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Abstract: This paper presents a novel adaptive sub-optimal control method for continuous-
time nonlinear polynomial systems from a perspective of adaptive dynamic programming
(ADP). This is achieved by relaxing the problem of solving an Hamilton-Jacobi-Bellman (HJB)
equation into an optimization problem, which is solved via a new policy iteration method. The
proposed methodology distinguishes from previously known nonlinear ADP methods in that
the neural network approximation is avoided and that the resultant control policy is globally
stabilizing, instead of semiglobally or locally stabilizing. Furthermore, in the absence of the a
prior knowledge of the system dynamics, an online learning method is devised to implement
the proposed policy iteration technique by generalizing the current ADP theory. Finally, the
proposed method is applied to a jet engine surge control problem.

1. INTRODUCTION

Adaptive/approximate dynamic programming (ADP) is
a non-model-based and biologically-inspired method for
computing online optimal control policies for uncertain
systems. It was developed with the aim to avoid the two
obstacles encountered in implementing classical dynamic
programming [Bellman, 1957], namely, the so-called curse
of dimensionality and the requirement on knowing the
perfect system knowledge. The foundational work of ADP
can be traced back to [Werbos, 1974]. ADP has been exten-
sively studied for Markov decision processes [Bertsekas and
Tsitsiklis, 1996, Powell, 2007], as well as dynamic systems
[Lewis and Vrabie, 2009,Wang et al., 2009]. Stability issues
regarding ADP when it is applied for dynamic systems
are addressed by Balakrishnan et al. [2008], Vrabie et al.
[2013]. A robustification of ADP, known as Robust-ADP
or RADP, is recently developed by taking into account
dynamic uncertainties [Jiang and Jiang, 2013].

To achieve online approximation of the cost function and
the control policy, neural networks are widely used in
the previous ADP architecture. Although neural networks
can be used as universal approximators [Hornik et al.,
1989, Park and Sandberg, 1991], they have at least two
major limitations for ADP-based online implementations.
First, a large number of basis functions comprising the
neural network are usually required if high approximation
accuracy is desired. Hence, it may incur a huge computa-
tional burden for the learning system. Besides, it is not
trivial to specify the type of basis functions, when the
target function to be approximated is unknown. Second,
neural network approximations generally are effective only
on some compact sets, but not in the entire state space.
Therefore, the resultant control policy may not provide
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global asymptotic stability for the closed-loop system. In
addition, the compact set, on which the uncertain func-
tions of interest are to be approximated, has to be carefully
quantified before one applies the online learning method,
such that stability can be assured during the learning
process.

The main purpose of this paper is to develop a novel ADP
methodology that not only finds online a suboptimal con-
trol policy for uncertain continuous-time nonlinear polyno-
mial systems, but at the same time guarantees the global
asymptotic stability. Our main contribution is threefold.
First, we relax the problem of solving an Hamilton-Jacobi-
Bellman (HJB) equation into an optimization problem, of
which each feasible solution provides a sub-optimal and
globally stabilizing control policy. Second, a novel policy
iteration method is proposed to find a local minimum
of the above-mentioned optimization problem. Third, we
develop a way in which the proposed policy iteration can
be implemented online, when the system dynamics is not
perfectly known. Proofs of lemmas and theorems in this
paper are omitted due to space limitation, but they can
be found in [Jiang and Jiang, 2014].

Notations: Throughout this paper, we use C1 to denote the
set of all continuously differentiable functions. P denotes
the set of all functions in C1 that are also positive definite
and proper. R+ indicates the set of all non-negative real
numbers. For any vector u ∈ R

m and any positive definite
matrix R ∈ R

m×m, we define |u|2R as uTRu. A feedback
control policy u is said to be globally stabilizing, if under
this control policy, the closed-loop system is globally
asymptotically stable (GAS) at the origin [Khalil, 2002].
For any non-negative integers d1, d2 satisfying d2 ≥ d1,
[x]d1,d2

is the vector of all (n+d2

d2
) − (n+d1

d1
) distinct monic

monomials in x ∈ R
n with degree no less than d1 and no

greater than d2, and arranged in lexicographic order [Cox,
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2007]. Also, R[x]d1,d2
denotes the set of all polynomials in

x ∈ R
n with degree no less than d1 and no greater than

d2. In addition, R[x]md1,d2
denotes the set of m-dimensional

vectors, of which each entry is a polynomial in R[x]d1,d2
.

