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Abstract: This paper is concerned with identification of nonlinear systems with a noisy
scheduling variable, and the measurement of the system has an unknown time delay. Auto
regressive exogenous (ARX) models are selected as the local models, and multiple local models
are identified along the process operating points. The dynamics of a nonlinear system are
represented by associating a normalized exponential function with each of the ARX models;
therein, the normalized exponential function is acted as the probability density function. The
parameters of the ARX models and the exponential functions as well as the unknown time
delay are estimated simultaneously under the expectation maximization (EM) algorithm using
the retarded input-output data. A CSTR example is given to verify the proposed identification
approach.
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1. INTRODUCTION

Time delay is a long discussed problem in engineering
sciences, and it is well known that, most of real-life
systems may be more accurately represented by nonlinear
models. Therefore, basic mathematical models of real
process phenomena are constructed by nonlinear time
delay systems. Since the unique challenges are posed by
the complex stochastic nonlinear dynamics, nonlinear time
delay systems represent an additional level of complexity.
Identification of nonlinear time delay systems is a thorny
problem.

Over the last few decades, the methods for identifying
linear time delay systems have been wildly developed [B-
jörklund and Ljung, 2003, Richard, 2003]. For the nonlin-
ear time delay systems, Yazdizadeh and Khorasani [2002]
proposed four neuro-dynamic architectures for identify-
ing different classes of nonlinear time delay systems. Liu
et al. [2009] proposed a method for the identification of
unknown network parameters and topological structure
simultaneously; wherein, the uncertain general complex
networks has time delay. Cao and Frank [2000] presented
a stability analysis and design approach for nonlinear time
delay systems under Takagi-Sugeno (TS) fuzzy modeling
and control approach. Anguelova and Wennberg [2008]
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applied the non-commutative rings theory to analyze the
delay identification problem for nonlinear constant delay
systems.

In general, most of the industrial processes are nonlinear
time delay systems. Such systems are often operated a-
long certain fixed operating trajectories, and several pre-
determined operating points constitute these operating
trajectories. This paper is an extension of the work of Chen
et al. [2013] to a more general scenario when the nonlinear
system has an uncertain scheduling variable as well as
unknown time delay in the process output measurements.
In Chen et al. [2013], we considered identification problem
for nonlinear processes without time delay. In practice,
however, most processes have time delays which consti-
tute considerable challenges in identification problem, and
therefore solving time delay problem is often a necessary
step in identification. Using the EM algorithm, a multiple
model based identification procedure is developed, auto
regressive exogenous (ARX) models are selected as the
local models, and multiple local models are identified in
different operating regions using the retarded data. For
the complete representation of the nonlinear system, a
normalized exponential function is then used to combine
all the ARX models. The parameters of the nonlinear
model and the unknown time delay are simultaneously
estimated.

This paper is organized as follows: Section 2 lays out the
problem formulation. Section 3 derives the identification
procedure under the EM framework. Section 4 shows the
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simulation results on a continuous stirred tank reactor
(CSTR) example. Conclusions are given in Section 5.

2. PROBLEM FORMULATION

Let the true nonlinear time delay system be represented
as

h(ċk, ck, yk, uk, zk, wk, u
′
k, T

0
1:M , λ, k, ϵk) = 0, (1)

where uk ∈ U ⊆ Rm for k ∈ N is the process input; ck ∈
C ⊆ Rr and yk ∈ Y ⊆ R are the state and measurement,
respectively; u′k ∈ U ′ ⊆ Rs affects the scheduling variables
as an input variable; zk ∈ Z ⊆ R and wk ∈ W ⊆ Rq

are the hidden and observed scheduling variables, and
zk and wk are independent; T 0

1:M = {T 0
1 , T

0
2 , . . . , T

0
M}

represent M different operating points; λ is an unknown
time delay, which is bounded by λmin and λmax; and
ϵk ∈ R represents the process noise. Here h(·) is a nonlinear
mapping function.

