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Abstract: A control problem for a partially observed linear stochastic system with an
exponential quadratic cost functional is formulated and explicitly solved. It is assumed given
that the estimation of the state is described by the solution of the information filter which is
known. This solution is a sufficient statistic for the unknown state based on the observations.
In this paper an optimal control is determined explicitly in a simple, direct manner from this
sufficient statistic. This approach does not use either the solution of a Hamilton-Jacobi-Bellman
equation or a stochastic maximum principle with backward stochastic differential equations.
This control problem is often called a linear partially observed risk sensitive control problem.
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1. INTRODUCTION

The control of a completely observed linear system with a
Brownian motion and an exponential quadratic cost func-
tional was initially solved by Jacobson (Jacobson [1973])
by exhibiting a smooth solution to the associated Hamilton-
Jacobi-Bellman equation. A particularly interesting feature
of the solution is that the solution of a Riccati equation
determines the optimal feedback control. This Riccati
equation only differs from the well known Riccati equation
for the linear quadratic Gaussian control problem by an
additional term. The corresponding partially observed
problem with an exponential quadratic cost was completely
solved by Bensoussan and van Schuppen (Bensoussan et
al [1985]) after some solutions of special cases by some
others (e.g. Kumar et al [1981], Speyer et al [1974]).
However the prior solutions of this partially observed
problem are complicated and the complications obscure
the important features of the solution. In this paper the
estimation equation result for this problem that is often
called an information filter that minimizes the exponential
of a quadratic functional is assumed given and it is shown
how to use the method in Duncan [2013] to obtain an
optimal control in a simple, direct way. This approach
can suggest a duality property between estimation and
control that is analogous to the well known duality between
estimation and control for linear systems with a quadratic
cost.

An economic interpretation of the exponential quadratic
cost functional with a parameter µ motivated the study
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of this control problem. As µ tends to zero the solution
of the linear-quadratic control problem is recovered. This
linear exponential quadratic control problem is also directly
related to a two-person zero sum stochastic differential
game with a quadratic payoff. Furthermore this control
problem is related to an H∞ deterministic control problem
(e.g. Glover et al [1988]). Thus the linear exponential
quadratic Gaussian control problems with either complete
or partial observations are important to understand for
their own interpretation and for their relation to other
control problems.

For the control problem the cost functional has a parameter
denoted µ that can be considered as an investor’s propensity
for risk. If µ > 0 then an investor is said to be risk averse
and if µ < 0 then an investor is said to be risk seeking.
Thus control problems of this type are often called risk
sensitive control.

2. PRELIMINARIES

Initially the system and the observation equations are
described. The equation for the system process X is given
by

dX(t) = (AX(t) + CU(t))dt+ FdB(t) (1)

X(0) =X0

where X0 is a constant vector in Rn, X(t) ∈ Rn, U(t) ∈
Rm, A ∈ L(Rn,Rn), C ∈ L(Rm,Rn), F ∈ L(Rn,Rn) and
(B(t), t ≥ 0) is an Rn-valued standard Brownian motion.
The process B is defined on the complete probability space
(Ω,F ,P).
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The observation process (Y (t), t ∈ [0, T ]) satisfies the
following stochastic equation

dY (t) =HX(t)dt+GdV (t) (2)

Y (0) = 0

where Y (t) ∈ L(Rp), H ∈ L(Rn,Rp), G ∈ L(Rp,Rp)
is invertible and (V (t), t ≥ 0) is an Rp-valued standard
Brownian motion that is also defined on (Ω,F ,P). It is
assumed that the processes B and V are independent. Let
(G(t), t ∈ [0, T ]) be the natural filtration for the process
(Y (t), t ∈ [0, T ]) on (Ω,F ,P). The family of admissible
controls, U , is defined as

U = {U : U is anRm-valued (G(t), t ∈ [0, T ]) progressively
measurable process such that U ∈ L2([0, T ]) a.s.}
The cost, J(·), is an exponential quadratic functional of
the state and the control that is given as follows

J(U) = µE exp[
µ

2

∫ T

0

(< QX(s), X(s) > (3)

+ < RU(s), U(s) >)ds+
µ

2
< MX(T ), X(T ) >]

where the dependence of J on µ and X0 is suppressed for
notational convenience, Q ∈ L(Rn,Rn), R ∈ L(Rm,Rm)
and M ∈ L(Rn,Rn) are symmetric linear transformations,
such that Q > 0, R > 0, M ≥ 0 and µ is fixed. For
the verification of an optimal control in this paper it is
assumed that M = 0. Some remarks are made later about
this restriction and how to eliminate it.

