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Abstract: This paper is concerned with the identification problems of linear parameter varying
(LPV) systems with randomly missing output data. Since one local linearized model cannot
capture the global dynamics of the nonlinear industrial process, the multiple-model LPV
model in which the global model is constructed by smoothly weighted combination of multiple
local models is considered here. The problem of missing output variables data is commonly
encountered in practice. In order to handle the multiple-model identification problems of LPV
systems with incomplete data, the local model is taken to have a finite impulse response (FIR)
model structure and the generalized expectation-maximization (EM) algorithm is adopted to
estimate the unknown parameters of the global LPV model. To avoid the problems of ill-
conditioned matrices and high sensitivity of parameters to noise, the prior information on
the coefficients of each local FIR model is employed to construct the prior probability of
unknown parameters. Then the maximum a posteriori (MAP) estimates of the global model
parameters are derived via the generalized EM algorithm. The numerical example is presented
to demonstrate the effectiveness of the proposed method.

Keywords: Linear parameter varying systems; Generalized EM algorithm; Missing output
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1. INTRODUCTION

In process industry, many advanced control strategies
have been developed to meet various process requirements,
such as improved process safety and reliability, consistent
production, economic optimization, and so on. Typically,
the application of these control strategies relies heavily
on the understanding of the process behaviors and the
existence of an accurate process model (Yin et al., 2012,
2014). Therefore, process modeling is a prerequisite for
controller design and system analysis.

Modern processes are often operated in a wide working
range, and exhibit strong nonlinearity and/or parameter
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varying property (Zhao et al., 2012). Since the process dy-
namic changes inevitably when the process shifts from one
working point to the other, one local linearized model can-
not capture the global dynamics of the process. Meanwhile,
the closed-loop system with the controller designed based
on the local linearized model cannot meet the expected
performance requirements within a large working range.
To deal with these problems, great efforts have been made
to find a flexible model structure to facilitate the modeling
and controller design for modern processes. Among the
results obtained in the literature, the linear parameter
varying (LPV) model has attracted great attentions of
many researchers (Bamieh and Giarre, 2002; Laurain et al.,
20105 Jin et al., 2011). The LPV model is characterized by
its linear model structure and is capable of approximating
complicated nonlinear /parameter varying processes.
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In the past decade, many LPV model identification meth-
ods have been developed. These methods can be roughly
divided into the global approach (Bamieh and Giarre,
2002; Laurain et al., 2010; Téth et al., 2012) and the
local approach (Wassink et al., 2005; Xu et al., 2009;
Jin et al., 2011). The global approach typically requires
the control input to be manipulated throughout the en-
tire operating range, so that the control inputs and the
scheduling parameters can be both excited. This may
not be allowed by many processes for the consideration
of safety, consistent production, and so on. In the local
approach, the control input is only required to be ex-
cited around each prespecified working point or for the
fixed scheduling variables which is easy to implement
in practice. Wassink et al. (2005) proposed to build an
LPV model with polynomial dependence on parameters
for the wafer stage with position-dependent dynamics.
The position of the stage in the horizontal plane was
selected as the scheduling variable. The local linear model
was identified for each preselected position, and then the
parameters of the coefficient polynomials of the final pa-
rameter interpolation LPV model were derived by solving
two least squares optimization problems. Jin et al. (2011)
put forward to deal with the LPV modeling problem using
the expectation-maximization (EM) algorithm originally
developed by Dempster et al. (1977). Based on the assump-
tion of smooth transitions, the normalized exponential
function was chosen as the validity function. The local
model parameters and the validity widths were estimated
simultaneously (Jin et al., 2011).