The unknown time delay λ is integer-valued and its uncer-
tainty can follow any discrete distribution. In this work,
we consider an uniform distribution, i.e.,

Pr(λ = j) =
1

λmax − λmin + 1
, j = λmin, . . . , λmax. (2)

Although the scheduling variable zk in Eq. (1) is a hidden
variable, through another process variable wk, zk can be
observed; then the dynamics of the scheduling variables
can be represented using the following state-space model:

ηk = f(ηk−1, u
′
k−1, γk−1), (3a)

wk = g(ηk, u
′
k, vk), (3b)

zk = ψ(ηk), (3c)

where γk ∈ Rp and vk ∈ Rq are Gaussian noise represented
by N (0, Rγ) and N (0, Rv), respectively; and ηk ∈ H ⊆
Rp is the state of the scheduling variable. f(·) and g(·)
are p-dimensional and q-dimensional mapping functions,
and each can be nonlinear or linear. ψ(·) generates the
scheduling variable, and is a 1-dimensional mapping func-
tion[Chen et al., 2013].

Eq. (3) can be represented by

Z0 = z0 ∼ p(z0), (4)

Zk|(Zk−1 = zk−1)∼ p(·|zk−1), (5)

Wk|(Zk = zk)∼ p(·|zk). (6)

For any generic sequence χk, let χi:j = {χi, χi+1, . . . , χj},
with χi:j = 0 for i > j. It is assumed that the E-
q. (3) is known, the data set {u′1:N , w1:N} and T 0

1:M
are given, and the retarded data {u1:N , y1:N} can be
accessed. Therefore, the observed data set is Cobs =
{y1:N , u1:N , u′1:N , w1:N , T

0
1:M} [Chen et al., 2013].

Nonlinear dynamics in different operating conditions may
be described by multiple local models. The local dynamics
of Eq. (1) may be approximated by ARX models. Ljung
[1987] has justified that ARX models can be used in
approximating any linear dynamics. Due to unknown time
delay, the ARX model is given as

yk = θTIkxk−λ + ek, (7)

where xk−λ ∈ X ⊆ Rn is the regressor, which can be
expressed as

xk−λ , [yk−1, . . . , yk−nb
, uTk−1−λ, . . . , u

T
k−na−λ]

T. (8)

Here na and nb are the orders of the input and output
polynomial, respectively, and n = mna + nb; ek ∈ R is
Gaussian noise with zero mean and unknown variance σ2.
It is assumed that uk = 0, yk = 0 for k ≤ 0. Ik in Eq. (7)
represents the local model identity at sampling time k, and
is a hidden variable. Therefore the parameters of the local
model are ΘIk = {θIk , σ}. We assume that M local ARX
models represent the dynamics around the M operating
points of Eq. (1), such that

Yk|(Xk = xk−λ, Ik = i) ∼ pΘi(·|xk−λ), 1 ≤ i ≤M. (9)

Through a local linear model, the process dynamics within
the relatively small region of an operating point can be
approximated. We can compute the probability of yk given
all the past information following the approach of Chen
et al. [2013]:

pΘ(yk|y1:k−1, c1:k, u1:k, z0:k, w1:k, u
′
1:k, T

0
1:M , λ)

=
M∑
i=1

pΘ(yk, Ik = i|y1:k−1, c1:k, u1:k, z0:k, w1:k,

u′1:k, T
0
1:M , λ) (10a)

=
M∑
i=1

αk,ipΘi(yk|xk−λ). (10b)

where Θ is a set of model parameters. αk,i = PrΘ(Ik =
i|y1:k−1, c1:k, u1:k, z0:k, w1:k, u

′
1:k, T

0
1:M , λ) is the probabili-

ty of Ik = ith local model taking effect at sampling time
k. Given Ik, yk is independent of c1:k, z0:k, w1:k, u

′
1:k, T

0
1:M

(see Eq. (9)). As a result, pΘ(yk|y1:k−1, c1:k, u1:k, z0:k, w1:k,
u′1:k, T

0
1:M , Ik = i, λ) can be simplified, and written as

pΘi(yk|xk−λ).