∇V refers to the gradient of a differentiable function
V : Rn → R.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1 Problem formulation

Consider the nonlinear system

ẋ = f(x) + g(x)u (1)

where x ∈ R
n is the system state, u ∈ R

m is the control
input, f : Rn → R

n and g : Rn → R
n×m are polynomial

mappings with f(0) = 0.

In conventional optimal control theory [Lewis et al., 2012],
the common objective is to find a control policy u that
minimizes certain performance index. In this paper, the
performance index to be minimized is given by

J(x0, u) =

∫ ∞

0

r(x(t), u(t))dt, x(0) = x0 (2)

where r(x, u) = Q(x)+uTRu, with Q(x) a positive definite
function, and R is a symmetric positive definite matrix.

Assumption 2.1. Consider system (1). There exist V0 ∈
P and u1 : Rn → R

m, such that

L(V0(x), u1(x)) ≥ 0, ∀x ∈ R
n (3)

where, for any V ∈ C1 and u ∈ R
m,

L(V, u) = −∇V T (x)(f(x) + g(x)u)− r(x, u). (4)

Under Assumption 2.1, the closed-loop system composed
of (1) and u = u1(x) is GAS at the origin, with a well-
defined Lyapunov function V0. Further, u1 is also known
as an admissible control policy [Beard et al., 1997], since
it is easy to show J(x0, u1) ≤ V0(x0), ∀x0 ∈ R

n.

2.2 Optimality and stability

Here, we recall a basic result connecting optimality and
global asymptotic stability in nonlinear systems [Sepulchre
et al., 1997]. First, let us give the following assumption.

Assumption 2.2. There exists V o ∈ P , such that the
Hamilton-Jacobi-Bellman (HJB) equation holds

H(V o) = 0 (5)

where

H(V ) =∇V T (x)f(x) +Q(x)

−
1

4
∇V T (x)g(x)R−1gT (x)∇V (x).

Under Assumption 2.2, it is easy to see that V o is a
well-defined Lyapunov function for the closed-loop system
comprised of (1) and the following control law

uo(x) = −
1

2
R−1gT (x)∇V o(x). (6)

Hence, this closed-loop system is GAS at x = 0 [Khalil,
2002]. Then, according to [Sepulchre et al., 1997, Theorem
3.19], uo is the optimal control policy, and the value
function V o(x0) gives the optimal cost at the initial
condition x(0) = x0, i.e.,

V o(x0) = min
u

J(x0, u) = J(x0, u
o), ∀x0 ∈ R

n. (7)

2.3 Conventional policy iteration

The nonlinear HJB equation (5) is almost impossible to
be solved analytically in general. As a result, numerical
methods are developed to approximate the solution. In
particular, the following policy iteration method is widely
used [Saridis and Lee, 1979].

1) Initialization Find u1 that satisfies Assumption 2.1.
2) Policy evaluation: For i = 1, 2, · · · , solve for the

cost function Vi(x) ∈ C
1, with Vi(0) = 0, from the

following partial differential equation.

L(Vi(x), ui(x)) = 0. (8)

3) Policy improvement: Update the control policy by

ui+1(x) = −
1

2
R−1gT (x)∇Vi(x). (9)

The following result is a direct extension of [Saridis and
Lee, 1979, Theorem 4], in which g(x) is a constant matrix
and only stabilization over compact set is considered.

Theorem 2.1. Suppose Assumptions 2.1 and 2.2 hold,
and the solution Vi(x) ∈ C

1 satisfying (8) exists, for
i = 1, 2, · · · . Let Vi(x) and ui+1(x) be the functions
generated from (8) and (9). Then, the following properties
hold, ∀i = 0, 1, · · · .

1) V o(x) ≤ Vi+1(x) ≤ Vi(x), ∀x ∈ R
n;

2) ui+1 is globally stabilizing;
3) J(x0, ui) is finite, ∀x0 ∈ R

n;
4) {Vi(x)}

∞
i=1 and {ui(x)}

∞
i=1 converge pointwise to

V o(x) and uo(x), respectively.

3. SUBOPTIMAL CONTROL WITH RELAXED HJB
EQUATION

In this section, we consider an auxiliary optimization prob-
lem, which allows us to obtain a suboptimal solution to the
minimization problem (2) subject to (1). For simplicity, we
will omit the arguments of functions whenever there is no
confusion in the context.