The problem of missing output variables data is common-
ly encountered in process industry due to sensor failure,
irregularly sampling, packet losses or disorder in network
communication system, malfunction of the data recording
system, data deletion caused by outlier detection and
so on. The conventional identification methods may suf-
fer from performance deterioration when applied to the
incomplete dataset directly. In order to handle missing
data in the modeling process, many techniques, such as
casewise deletion, mean substitution, last observation car-
ried forward method, regression imputation, EM-based
Bayesian algorithm, etc., have been developed (Khati-
bisepehr and Huang, 2008). Among all the techniques,
the EM algorithm has already been widely applied owing
to its attractive statistical properties (Jin et al., 2012).
For example, the identification problems of the nonlin-
ear process with missing observation were considered by
Gopaluni (2008). The EM algorithm was employed to
handle the missing data and hidden state by integrating
them into the missing dataset. In the expectation step
(E-step), the particle filters based smoothers were uti-
lized to calculate the approximations of the expectation
functions. The standard optimization routines were then
performed in the maximization step (M-step) to derive the
formulas of parameter estimates. Deng and Huang (2012)
extended this work to parameter varying nonlinear system
modeling with missing data. The missing output data and
parameter varying problems in nonlinear state space model
parameter estimation were solved simultaneously by using
the EM algorithm (Deng and Huang, 2012). The particle
filter, rather than the smoother, was used to calculate
the approximations of the expectation functions in E-step.
Since particle filter or smoother is used, both proposed

algorithms are computationally intensive which makes it
difficult for on-line implementation.

The work introduced in this paper aims at developing an
algorithm for identifying the LPV input-output models
with missing output data. The generalized EM algorithm
is adopted to handle the identification problems. Since the
modeling of the LPV system is often obtained in input-
output form, the input-output LPV model is considered
here (Laurain et al., 2010). The local approach is adopt-
ed and the process data are collected by exciting the
process following a predesigned operating trajectory. The
normalized exponential functions are employed to combine
the local models to approximate the transition dynamic
periods of the process. In order to handle the missing
output data in the generalized EM algorithm, the local
models are taken to have a finite impulse response (FIR)
model structure. Since the order of the local FIR model is
typically very high, especially for slow process, in order to
well capture the dynamics of the process, this may result in
the problem of ill-conditioned matrices in the identification
process. Though the FIR model is very flexible, the FIR
model parameters are very sensitive to the noise. To avoid
these problems, the prior information that the coefficients
of the each local FIR model vary smoothly is employed
to construct the prior probability of the unknown process
parameters. Then the identification problems is formulated
in a Bayesian framework and the generalized EM algorith-
m is utilized to derive the maximum a posteriori (MAP)
estimates of the global model parameters.

The reminder of this paper is organized as follows: A
brief revisit of the generalized EM algorithm is given
in Section 2. The mathematical formulation for LPV
model identification with incomplete dataset is presented
in Section 3. In Section 4, the simulation examples are
given to verify the efficiency of the proposed algorithm.
The conclusions are given in Section 5.

2. GENERALIZED EM ALGORITHM REVISIT

The generalized EM algorithm is a well-known iterative
optimization algorithm to calculate the maximum likeli-
hood (ML) estimate and the MAP estimate in incomplete-
data problems. Denote C,,s as the observation data set
and C),;s as the missing data set. Then the complete data
C can be defined as C £ {C,ps, Cpnis}. If the prior prob-
ability p(©) for unknown parameter vector © is known,
the MAP estimate of © can be calculated in the Bayesian
framework as

Onrap = argmaxlog p(Cops, ©)
o
= argénax[logp(oobs@) + log p(O©)] (1)

However, it is typically not tractable to calculate the
MAP estimate directly in incomplete-data problem. In
this case, the generalized EM algorithm can be easily
modified to derive the MAP estimate. The procedures
for the generalized EM algorithm to calculate the MAP
estimate can be described as (McLachlan and Krishnan,
2007):

1. E-step: Given the observation data set C,,s and the
current MAP estimate ©(®) of ©, the conditional expec-
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tation of the log complete data posterior density function
J(©]0®)) can be determined by

J(©|eW) = Ec, . 1Cope.0110gp(C|O)} + log p(O)
= Q(6]6™)) +log p(©) (2)
where Q(0|0)) = E¢, . |c,,..0t {logp(C|O)}.

2. M-step: Choose ©0TY to increase J(©|0)) over its
value at © = ©(). That is

J(@(S+1)|@(5)) > J(@(s)|@(s)) (3)
holds.

The E-step and M-step iterate until certain stop criterion
is met.

