated as  ˆ 1N Y  and the measured glucose 

values are described as  1N Y  where N is used to indicate 

the number of predicted glucose samples as well as that of 

measured glucose samples. 

(3), The average values (  ˆm ean Y  and  m ean Y ) are 

used to compare the predictions and measurements. The 

prediction errors are calculated as the difference between 

predicted and measured glucose values. Starting from the 

base model shown in Eq. (1), the specific adjustment action 

can be taken based on analysis of prediction errors: 

(i) If  ˆm ean Y >  m ean Y , which may result from the 

fact that the parameter of insulin in base model is 

comparatively smaller than the real value for the new subject 

or the parameter of meal in base model is comparatively 

larger than the real value for the new subject or the bias term 

is positively larger, increase the absolute parameter value of 

insulin (
ins

B ) or decrease the absolute parameter value of 

meal (
m eal

B ) with the predefined step size so as to reduce 

the predicted glucose values; 

(ii) If  ˆm ean Y <  m ean Y , which may be caused by the 

oversized parameter of insulin, the undersized parameter of 

meal or the positively smaller bias term in base model than 

the real value for the new subject, decrease the absolute 

parameter value of insulin (
ins

B ) or increase the absolute 

parameter value of meal (
m eal

B ) with the predefined step 

size so as to increase the predicted glucose values; 

(iii) If  ˆm ean Y =  m ean Y , no model adjustment is 

needed. 

During the model parameter adjustment, the other model 

parameters should stay invariable when one parameter is 

adjusted. The model parameter of insulin is first regulated 

with the predefined step size until prediction errors can not be 

further reduced; then keep it invariable and regulate the 

model parameter of meal CHOs until prediction error can not 

be reduced. Also, the above regulation should be iteratively 

implemented as shown in Figure 2 for the two inputs until the 

convergence requirement is met which is in general set to be 

the improvement of prediction accuracy. 

In general, a smaller step size means more steps are 

required to reach the target but the corrected parameter value 

may be more close to the real value. In contrast, a larger step 

size means fewer steps are required to reach the target value 

but the corrected parameter value is easy to go far from the 

real parameter value. Therefore, the step size reflects the 

compromise between model accuracy and adjustment 

complexity. A larger step size can be chosen at the beginning 

of adjustment process and then a smaller step size should be 

used when the parameter is around the target as indicated by 

the improvement of prediction accuracy. 

2.3 Prediction Performance Evaluation 

In order to evaluate the feasibility of developing a new 

model for new subjects using model migration, two 

approaches are considered and compared: 
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a) Model migration with a small number of data (MM): 

The new prediction model is obtained by model 

parameter adjustment based on a base model for one 

old subject. After model migration, this updated 

model is then used to make glucose predictions for 

the new subjects. 

b) Subject-dependent model development with a large 

number of data (SM): A large number of data are 

used for new model development for new subjects 

using standard LS algebra without using the 

information from base model. The new identified 

model is then used to make glucose predictions for 

the new subjects. 

For ARX modelling, the exogenous inputs are transformed 

using two different second-order transfer functions (Grosman 

et al., 2010), producing time-smoothed inputs. In this way, 

the effects of the two inputs can be separated to a certain 

extent, which facilitates the model identification. 

We want to check whether an ARX prediction model can 

be rapidly obtained by simple model parameter adjustment 

based on a smaller number of data and whether it is 

comparable to the subject-dependent models developed from 

a larger number of data. In order to evaluate the glucose 

prediction performance, three metrics are used: 1). Root-

mean-square error (RMSE (mg/dL)) (Gani A et al., 2010) 

which is a frequently used measure of the differences 

between values predicted by a model or an estimator and the 

values actually observed. 2). Rate Error Grid Analysis (R-

EGA) (Kovatchev et al., 2004) which assesses the prediction 

ability to capture the direction and rate of glucose 

fluctuations. It has a clinical meaning similar to the original 

EGA (Clarke and Kovatchev, 2008). 3). Time lag which is 

defined as the time difference between a measured 

hyperglycaemia/hypoglycaemia episode and a predicted one. 

Also, sensitivity (Eren-Oruklu et al., 2010) of a method to 

predict abnormal glucose event is calculated to evaluate the 

prediction performance. 