Problem 3.1. (Relaxed optimal control problem).

min
V

∫

Rn

w(x)V (x)dx (10)

s.t. H(V ) ≤ 0 (11)

V ∈ P (12)

where w(x), also recognized as the state-relevance weight-
ing function [de Farias and Van Roy, 2003], is a positive
semidefinite function taking positive values only on some
predefined compact set Ω ⊂ R

n.
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Theorem 3.1. Under Assumptions 2.1 and 2.2, the fol-
lowing properties hold.

1) Problem 3.1 has a nonempty feasible set.
2) Let V be a feasible solution to Problem 3.1. Then,

ū = − 1
2R

−1gT∇V is globally stabilizing.
3) For any x0 ∈ R

n, an upper bound of the cost of the
closed-loop system comprised of (1) and ū is given by
V (x0), i.e., J(x0, ū) ≤ V (x0).

4) Along the trajectories of the closed-loop system (1)
and ū, the following inequalities hold for any x0 ∈ R

n:

V (x0)+

∫ ∞

0

H(V (x(t)))dt ≤ V o(x0) ≤ V (x0). (13)

5) V o as defined in (7) is a global optimal solution to
Problem 3.1.

Remark 3.1. A feasible solution V to Problem 3.1 may
not necessarily be the true cost function associated with
the control policy ū. However, by Theorem 3.1, we see V
can be viewed as an upper bound or an overestimate of
the actual cost, inspired by the concept of underestimator
[Wang and Boyd, 2010]. Further, V serves as a Lyapunov
function for the closed-loop system and can be more easily
parameterized than the actual cost function. For simplic-
ity, V is still called the cost function, in the remainder of
the paper.

4. SOS-BASED POLICY ITERATION FOR
POLYNOMIAL SYSTEMS

The inequality constraint (11) contained in Problem 3.1
provides us the freedom of specifying desired analytical
forms of the cost function. However, solving (11) is non-
trivial in general. Fortunately, due to the developments in
sum of squares (SOS) programming [Blekherman et al.,
2013, Parrilo, 2000], the computational burden can be
significantly reduced, if inequality constraints can be re-
stricted to SOS constraints. The purpose of this section is
to develop a novel policy iteration method for polynomial
systems using SOS-based methods [Blekherman et al.,
2013, Parrilo, 2000].

4.1 Polynomial parametrization

Assumption 4.1. There exist integers d > 0, d1 ≥ 0, and
r > 0, such that

(1) all entries of f(x) belong to R[x]1,d and all entries of
g(x) belong to R[x]0,d1

;
(2) in addition to being positive definite, the weighting

function Q(x) satisfies Q(x) ∈ R[x]2,2d;
(3) there exist V0 : Rn → R and u1 : Rn → R

m, such
that V0 ∈ R[x]2,2r ∩ P , u1 ∈ R[x]m1,d, and L(V0, u1) is
SOS; and

(4) the inequality holds:

d ≥ (2r − 1) + d1. (14)

Remark 4.1. It is easy to see that, Assumption 4.1 holds
only if Assumption 2.1 holds. In addition, under Assump-
tion 4.1, we know that L(V0, u1) ∈ R[x]2,2d. Indeed, by
(14), it follows that

L(V0, u1) ∈ R[x]2,max{(2r−1)+d+(d1+d),2d} = R[x]2,2d.

Remark 4.2. Notice that the inequality (14) can be
assumed without loss of generality. Indeed, if it does not
hold, we can always find d̃ > max{d, (2r − 1) + d1}. As a

result, Assumption 4.1 holds with d replaced by d̃.

For notational simplicity, we denote the dimensions of
[x]1,r, [x]1,d, [x]2,2r, and [x]2,2d by nr, nd, n2r, and n2d,
respectively. By Blekherman et al. [2013], we know nr =

(n+r
r ) − 1, nd = (n+d

d ) − 1, n2r = (n+2r
2r ) − n − 1, and

n2d = (n+2d
2d )− d− 1.

4.2 SOS-programming-based policy iteration

Now, we are ready to propose a relaxed policy iteration
scheme. Similar as in other policy-iteration-based iterative
schemes, an initial globally stabilizing (and admissible)
control policy has been assumed in Assumption 4.1.

1) Policy evaluation: For i = 1, 2, · · · , solve for an opti-
mal solution pi ∈ R

n2r to the following optimization
program, and denote Vi = pTi [x]2,2r .

min
p∈Rn2r

∫

Rn

w(x)V (x)dx (15)

s.t. V := pT [x]2,2r (16)

L(V, ui) ∈ Σ2,2d (17)

Vi−1 − V ∈ Σ2,2r (18)

where Σ2,2d and Σ2,2r denote the sets of all SOS
polynomials in R[x]2,2d and R[x]2,2r, respectively.