The following two assumptions are used subsequently.

(A1) The parameter µ in (3) is chosen so that
(HTH − µQ+ FFT ) > 0

(A2) The parameter µ in (3) is chosen so that
inft∈[0,T ](CR

−1CT − µP (t)HT (GGT )−1HP (t)) > 0

The appropriate estimation equation, often called the
information filter (e.g. Elliott et al [1994]), is given by

dZ(t) = (A− P (t)HTH + µP (t)Q)Z(t)dt (4)

+CU(t)dt+ P (t)HT dY (t)

Z(0) =X(0)

and (P (t), t ∈ [0, T ]) is the unique, positive symmetric
solution of the following Riccati equation

dP

dt
=AP + PAT (5)

−P (HTH − µQ+ FFT )P

P (0) = 0

The process (
∫ t

0
PHT (dY − HZds),G(t), t ∈ [0, T ]) is a

Brownian motion with incremental covariance GGT which
is verified by the Riccati equation (5) and the absolute
continuity result in Duncan [1968]. It follows from the
results for the information filter (e.g. Elliott et al [1994],
Moore et al [1997]) that for progressively measurable
observation actions on the exponential quadratic cost, that
it suffices to consider the process (Z(t), t ∈ [0, T ]) because
this process is the minimizing solution of the best estimate
for the exponential of the quadratic form in X formed using

Q. Thus the control for (1) is a function of the process Z.
This estimate Z is given as follows

Z(·) = arg minh∈HE[µexp(
µ

2

∫ t

0

< Q(X(s)− h(s)),

X(s)− h(s) > ds|G(t)] (6)

whereH is the family of square integrable G(·) progressively
measurable processes on [0, T ] An optimal control is
explicitly determined in the next section.

3. OPTIMAL CONTROLS

In this section an optimal control is obtained for the
exponential quadratic cost using the family of admissible
controls, U . While this optimal control is known (Bensous-
san et al [1985]) the proof given here is elementary and
direct and provides an explanation for the additional term
in the Riccati equation for the optimal feedback control as
compared to the well known Riccati equation for the linear
quadratic Gaussian control problem. The optimal control
is given in the following theorem.

Theorem 1. For the control problem given by the state
equation (1), the observation equation (2), and the cost
functional (3) there is an optimal control, U∗, from the
family of admissible controls, U , that is given by

U∗(t) = −R−1CTS(t)Z(t) (7)

where (S(t), t ∈ [0, T ]) is the unique positive, symmetric
solution of the following Riccati equation

−dS
dt

= S(A+ µPQ) + (AT + µQP )S +Q (8)

−(S(CR−1CT − µPHT (GGT )−1HP )S

S(T ) = 0

Proof. The proof uses a refinement of a technique from
the solution of the completely observable linear exponential
quadratic Gaussian control problem (Duncan [2013]).
Apply the Ito formula to the process, ( 1

2 < S(t)Z(t), Z(t) >
, t ∈ [0, T ]) to obtain
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1

2
< S(T )Z(T ), Z(T ) > −1

2
< S(0)X(0), X(0) > (9)

=
1

2

∫ T

0

(2(< S(t)(A+ µP (t)Q)Z(t), Z(t) >

+< S(t)CU(t), Z(t) >)dt

+< S(t)P (t)HT (dY (t)−HZ(t)dt), Z(t) >)

+ 2tr(S(t)P (t)HT (GGT )−1HP (t))dt− < (S(t)((A+

+ µP (t)Q) + (AT + µQP (t))S(t) +Q)Z(t), Z(t) > dt

+< S(t)(CR−1CT − µP (t)HT (GGT )−1

×HP (t))S(t)Z(t), Z(t) > dt)

=
1

2

∫ T

0

(< (S(t)CR−1CTS(t)−Q)Z(t), Z(t) >

+ 2 < CTS(t)Z(t), U(t) >)dt+

∫ T

0

< S(t)P (t)HT (dY (t)

−HZ(t)dt), Z(t) > −µ < S(t)P (t)HT (GGT )−1

×HP (t)S(t)Z(t), Z(t) > dt+ tr(S(t)P (t)HT (GGT )−1

×HP (t))dt

Let L(U) be the quadratic functional that appears in the
exponential of the cost functional (3) replacing X by Z as