Generally, Ik can be inferred from zk and T 0
1:M . As a

result, in Eq. (10b), αk,i can be simplified as PrΘ(Ik =
i|zk, T 0

1:M ). Here a normalized exponential function is used
to model αk,i, which is proposed in Jin et al. [2011] and
Zhao et al. [2012], such that

αk,i =
exp(− (zk−T 0

i )
2

2(oi)2
)

M∑
i=1

exp(− (zk−T 0
i
)2

2(oi)2
)

, (11)

where oi ∈ O ⊆ R need to be estimated, it denotes the
validity width of the Ik = ith local model. In Eq. (11),
oi is bounded by oi,max and oi,min, such that oi,min ≤
oi ≤ oi,max. O = {o1, o2, . . . , oM} denote a set of validity
widths for the M local models. Therefore, Eq. (11) can be
alternatively represented as

Ik|(Zk = zk, T
0
1:M ) ∼ PrO(·|zk, T 0

1:M ). (12)

Since Ik and zk are hidden, and the time delay λ is
unknown, the missing data set is Cmis = {I1:N , z0:N , λ},
and a complete data set can be denoted as {Cobs, Cmis}.

Θ = {ΘIk , O} =
M∪
i=1

{θi, σ, oi} are the parameters to be

estimated.
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In this paper, the main problem addressed is to estimate
the parameter Θ and the unknown time delay λ, given
Cobs and Eq. (3). The EM algorithm is adopted to solve
the above problems.

3. EM ALGORITHM BASED MULTIPLE MODEL
APPROACH

The EM algorithm is used for the maximum-likelihood
estimation from incomplete data, which was first proposed
by Dempster et.al. [1977]. The EM algorithm consists of
two iterative steps: the expectation step (E-step) and the
maximization step (M-step). In the E-step, we calculate
the expectation of the log-likelihood function, Q-function,
for the complete data set {Cobs, Cmis} with respect to
the missing data Cmis based on the current estimated
parameter set Θ′ and the observed data Cobs. In the M-
step, the parameters are re-estimated through maximizing
the Q-function.

The mathematical formulation of EM algorithm is [M-
cLachlan and Krishnan, 2008]:

(1) Initialization: Set the initial guess of the parameters
to Θ′.

(2) E-step: Use the current parameter Θ′ to calculate the
approximate Q-function as

Q(Θ|Θ′) = ECmis|(Cobs,Θ′){log pΘ(Cobs, Cmis)}.
(13)

(3) M-step: Estimate the new parameter through maxi-
mizing the Q-function as

Θ = argmax
Θ

Q(Θ|Θ′). (14)

Then set Θ′ = Θ.
(4) Iterate: Evaluate the relative change of the estimated

parameters,

δ = ∥Θ−Θ′

Θ′ ∥. (15)

If δ is larger than a pre-determined tolerance, then
repeat steps 2 and 3.

The EM algorithm guarantees to converge to a stationary
point under certain regularity conditions[Wu, 1983].

3.1 Formulation of the identification approach based on
the EM algorithm

pΘ(Cobs, Cmis) is the complete likelihood function. It can
be decomposed using the probability chain rule as

pΘ(Cobs, Cmis)

= pΘ(y1:N , u1:N , u
′
1:N , w1:N , T

0
1:M , I1:N , z0:N , λ) (16a)

= pΘ(y1:N |u1:N , u′1:N , w1:N , T
0
1:M , I1:N , z0:N , λ)

· PrΘ(I1:N |u1:N , u′1:N , w1:N , T
0
1:M , z0:N , λ)

· pΘ(z0:N |u1:N , u′1:N , w1:N , T
0
1:M , λ)