2) Policy improvement: Update the control policy by

ui+1 = −
1

2
R−1gT∇Vi. (19)

Then, go to Step 1) with i← i+ 1.

Remark 4.3. The optimization problem (15)-(18) is a
well defined SOS program [Blekherman et al., 2013]. In-
deed, the objective function (15) is linear in p, since for
any V = pT [x]2,2r, we have

∫

Rn w(x)V (x)dx = cT p, with

c =
∫

Rn w(x)[x]2,2rdx. In addition, notice that since the
objective function is nonnegative, its optimal value must
be finite.

Theorem 4.1. Under Assumptions 2.2 and 4.1, the fol-
lowing are true, for i = 1, 2, · · · .

1) The SOS program (15)-(18) has a feasible solution.
2) The closed-loop system comprised of (1) and u = ui

is GAS at the origin.
3) Vi ∈ P . In particular, the following inequalities hold:

V o(x0) ≤ Vi(x0) ≤ Vi−1(x0), ∀x0 ∈ R
n. (20)

4) There exists V ∗(x) satisfying V ∗(x) ∈ R[x]2,2r ∩ P ,
such that, for any x0 ∈ R

n, lim
i→∞

Vi(x0) = V ∗(x0).

5) Along the solutions of the system (1) with

u∗ = −
1

2
R−1gT∇V ∗, (21)

the following inequalities hold:

0 ≤ V ∗(x0)− V o(x0) ≤ −

∫ ∞

0

H(V ∗(x(t)))dt. (22)
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4.3 An equivalent SDP implementation

In [Blekherman et al., 2013], it has been shown that
any SOS program can be reformulated as a semidefinite
program (SDP) [Vandenberghe and Boyd, 1996]. Indeed,
we can always find two linear mappings ι : Rn2r×Rm×nr →
R

n2d and κ : Rn2r → R
m×nr , such that given p ∈ R

n2r and
K ∈ R

m×nr ,

ι(p,K)T [x]2,2d =L(p
T [x]2,2r ,K[x]1,2r−1) (23)

κ(p)T [x]1,2r−1 =−
1

2
R−1gT∇(pT [x]2,2r) (24)

Then, by properties of SOS constraints [Blekherman et al.,
2013], the polynomial ι(p,K)T [x]2,2d is SOS if and only if
there exists a symmetric and positive semidefinite matrix
L ∈ R

nd×nd , such that

ι(p,K)T [x]2,2d = [x]T1,dL[x]1,d. (25)

Furthermore, there exist linear mappings MP : Rnr×nr →
R

n2r and ML : Rnd×nd → R
n2d , such that, for any vectors

p ∈ R
n2r , l ∈ R

n2d , and symmetric matrices P ∈ R
nr×nr

and L ∈ R
nd×nd , the following implications are true.

pT [x]2,2r = [x]T1,rP [x]1,r ⇐⇒ p = MP (P ) (26)

lT [x]2,2d = [x]T1,dL[x]1,d ⇐⇒ l = ML(L) (27)

Under Assumptions 2.2 and 4.1, the proposed policy
iteration can be reformulated as follows.

1) Let i = 1. Let p0 ∈ R
n2r and K1 ∈ R

m×nd satisfy
V0 = pT0 [x]2,2r and u1 = K1[x]1,d.

2) Solve for an optimal solution (pi, Pi, Li) ∈ R
n2r ×

R
nr×nr × R

nd×nd to the following problem.

min
p,P,L

cT p (28)

s.t. ι(p,Ki) =ML(L) (29)

pi−1 − p=MP (P ) (30)

P = PT ≥ 0 (31)

L=LT ≥ 0 (32)

where c =
∫

Rn w(x)[x]2,2rdx.
3) Go to Step 2) with Ki+1 = κ(pi) and i← i + 1.

Remark 4.4. The optimization problem (28)-(32) is a
well-defined SDP problem, since it has a linear objec-
tive function subject to linear equality and inequality
constraints. It can be directly solved using, for example,
Matlab-based solver CVX [Grant and Boyd, 2013].

Corollary 4.1. Under Assumptions 2.2 and 4.1, the fol-
lowing are true.

(1) The optimization problem (28)-(32) has at least one
feasible solution, for i = 1, 2, · · · .

(2) Denote Vi = pTi [x]2,2r, ui+1 = Ki[x]1,d, for i =
0, 1, · · · . Then, the sequences {Vi}

∞
i=0 and {ui}

∞
i=1

satisfy the properties 2)-5) in Theorem 4.1.