3. MATHEMATICAL FORMULATION FOR LPV
MODELING WITH MISSING OUTPUT

Many industrial processes are often operated along certain
operating trajectory to meet different production objec-
tives (Deng and Huang, 2012). The operating trajectory is
composed of several typical working points of the process
with smooth transition period between different working
points (Xu et al., 2009). Obviously, one local linearized
model fails to capture the global dynamic behaviors of the
process under multiple working conditions. The general-
ized EM algorithm is employed in this section to identify
a multiple-mode LPV model for the process. To handle
the missing output in the generalized EM algorithm, each
local model is taken to have an FIR model structure which
can be described by:

Yim = d);-frem + e<t) (4)
where Y}, is the output of the mth local model at time
instant t, oI = [U;_y --- U;_, 1] is the model regressor,
0., is the parameter vector of the mth local model, and
e(t) is zero mean Gaussian noise with variance o2. Then

the prediction Y; of the process output Y; can be expressed
as:

M
m=1

where Yy, = @10, is the prediction from the mth local
model at time instant ¢ and py,, is the corresponding
weight, and M is the number of local models. Based on
the assumption of smooth transition, the normalized ex-
ponential functions are chosen as the weighting functions
for model interpolation. The exponential function has the
following form:

(e M) )
2(om)?

and then the normalized exponential function can be

expressed as:

Wtm = €XP <_

w
i = —p (7)
ZmZI Wim
where H; is the measurable scheduling variable, H,, is the
mth pre-specified working point, and o,, represents the
validity width of the mth local model. Therefore, the LPV
model identification problem is transformed into estimat-
ing unknown parameters, © = {0,,,0m,0 }m=1, 2, ... 1,
by using the generalized EM algorithm.

As mentioned in Section 1, the high order FIR model
may result in ill-conditioned matrices problem and the
parameters of the FIR model are sensitive to the noise.
The prior information of the parameters can be utilized to
handle these problems. Since the first n parameters of the
local FIR model (4) are the impulse response coefficients
of the local process and the impulse response of the local
process tends to vary smoothly, this prior information can
be employed to construct the prior probability of the local
model parameters by considering second-order derivatives
of the parameters. Here, the second-order derivative is
calculated by second-order finite difference approximation.
The (n + 1)th parameter of the local FIR model (4) is the
bias term of the local model and no prior information is
available for this term. Here, we assume that the second-
order derivative of impulse response coefficient of the mth
local process is a zero mean Gaussian white noise with
variance 03 (Thomassin et al., 2009) and bias term of
the mth local model is a zero mean Gaussian white noise
with variance o, . Define matrix D with dimension (n +
1) x (n+1) as:

2 -1 0 O 0 0 0O
-1 2 -1 0 0 0 0O
0 -1 2 -1 0 0 0O
D= z S
0 0 0 O -1 2 —-10
0 0 0 O 0 -1 20
0 0 0 O 0 0 01
Then we have 0p,, = D6,, that follows a zero mean

Gaussian distribution with covariance matrix >, as

2
_ [ %amInxn O
B = < 0 a§m>

where I, is an identity matrix with dimension n x n.
Therefore, the vector 6, follows a zero mean Gaussian
distribution with covariance matrix ¥,,(D7 D)~!.

The value of Jﬁm can be determined by performing step
test of the local process or by following the various initial
guesses strategy. Since no prior information of the bias
term is available, the parameter afm can be set to a large
value.

Hereafter, the generalized EM algorithm is applied to
solve the LPV identification problems described above.
Assume we have got the data sample {Y;, Uy, Hi}i=1,... N
Denoting Y as {Y:}i=1,.. n, U as {U}t=1,.. n and H as
{H;}t=1,... n. Since part of the output data are randomly
missing, dataset Y can be divided into missing output
Yiis = {Yitt=m,,...m., and observed output Yyps =
{Yi}i=t,,- 15 Here, we introduce a hidden variable I =
{I1}1=1,...,n in which I, denotes the model identity of Y;.
Then the observed data set and the missing data set can
be defined as Cops = {Yops, U, H} and Chnis = {Yinis, I},
respectively.