· pΘ(λ|u1:N , u′1:N , w1:N , T
0
1:M )

· pΘ(u1:N , u′1:N , w1:N , T
0
1:M ). (16b)

Following the similar derivations as Chen et al. [2013], we
get

pΘ(Cobs, Cmis)

=

N∏
k=1

pΘIk
(yk|xk−λ) ·

N∏
k=1

PrO(Ik|zk, T 0
1:M ) · C1, (17)

where C1 = pΘ(z0:N |u1:N , u′1:N , w1:N , T
0
1:M , λ) ·pΘ(λ|u1:N ,

u′1:N , w1:N , T
0
1:M ) · pΘ(u1:N , u′1:N , w1:N , T

0
1:M ), is indepen-

dent of Θ.

Then by computing the E-step shown in Eq. (13), we get
Eq. (18) as shown in the next page.

Since the integrand is a function of Ik, zk and λ, the multi-
dimensional integral with respect to pΘ′(I1:N , z0:N , λ|Cobs)
can be simplified, and written as Eq. (19a), where C2 =∫
I1:N ,z0:N ,λ

logC1 · pΘ′(I1:N , z0:N , λ|Cobs)dz0:NdI1:Ndλ. S-

ince the local model identity Ik and time delay λ are
discrete random variables, we get Eq. (19b) as shown in
the next page.

pΘ′(Ik = i, zk, λ = j|Cobs) can be decomposed as
PrΘ′(Ik = i|zk, λ = j, Cobs)pΘ′(zk|λ = j, Cobs)PrΘ′(λ =
j|Cobs). Now to determine the Q-function in Eq. (19b), we
need to compute the following probability functions:

(1) pΘi(yk|xk−λ, λ = j)
(2) Proi(Ik = i|zk, T 0

1:M )
(3) PrΘ′(Ik = i|zk, λ = j, Cobs)
(4) pΘ′(zk|λ = j, Cobs)
(5) PrΘ′(λ = j|Cobs)

As Gaussian white noise has been assumed for the ARX
model in Eq. (7), pΘi(yk|xk−λ, λ = j) is a Gaussian
probability density function, and Proi(Ik = i|zk, T 0

1:M ) can
be calculated using Eq. (11).

Using the Bayes’ rule, PrΘ′(Ik = i|zk, λ = j, Cobs) and
PrΘ′(λ = j|Cobs) can be derived as Eq. (20) and Eq. (21),
respectively.

PrΘ′(Ik = i|zk, λ = j, yk, xk−j , T
0
1:M )

=
pΘ′

i
(yk|xk−λ, λ = j)PrO′(Ik = i|zk, T 0

1:M )Pr(λ = j)

M∑
i=1

pΘ′
i
(yk|xk−λ, λ = j)PrO′(Ik = i|zk, T 0

1:M )Pr(λ = j)

.

(20)

PrΘ′(λ = j|y1:N , u1:N , u′1:N , w1:N , T
0
1:M )

=

N∏
k=1

pΘ′
i
(yk|xk−λ, λ = j)Pr(λ = j)

λmax∑
j=λmin

(
N∏

k=1

pΘ′
i
(yk|xk−λ, λ = j)Pr(λ = j)

) . (21)

Since zk is a continuous random variable, an approxi-
mation method is necessary for computing the integral
in Eq. (19b). For nonlinear dynamics of the scheduling
variable, we use the Sequential Monte-Carlo (SMC) meth-
ods to get numerical solutions; for linear case, we use the
Kalman smoother. Then the Q-function can be calculated
as Eq. (22), where δ(·) is a dirac-delta function, zlk is chosen
from p(zk|λ = j, w1:N ), and L is number of samples.