L(U) =
µ

2

∫ T

0

(< QZ(t), Z(t) > + < RU,U >)dt (10)

Using (9) the quadratic functional in the exponential of
the cost functional can be expressed as

L(U)− µ

2
< S(0)X(0), X(0) > (11)

=
µ

2
[

∫ T

0

((< RU,U > + < S(CR−1CT )Z,Z >

+< S(t)CU(t), Z(t) >)dt

+ 2 < SPHT (dY −HZdt), Z >

− µ < SPHT (GGT )−1HPSZ,Z >

+

∫ T

0

tr(SPHT (GGT )−1HP ))dt]

=
µ

2

∫ T

0

|R− 1
2 (RU + CTSZ)|2dt

+ µ

∫ T

0

< SPHT (dY (t)−HZdt), Z >

− µ2

2

∫ T

0

< SPHT (GGT )−1HPSZ,Z > dt

+
µ

2

∫ T

0

tr(SPHT (GGT )−1HP )dt

Thus

Eexp[L(U∗)] (12)

=Eexp[
µ

2
< S(0), X(0), X(0) >

+
µ

2

∫ T

0

|R− 1
2 (RU + CTSZ)|2dt

+µ

∫ T

0

< 2 < PHT (dY −HZdt), Z >

− µ2

2

∫ T

0

< SPHT (GGT )−1SZ,Z > dt

+
µ

2

∫ T

0

tr(SPHT (GGT )−1HP )dt]

The minimizer of this expression, (12), using the admissible
controls from U is U∗ given by (7) because this expression
for U∗ can be expressed as

Eexp[L(U)] = Ẽexp[< S(0)X(0), X(0) > (13)

+
µ

2

∫ T

0

tr(SPHT (GGT )−1HPS)dt]

where Ẽ is the expectation for P̃ given by

dP̃= exp[µ

∫ T

0

< PHT (dY −HZdt), Z > (14)

−µ
2

2

∫ T

0

< SPHT (GGT )−1SZ,Z > dt]dP

Recall from the observation equation (2) and the likelihood

function result Duncan [1968] that (
∫ t

0
(dY −HZdt), t ≥ 0)

is a Brownian motion with the incremental covariance GGT .
The fact that the exponential in (14) is a Radon-Nikodym
derivative, that is, it integrates to one, follows from the
strong dichotomy for the absolute continuity of Gaussian
measures. The optimality claim is verified as follows by
considering a control Ũ given by

Ũ(t) = U∗(t) + U1(t) (15)

where U1(t) = α1[t0,t1] and α is G(t0) measurable and

bounded. For the control Ũ the exponential corresponding
to the exponential in (14) is also a Radon-Nikodym
derivative so it follows immediately from (12) that

E[L(U∗)] ≤ Eexp[L(Ũ)] (16)

Thus the functional in (12) is minimized by choosing the
(optimal) control

U∗(t) = −R−1CTS(t)Z(t) (17)

This completes the proof.

If M 6= 0 then an additional absolute continuity result has
to be applied to a Gaussian random vector at time T . It
can be shown that the optimal cost for the problem (1), (2)
and (3) is obtained from (13) and the error of estimation
that is given by

µexp[
µ

2

∫ T

0

tr(P (t)Q)dt] (18)

Specifically the optimal cost J(U∗) is
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J(U∗) = µexp[
µ

2
(< S(0)X(0), X(0) > (19)

+

∫ T

0

tr((PQ+ SPHT (GGT )−1HP )dt)]

A number of authors have verified the equation (9) for the
information filter, so combining this filtering result with the
above optimal control result provides a complete solution
to the partially observed linear quadratic Gaussian control
problem.

4. CONCLUDING REMARKS

The verification method for the optimal control in this pa-
per demonstrates that the additional quadratic term in the
Riccati equation (8) as compared to the Riccati equation
for the linear quadratic Gaussian control problem arises as
the integrand of the increasing process associated with the
stochastic integral term in the exponential of the Radon-
Nikodym derivative (14) that is used to verify optimality
of the control U∗ given by (7). This approach provides a
possibility of extension to other Gaussian processes, such
as the family of fractional Brownian motions. The methods
given in Duncan [2006] for prediction should be very
applicable to the problems with an arbitrary fractional
Brownian motion.
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