5. GLOBAL ADAPTIVE DYNAMIC PROGRAMMING
FOR UNCERTAIN POLYNOMIAL SYSTEMS

The proposed policy iteration method requires the perfect
knowledge of the mappings ι and κ, which can be deter-

mined if f and g are known exactly. In practice, precise
system knowledge may be difficult to obtain. Hence, in
this section, we develop an online learning method based
on the idea of ADP to implement the iterative scheme with
real-time data, instead of identifying the system dynamics.

To begin with, consider the system

ẋ = f + g(ui + e) (33)

where ui is a feedback control policy and e is a bounded
time-varying function, known as the exploration noise,
added for the learning purpose.

Lemma 5.1. Consider system (33). Suppose ui is a glob-
ally stabilizing control policy and there exists Vi−1 ∈ P ,
such that ∇V T

i−1(f + gui) + uT
i Rui ≤ 0. Then, the system

(33) is forward complete.

By Lemma 5.1 and Theorem 4.1, we immediately have the
following Proposition.

Proposition 5.1. Under Assumptions 2.2 and 4.1, let ui

be a feedback control policy obtained at the i-th iteration
step in the proposed policy iteration algorithm (15)-(19)
and e be a bounded time-varying function. Then, the
closed-loop system (1) with u = ui+e is forward complete.

Suppose there exist p ∈ R
n2r and Ki ∈ R

m×nk such that
V = pT [x]2,2r and ui = Ki[x]1,d. Then, along the solutions
of the system (33), it follows that

V̇ =∇V T (f + gui) +∇V
T ge

=−r(x, ui)− L(V, ui) + 2(
1

2
R−1gT∇V )TRe

=−r(x, ui)− ι(p,Ki)
T [x]2,2d − 2[x]T1,dκ(p)

TRe (34)

where the last row is obtained by (23) and (24).

Now, integrating the terms in (34) over the interval [t, t+
δt], we have

pT ([x(t)]2,2r − [x(t + δt)]2,2r)

=

∫ t+δt

t

[

r(x, ui) + ι(p,Ki)
T [x]2,2d

+2[x]T1,dκ(p)
TRe

]

dt (35)

Eq. (35) implies that, given p ∈ R
n2r , ι(p,Ki) and κ(p)

can be directly calculated by using real-time online data,
without knowing the precise knowledge of f and g.

Indeed, define

σe =−
[

[x]T2,2d 2[x]T1,d ⊗ eTR
]T
∈ R

n2d+mnd ,

Φi =

[

∫ t1,i

t0,i

σedt

∫ t2,i

t1,i

σedt · · ·

∫ tqi,i

tqi−1,i

σedt

]T

∈ R
qi×(n2d+mnd),

Ξi =

[

∫ t1,i

t0,i

r(x, ui)dt

∫ t2,i

t1,i

r(x, ui)dt · · ·

∫ tqi,i

tqi−1,i

r(x, ui)dt

]T

∈Rqi,

Θi =
[

[x]2,2r|
t1,i
t0,i

[x]2,2r|
t2,i
t1,i
· · · [x]2,2r|

tqi,i
tqi−1,i

]T

∈ R
qi×n2r .

Then, (35) implies
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Φi

[

ι(p,Ki)
vec(κ(p))

]

= Ξi +Θip. (36)

Assumption 5.1. For each i = 1, 2, · · · , there exists an
integer qi0, such that when qi ≥ qi0 the following rank
condition holds.

rank(Φi) = n2d +mnd. (37)

Remark 5.1. The rank condition (37) is in the spirit of
persistency of excitation (PE) in adaptive control [e.g.
Ioannou and Sun, 1996, Tao, 2003] and is a necessary
condition for parameter convergence.

Given p ∈ R
n2r and Ki ∈ R

m×nd , suppose Assumption 5.1
is satisfied and qi ≥ qi0 for all i = 1, 2, · · · . Then, it is easy
to see that the values of ι(p,Ki) and κ(p) can be uniquely
determined from

[

ι(p,Ki)
vec(κ(p))

]

=
(

ΦT
i Φi

)−1
ΦT

i (Ξi +Θip) (38)

Now, we are ready to develop the ADP-based online im-
plementation algorithm for the proposed policy iteration
method.

1) Initialization:
Let p0 be the constant vector such that V0 =
pT0 [x]2,2r , and let i = 1.

2) Collect online data:
Apply u = ui+e to the system and compute the data
matrices Φi, Ξi, and Θi, until the rank condition (37)
in Assumption 5.1 is satisfied.