For the M-step shown in Eq. (14), we take derivatives of
the Q-function with respect to θi, σ and oi. Differentiating
Eq. (22) with respect to θi,σ and oi and equating it to zero,
we get the updated parameters shown in Eqs. (23)-(25).
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Q(Θ|Θ′) = EpΘ′ (I1:N ,z0:N ,λ|Cobs)

{
log

N∏
k=1

pΘIk
(yk|xk−λ) + log

N∏
k=1

PrO(Ik|zk, T 0
1:M ) + logC1

}
(18a)

=

∫
I1:N ,z0:N ,λ

(
N∑

k=1

log pΘIk
(yk|xk−λ) +

N∑
k=1

logPrO(Ik|zk, T 0
1:M ) + logC1

)
pΘ′(I1:N , z0:N , λ|Cobs)dz0:NdI1:Ndλ. (18b)

N∑
k=1

∫
Ik,zk,λ

log pΘIk
(yk|xk−λ)pΘ′(Ik, zk, λ|Cobs)dzkdIkdλ

+

N∑
k=1

∫
Ik,zk,λ

logPrO(Ik|zk, T 0
1:M )pΘ′(Ik, zk, λ|Cobs)dzkdIkdλ+ C2 (19a)

=
N∑

k=1

λmax∑
j=λmin

M∑
i=1

∫
zk

log pΘi(yk|xk−λ, λ = j)pΘ′(Ik = i, zk, λ = j|Cobs)dzk

+

N∑
k=1

λmax∑
j=λmin

M∑
i=1

∫
zk

logProi(Ik = i|zk, T 0
1:M )pΘ′(Ik = i, zk, λ = j|Cobs)dzk + C2. (19b)

Q(Θ|Θ′) =
1

L

N∑
k=1

λmax∑
j=λmin

M∑
i=1

L∑
l=1

log pΘi(yk|xk−j)PrΘ′(Ik = i|zlk, λ = j, Cobs)PrΘ′(λ = j|Cobs)

+
1

L

N∑
k=1

λmax∑
j=λmin

M∑
i=1

L∑
l=1

logProi(Ik = i|zlk, T 0
1:M )PrΘ′(Ik = i|zlk, λ = j, Cobs)PrΘ′(λ = j|Cobs) + C2. (22)

θi =

N∑
k=1

λmax∑
j=λmin

L∑
l=1

PrΘ′(Ik = i|zlk, λ = j, Cobs)PrΘ′(λ = j|Cobs)x
T
k−jyk

N∑
k=1

λmax∑
j=λmin

L∑
l=1

PrΘ′(Ik = i|zlk, λ = j, Cobs)PrΘ′(λ = j|Cobs)xTk−jxk−j

. (23)

σ2 =

N∑
k=1

λmax∑
j=λmin

M∑
i=1

L∑
l=1

PrΘ′(Ik = i|zlk, λ = j, Cobs)PrΘ′(λ = j|Cobs)(yk − θi
Txk−j)

T(yk − θi
Txk−j)

N∑
k=1

λmax∑
j=λmin

M∑
i=1

L∑
l=1

PrΘ′(Ik = i|zlk, λ = j, Cobs)PrΘ′(λ = j|Cobs)

. (24)

max
oi,i=1,2,··· ,M

N∑
k=1

λmax∑
j=λmin

M∑
i=1

L∑
l=1

logProi(Ik = i|zlk, T 0
1:M )PrΘ′(Ik = i|zlk, λ = j, Cobs). (25)

S.t. oi,min ≤ oi, i = 1, 2, . . . ,M ≤ oi,max

The unknown time delay can be estimated as

λ̂ = argmax
j
PrΘ′(λ = j|Cobs), j = λmin, . . . , λmax.

(26)

3.2 Summary of the proposed identification algorithm

The proposed multiple model approach for nonlinear sys-
tem identification with a single uncertain scheduling vari-
able and unknown measurement time delay using the EM
algorithm is as follows:

(1) Initialization: Set the initial value to Θ′.

(2) E-step: According to Eq. (22), the approximate Q-
function can be evaluated using current parameter
Θ′.