3. SIMULATION AND DISCUSSION 

As a proof-of-concept study, the simulated data are 

generated from the FDA-accepted University of 

Virginia/University of Padova (UVA/Padova) metabolic 

simulator with a 5 min sampling interval (Kovatchev et al., 

2009). It includes a three-meal scenario for breakfast, lunch, 

and dinner taken at approximately 7:00, 12:00, and 18:00 

with 40g, 85g, and 60g CHOs, respectively. Three cases are 

considered to assess the performance of the model migration 

method: 

Case I: Bolus insulin was given simultaneously with CHOs 

based on the “optimal” subcutaneous (SQ) insulin bolus. 

Case II: Bolus insulin was given half an hour later after 

meal was taken based on the “optimal” subcutaneous (SQ) 

insulin bolus. 

Case III: Bolus insulin was given an hour later after meal 

was taken based on the “optimal” subcutaneous (SQ) insulin 

bolus. 

Thirty in silico subjects are chosen as representatives and 

four days of data are simulated for each subject. Thirty min 

ahead glucose prediction is used to evaluate prediction 

performance. A preliminary investigation is made for subject-

dependent ARX models where the model orders and time 

delays for two different inputs are determined to achieve the 

best accuracy. Based on the results, the model orders for 

glucose, insulin and meals are set equal to 7, 1, and 1 sample, 

respectively. The input time delays of both bolus insulin and 

meal CHOs are set to be 5, which means 5
ins

k   and 

5
m eal

k  . The base model is then developed using LS 

algorithm for one in silico subject which is chosen randomly. 
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Fig. 3. The effect of the amount of training data on prediction 

performance for model migration method evaluated by 

average of RMSE values for 30 in silico subjects and Case II 

For each new subject, rapid model development is 

performed. Based on the adjustment strategy described in 

subsection 2.2, new prediction model is rapidly identified for 

the new subject. The new model is then applied to the other 

data of the new subject to evaluate the prediction accuracy. 

Figure 3 shows the influence of the amount of training data 

(Ntr) on the prediction accuracy for Case II where the new 

model is developed and then tested based on data from the 

same case. For 30 min ahead glucose prediction, RMSE 

index is used to evaluate the prediction accuracy and its 

average is calculated for 30 in silico subjects and one day of 

testing data. When Ntr=13, only one 30min-ahead glucose 

prediction value is available for model parameter adjustment. 

With the increase of the amount of training data, the 

prediction accuracy is improved since more glucose 

prediction values are available for model migration. However, 

after Ntr=24 samples (two hours), the prediction accuracy 

almost stays invariable based on the RMSE metric. The 

difference between the case using Ntr=24 and the other cases 

using a larger Ntr is not statistically different based on a 

paired t-test (α=0.05) (Montgomery and Runger, 2006). For 

Case I and Case III, the same conclusion can be drawn. 

Therefore, for the subsequent rapid model development, a 

value of Ntr=24 is used from which 12 prediction samples are 

available to guide the adjustment of model parameters. 

Using models developed based on training data from Case 

II, comparisons of the measured and predicted glucose 

profiles are shown in Figure 4 for model migration method 

and subject-dependent modelling method. These results are 

for two different subjects and one day of testing data from 
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Case II. In general, the evolving glucose trends are captured 

by both methods and the difference of prediction accuracy is 

not statistically significant based on a paired t-test (α=0.05) 

(Montgomery and Runger, 2006). 
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Fig. 4. Comparison of representative measured and 30 min 