Using the Bayesian theory, the log likelihood function of
the complete data set, logp(Y,U, H,I|0©), can be decom-
posed into:
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logp(Y,U,H,I|0©)
=logp(Y|U, H,1,0) +logp(I|U, H,©) +log p(H,U|O)

N
:long(YH}/tfh 7Y17Ut7"' 7U17It7"' 7117@)
t=1

N
+ IOng(It‘Itfla e

t=1
+logp(H,U|©) (8)

According to (4) and (5), the Y; depends only on the
previous input {U;_1,--- , U1}, the model identity I}, and
the parameters ©. To simplify the expression, we define
Zy—1 = {Us_1,--- ,Ur}. The model identity of each data
point depends only on the measured scheduling variable
at the same time instant. Since H and U are measurable
process data and they are independent of the parameters
O, p(H,U|O) is a constant which can be denoted as Cj.
Therefore, the log likelihood function of the complete data
(9) can be further written as:

7113Uta"' 7U17Ht7"' 7Hla®)

N N
=log [ [p(Yi|Z1-1, 11, 0) +log | [ p(1e|He, ©)

t=1 t=1
+ log C4
N N
= logp(YilZi1,1,,0) + > log p(I;|H,, ©)
t=1 t=1
+ log Cl (9)

where C = p(H,U|©).
The log prior density log p(©) can be decomposed into:

M M
©) =Y logp(dn)+ > logp(on) +logp(a) (10)

m=1

log p(
m=1

Since no prior information of the o is available, we can
simply set p(o) as a constant (e.g. uniformly distributed).
We assume the validity width o,, is uniformly distributed
in the rage [0min, Omaz]. Therefore, the last two terms in
(11) will not play a role in the following derivation and
then the summation of these two terms can be denoted as
C5. Then the log prior density (11) can be reduced to:

Z log (O

Therefore, the conditional expectation of the log complete
data posterior density J(©|©(*)) in (2) can be written as:

logp(© )+ Co

(11)

J(©10W)) = B¢ . (0., 00 {logp(Y,U, H,1|©)} + log p(O)
N
=By, 1jco.001> logp(Yi|Zi-1,1;,0)
t=1
N
+ ) logp(Iy|Hy, ©) + log C1 }
t=1
+ Zlogp )+ Oy (12)

The expectation is taken over .J(0©]|0()) with respect to
Yniss and I, then

J(ee")
N
= EYm,i.;,IICobS,G(S){ZIng(YﬂthhIty @)
t=1
N
+Y " log p(I;|Hy, ©) + log C1 }
t=1
+ Z log p(0m) + Ca

m|Cob57 Q(Q))

DN

t=m1 m=1

[ PICuna,8) o p(Yi| Zimr, 1 = m, ©)aY,

+ Z ZP(It

= m|Cops, ) log p(Yi|Z—1, Iy = m, ©)
t=t;1 m=1
N M
+) 0> p(I = m|Cops, ©)) log p(I; = m| Hy, ©)
t=1 m=1
+ Z log p(0,,) + log Cy + Co (13)

In order to calculate J(©|0(*)), the unknown terms in (13)
should be calculated first.

(Y—t|cobsv m )logp(YHZt 1vIt m79)in

1 1 )
= —5 10g(27’(’0’2) — ﬁ /p(Y;‘,‘Cobsa 97(;))<th - ¢?9m)2d3/t
1 1 ) )
=-3 log(2mo”) — ?((U(é))Q + (¢ 05))?)
1 . 1
+ 5 (67 Om) (67 07) — 55 (61 Om)? (14)
p(It = m\cobs, @(S)) = P(It = m|Ht, 6(5))
_ (Ht*Hm)z
P ( 200%))? )
M _ (Hi—Hp)?
S exp (-Gt
= ui) (15)
Therefore, the J (@|@(S ) can be further written as:
s 1 s)\2
J(6]0¢)) 27;1 mzlut 5 108(2m0%) — 5 5 ((0)
+ (67 Om — 07 05)%)}
tp M
+ 303" pi)log p(Yil Ze-1, I = m, ©)
t=t; m=1
N M
+ Z Z ugf,z log p(Is = m|H¢, ©)
t=1 m=1
+ Z log p(0) +log C1 + C2 (16)

In order to calculate the parameter estimates, the gradi-
ents should be taken over J(©]0)) with respect to the
unknown parameters 6,, and o2.
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Taking the gradient of J(©|0()) with respect to 6,, with
fixed (0(5))2 and setting it to zeros, the parameter estimate
of 0,, can be derived as:

e ML) S ) by,
SN 1T + (609)255 DT D

To derive the estimate of noise variance o2, the gradient

of J(©]0)) is taken over o2 with fixed 6,, and then set
to zero.

52 = Tfml Z% 11“157n((¢?9 W (ZSTé )?
Zt 12% 1/'l’t772
Ztl an\f 1#15;(% ¢f,T‘9 )’
Zt 1ZM M(S)

Orm

(17)

+(a1)?)