3) Policy evaluation and improvement:
Find an optimal solution (pi,Ki+1, Pi, Li) to the
following optimization problem

min
p,K,P,L

cT p (39)

s.t.

[

ML(L)
vec(K)

]

=
(

ΦT
i Φi

)−1
ΦT

i (Ξi +Θip) (40)

pi−1 − p=MP (P ) (41)

P = PT ≥ 0 (42)

L= LT ≥ 0 (43)

Then, denote Vi = pTi [x]2,2r, ui+1 = Ki+1[x]1,d,
and go to Step 2) with i← i + 1.

Lemma 5.2. Under Assumption 5.1, (pi,Ki+1, Pi, Li) is
an optimal solution to the optimization problem (39)-(43)
if and only if (pi, Pi, Li) is an optimal solution to the
optimization problem (28)-(32) and Ki+1 = κ(pi).

Theorem 5.1. Under Assumptions 2.1, 4.1 and 5.1, the
following properties hold.

(1) The optimization problem (39)-(43) has a nonempty
feasible set.

(2) The sequences {Vi}
∞
i=1 and {ui}

∞
i=1 satisfy the prop-

erties 2)-5) in Theorem 4.1.

Remark 5.2. Notice that both V0 and u1 satisfying As-
sumption 4.1 have to be determined without knowing
exactly f and g. In practice, we can find polynomial map-
pings f̄ , f , ḡ, g, such that f ≤ f ≤ f̄ and g ≤ g ≤ ḡ. Thus,
it is possible to find u1 by using robust nonlinear control
methods [Krstic et al., 1995, Taware and Tao, 2003]. Then,

we solve V0 from the following robust feasibility problem
in SOS programming

−∇V T
0 (f̃ + g̃u1)−Q− uT

1 Ru1 ∈Σ2,2d, (44)

for all f̃ and g̃ such that f ≤ f̃ ≤ f̄ and g ≤ g̃ ≤ ḡ. This
problem, if solvable, can be converted into a robust linear
matrix inequality and efficiently solved using MATLAB-
based solvers, such as the LMI control toolbox [Gahinet
et al., 1994] or CVX [Grant and Boyd, 2013].

6. APPLICATION

Consider the following model of jet engine surge dynamics
[Greitzer, 1976, Krstic et al., 1998].

ẋ1 =−x2 −
3

2
x2
1 −

1

2
x3
1 (45)

ẋ2 =
1

β2
u (46)

where x1 and x2 represent the scaled annulus-averaged
flow and plenum pressure rise in error coordinates, respec-
tively. u is the control input, and the constant β is assumed
to be unknown belonging to [0.7, 0.9]. The cost is specified
as J(x0, u) =

∫∞

0
(0.1x2

1 + x2
2 + 0.1u2)dt.

Using the technique in Krstic et al. [1998], we are able to
find an initial stabilizing control policy u1 = 50x1 − 2x2,
and a related cost function V0 satisfying Assumption 4.1
is obtained by solving the feasibility problem (44), with
r = 2, d = 3, and d1 = 0. For simulation, select x1(0) = 3
and x2(0) = −4.

The proposed online learning scheme is applied to improve
the control policy every one second for four times. In
this simulation, we set β = 0.8, which is assumed to be
unknown to the learning system. The exploration noise is
the sum of 25 sinusoidal waves with different frequencies,
and it is turned off after four iterations. Simulation results
are shown in Figures 1 and 2. It can be seen that the post-
learning cost function is remarkably improved compared
with the one obtained in the first policy evaluation step.

7. CONCLUSIONS

In this paper, a global ADP method for continuous-time
nonlinear polynomial systems has been proposed for the
first time. This method solves online an optimization prob-
lem which is a relaxation of the problem of solving HJBs.
A novel policy iteration technique has been developed. Dif-
ferent from policy iteration methods in the past literature,
this new iterative technique does not attempt to solve a
partial differential equation at each iteration step. Instead,
it solves a semi-definite programming problem. Compared
with neural-network-based ADP schemes, the proposed
method departs from the approximation technique using
a large number of basis functions and hopefully yields sig-
nificant computational benefit. In addition, the resultant
control policy is globally stabilizing, while the previously
known neural-networks-based ADP methods only yield
semi-globally or locally stabilizing controllers.

It will be interesting to extend the proposed methodology
for more general (deterministic or stochastic) nonlinear
systems. Some preliminary work has been accomplished
by Jiang and Jiang [2014].
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