predicted glucose profiles for Subjects #3 (top) and #25 

(bottom) and Case II based on model migration method and 

subject-dependent modelling method 

Table 1 and Table 2 summarize the model prediction 

accuracy of two different methods for 30 in silico subjects 

and 30 min ahead predictions. Three metrics, RMSE (mg/dL), 

R-EGA (%) in zone A, and time lag of hyper/hypo alarms 

plus sensitivity, are used to evaluate the prediction 

performance. For model development, three cases are 

considered where measurement data from Case I, II and III 

are chosen as training data respectively. Then the developed 

models are tested based on one-day data from Case II. In this 

way, the model generalization ability can be studied. For 

model migration method, 24 samples (two hour) from each 

case are used as training data for model adjustment. For 

subject-dependent modelling method, three days of simulated 

data covering 864 samples from each case are used as 

training data. Clearly, the number of data used for model 

migration method is much smaller than that used for subject-

dependent modelling method. For both methods, the testing 

results using models from Cases II and III indicate good 

prediction generalization ability for Case II. Also two 

methods in general show comparable prediction accuracy for 

Cases II and III although the proposed model migration 

method may give slightly lower accuracy. However, when 

the models are developed from Case I and then tested for 

Case II, the proposed model migration method shows much 

better prediction results than subject-dependent modelling 

method as indicated by RMSE index and Sensitivity. For 

subject-dependent modelling method, the testing results 

indicate that it may not present good generalization ability 

from Case I to Case II. 

In order to analyze the difference between two methods for 

Case I, predicted profiles are compared with measured 

profiles for Subjects #2 and #29 and one day of testing data 

as shown in Figure 5. The models are developed based on 

training data from Case I and then tested for data from Case 

II. For subject-dependent modelling method, the predicted 

profiles are quite different from measured glucose values, 

failing to capture the true glucose trends. In particular, the 

predictions are especially bad around the glucose peaks. It 

reveals that input parameters of subject-dependent models 

which reflect the glucose response to inputs in Case II are not 

suitable to reflect the glucose dynamics in Case I. 
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Fig. 5. Comparison of representative measured and 30 min 

predicted glucose profiles for Subjects #2 (top) and #29 

(bottom) and Case I based on model migration method and 

subject-dependent modelling method 

Based on the results, subject-dependent modelling method 

may not present good generalization ability when the 

conditions for training data and testing data are different. 

That is, the model parameters may overfit to the training case 

but fail to reveal the response relationship in testing case. In 

contrast, the proposed model migration method shows good 

generalization ability. It may result from the fact that the 

parameters are obtained by simple adjustment based on a 

small number of training data which thus may overcome the 

overfitting problem to a certain extent. 

4. CONCLUSIONS 

In this paper, a rapid and economic modeling method is 

developed using the idea of model migration. Starting from a 

base model for one old subject and a small number of data for 

new subjects, the input parameters of base model are properly 

adjusted to capture the difference between the old subject and 

new subjects. A new prediction model is thus readily 

obtained and used for online short-term ahead glucose 

prediction in type 1 diabetes mellitus. The results indicate 

that the prediction accuracy of the rapid modeling method is 

comparable to that for subject-dependent modeling method 

for some cases. Also, model migration method presents better 

generalization ability. The proposed method can be regarded 

as an effective and economic modeling method instead of 

repetitive subject-dependent modeling method. Besides, these 
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promising analyses results encourage extensions of this 

research methodology for the specific purpose of glucose 

control in future. 
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Table 1. Prediction accuracy for thirty in silico subjects and 30 min glucose predictions using model migration method 

(mean ± standard deviation) 

Case No. 

For 

training data 

RMSE 

(mg/dL) 

R-EGA 

(% in zone A) 

Time Lag 

for hyper event 

(samples) 

Sensitivity for 

hyper event (%) 

Time Lag 

for hypo event 

(samples) 

Sensitivity for 

 hypo event (%) 

Case I 16.59±10.47 79.53±2.40 3.12±0.90 77 4.76±1.65 79 

Case II 16.42±10.35 79.60±2.39 3.12±0.90 76 4.76±1.65 79 

Case III 16.48±10.33 79.60±2.44 2.94±0.80 78 4.76±1.65 79 

Table 2. Prediction accuracy for thirty in silico subjects and 30 min glucose predictions using Subject-dependent 

standard modeling method (mean ± standard deviation) 

Case No. 

For 

training data 

RMSE 

(mg/dL) 

R-EGA 

(% in zone A) 

Time Lag 

for hyper event 

(samples) 

Sensitivity for 

 hyper event (%) 

Time Lag  

for hypo event 

(samples) 

Sensitivity for 

hypo event (%) 

Case I 28.14±24.78 79.70±10.92 2.79±0.62 63 3.48±2.06 70 

Case II 14.17±8.61 77.70±10.50 2.38±1.12 85 4.10±2.36 82 

Case III  14.90±9.09 76.01±10.58 2.58±1.09 83 5.20±0.84 82 

 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2099