(3) M-step: Maximize Eq. (22) to re-estimate the param-
eter, and then set Θ′ = Θ.

(4) Iterate: Evaluate the relative change shown in Eq.
(15), and according to the pre-determined tolerance,
decide whether to repeat step 2 and 3 or terminate.
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Fig. 1. The input-output data of CSTR

4. SIMULATION EXAMPLE

Continuous stirred tank reactor (CSTR) process is an
exothermic; irreversible reaction. The mathematical mod-
els are given as follows [Zhao et al., 2012, Chen et al.,
2013]:

dCA(t)

dt
=
q(t)

V
(CA0 − CA(t))− k0CA(t) exp(

−E
RT (t)

), (27a)

dT (t)

dt
=
q(t)

V
(T0(t)− T (t))− (−∆H)k0CA(t)

ρCp
exp(

−E
RT (t)

)

+
ρcCpc

ρCpV
qc(t){1− exp(

−hA
qc(t)ρCp

)}(Tc0(t)− T (t)).

(27b)

The model parameters are shown in Table 1. CA is the

Table 1. Parameters of the CSTR process

q 100 L/min
CA0 1 mol/L
T0 350 K
Tc0 350 K
V 100 L
hA 7× 105 cal/(min K)
K0 7.2× 1010 min−1

E/R 1× 104 K
−∆H −2× 105 cal/mol
ρ, ρc 1× 103 g/L
Cp, Cpc 1 cal/(gK)

product concentration as the controlled variable, and qc(t)
is the coolant flow rate as the manipulated variable. qc(t)
in the range 96-110 is also the scheduling variable. 97, 100,
103 and 106 are four pre-determined operating points.

The dynamic model of the scheduling variable is assumed
as

zk =Azk−1 +Bu′k−1 + γk−1, (28a)

wk =Czk + vk, (28b)

where A = 0.2, B = 0.8, C = 1, Rγ = 0.01 and Rv = 0.2.
White noise is added to the simulated process output, with
variance of about 2% of that of the noise free output. The
unknown true time delay is 2, which is bounded from 0 to
5. The simulated data are shown in Figures 1 and 2.
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Fig. 2. The input-output data of the scheduling variable

0 100 200 300 400 500 600 700

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Time

C
om

po
ne

nt
 A

 

 

True output
Estimated output

Fig. 3. Comparison of the identified CSTR model (self-
validation)
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Fig. 4. The probability of each local model (self-validation)

Applying the proposed method, four local models are
identified, where the tolerance is 1e-5. The self-validation
results are shown in Figures 3 and 4. From Figure 5, we
can see that the estimation of the unknown time delay
has fast convergence. To verify the identified models, cross
validation data are used with operating points at 99 and
106, and the graphic comparisons are shown in Figures 6
and 7.

It can be observed that the predictions obtained by the i-
dentified nonlinear process models are in a close agreement

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9392



1 2 3 4 5 6
0

1

2

3

4

Iteration

T
he

 e
st

im
at

ed
 c

on
st

an
t t

im
e 

de
la

y

Fig. 5. The estimated time delay
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Fig. 6. Comparison of the identified CSTR model (cross-
validation)
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Fig. 7. The probability of each local model (cross-
validation)

with the measured outputs, and the unknown time delay
can be estimated correctly. These results demonstrate the
effectiveness of the proposed approach.

5. CONCLUSIONS

This article considers an identification approach for non-
linear time delay systems with a noisy scheduling vari-
able. The proposed approach follows the framework of the
EM algorithm using the multiple model approach. ARX

models as the local models are identified at each process
operating point; the complete dynamics of the nonlinear
system is a combination of all the ARX models associated
with normalized exponential function as its probability
density function. The parameters of the local models and
the exponential functions, as well as the unknown time de-
lay are estimated simultaneously. The validation results of
a CSTR example demonstrate that the proposed method
can give satisfactory performance for identifying nonlinear
time delay systems with an uncertain scheduling variable.
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