L Comet M (ST 65 = 97 0m)? + (1))2)
a N
tg M
+ t=t1 ZTYL 1/“’];711( ¢t m,) (]_8)

In order to derive the estimates of the {0y, }m=1. 1M, &
nonlinear optimization problem is formulated as follows:

max Z Z Lim logp (I = m|H, ©)
OmoTm= 1= =
S.t. Omin < Om, M = 17 ce aM < Omaz (19)

The constrained nonlinear optimization function ‘fmincon’
provided by Matlab software can be employed to solve this
problem (Jin et al., 2011).

The parameters {om}tm=1.. M5 {Om}tm=1. m, and o>
should be updated in each iteration until the convergence

condition of the generalized EM algorithm is met.
4. SIMULATION EXAMPLES

Consider an LPV process described by the following LPV
model (Deng and Huang, 2012):

G(s,H) = (20)

where

K(H)=0.6+H? 7(H)=3+05H Hell, 4 (21)
Three working points, H; = 1, Hy = 2.25, H3 = 4, are
selected and the process is tested at these three working
points. For the transition periods between neighboring
working points, the scheduling variable H is linearly in-
creased with a fixed small interval. The sampling period is
1s and 1500 samples are recorded to construct the training
set. The measurement white noise e(t) with zero mean
and variance 0.1 is added to the output data. The input
data, output data and the scheduling variable data are
shown in Fig. 1. In the simulation, 25% output data are
randomly missing. The order of the local FIR model is
set to 45 and all the unknown parameters of the local FIR
model are initialized to 0.2 which is selected arbitrarily. For
comparison, the simulation is firstly performed to calculate
the ML estimates of local model parameters without using
prior information. Since the estimated FIR coefficients are
very noisy, they are not shown here. Then, the proposed
algorithm is used to estimate a multiple-model LPV model

for this process. 03, 02,, and o2, are set to 0.0000813,
0.0001, and 0.00006, respectively. {02, }m—=123, are set to
0.0002. The normahzed weight of each local model is shown
in Fig. 2. The estimated FIR coefficients are presented in
Fig. 3. Self-validation and cross-validation are performed
to verify the accuracy of the global LPV model and the
results are shown in Fig. 4 and Fig. 5, respectively. In
the cross-validation, the process is tested at three other
working points which are H; = 1.5, Hy = 2.7, Hs = 3.4.
It can be seen from these figures that the estimated LPV
model can capture the dynamics of the process accurately.

sf ]
> 0
5 ‘ ‘ ‘ ‘ ‘ ‘
o 200 400 600 800 1000 1200
05F ‘
-05 L ‘ ‘ ; |
0 200 400 600 800 1000 1200
4 T
3t /
I
ol
; ‘ ‘ ‘ ‘ ‘ ‘
0 200 400 600 800 1000 1200

Time

Fig. 1. The training set data.

Model 1
| Model 2 [{
| Model 3

600 800 1000 1200
Time

0 200

Fig. 2. The normalized weight of each local model.

5. CONCLUSION

This paper considered the modeling problems of an LPV
system with missing data. Since many industrial processes
are designed to conduct multiple production tasks, the
multiple-model LPV model is considered here. To handle
randomly missing data in output, the local model is as-
sumed to have an FIR model structure. To avoid the po-
tential problems of ill-conditioned matrices and sensitivity
of parameters to process noise induced by using FIR mod-
el, the prior information of the FIR coefficients is employed
to construct the prior density function of the parameters.
The generalized EM algorithm is then modified to derive
the MAP estimate of the global LPV model parameters.
The effectiveness of the proposed method is demonstrated
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—#— Estimated FIR
—o&— Real FIR i

Fig. 3. The comparison of real FIR coefficients and MAP
estimates of the FIR coefficients.

T T
True output
6r Predicted output

—4f

. . . . . .
0 200 400 600 800 1000 1200
Time

Fig. 4. The self-validation of the identified LPV model.

T
True output
Predicted output

L L
0 500 1000 1500
Time

Fig. 5. The cross-validation of the identified LPV model.

through the numerical example. If the FIR model is used
as an intermediate model, further work can be done to
identify a general model, such as the Output Error (OE)
model, based on the estimated FIR model.
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