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Abstract: This paper combines previously developed non-lifted norm optimal iterative learning control 

(NNOILC)with a cross coupled formulation resulting in a cross-coupled non-lifted norm optimal iterative 

learning control (cross-coupled NNOILC).  The objective is to improve the contour tracking performance 

in precision motion control of multi-axis systems while retaining the computational efficiency properties 

of the NNOILC.  The NNOILC is able to provide many of the same design advantages of norm optimal 

ILC (NOILC) without the restrictions on trial size.  Convergence and robustness properties are provided 

and shown to be similar to previous efforts in NNOILC.  To demonstrate the proposed approach, 

experiments on a multi-axis robotic testbed are given. 



1. INTRODUCTION 

In all modern manufacturing systems, precision motion 

control is required to achieve high performance.  In most 

multi-axis systems, individual controllers are designed for 

each motion axis.  This may achieve highly accurate 

individual axis tracking but, if the axis bandwidths are 

mismatched, it may result in unsatisfactory path following or 

contour tracking.  To improve the control performance of 

contour tracking, a cross-coupled control (CCC) (Koren, 

1980) formulation was developed (Tang & Landers, in press). 

For many manufacturing systems, the same task is 

executed multiple times.  Their repetitive feature allows the 

controller to learn from previous iteration to achieve better 

performance.  Therefore, iterative learning control (ILC) 

(Arimoto, Kawamura & Miyazak, 1984) is a promising 

control method for these systems.  To improve the 

performance of contour tracking, ILC was previously 

combined with CCC and applied to multi-axis systems 

resulting in an approach termed cross-coupled ILC (CCILC) 

(Barton & Alleyne, 2008; Barton et al., 2009).  Subsequently, 

to get better transient behavior in the iteration domain, 

optimization-based CCILC approaches were further studied; 

in particular, a cross-coupled NOILC (Barton et al., 2008; 

Barton et al., 2011).  These cross-coupled NOILC approaches 

(Barton et al., 2008; Barton et al., 2011) were formed on the 

basis of lifted system techniques (Phan & Longman, 1988; 

Moore, 1993).  Similar to other lifted optimal ILC approaches 

(Amann, Owens & Rogers, 1996; Barton & Alleyne, 2011; 

Lee, Lee & Kim, 2000), supervectors and large lifted 

matrices are needed in the synthesis and implementation.  

These large lifted matrices in cross-coupled NOILC make it 

computationally costly, or even infeasible, in terms of 

compute time, and thus inhibit their applications (Rice & 

Verhaegen, 2010).  To remove the computational complexity 

issues of standard lifted optimal ILC approaches, a non-lifted 

NOILC (NNOILC) approach (Sun & Alleyne, in press) was 

developed. 

The work in this paper builds on the previous work (Sun 

& Alleyne, in press) to extend the NNOILC to deal 

specifically with the cross-coupled control problems of the 

multi-axis systems.  By considering contour errors in the 

process of controller design, the proposed cross-coupled 

NNOILC approach is designed to minimize the combination 

of individual axis errors and contour error.  Note that the 

improvement of contour error may result at the cost of 

individual axis tracking performance, which will be 

illustrated in the section of experiments. 

The rest of this paper is outlined as follows. Section 2 

presents the class of multi-axis systems considered in this 

paper and provides the definition of contour error with 

respect to individual axis errors.  The cross-coupled NNOILC 

approach is developed in Section 3, along with its properties 

including: convergence, robustness, and computational 

complexity.  Section 4 shows the experimental results of the 

cross-coupled NNOILC approach applied to a multi-axis 

robotic testbed.  Section 5 concludes the paper.  

2. CLASS OF SYSTEMS 

The class of systems considered here is linear discrete-

time multi-axis system, P , given as, 

 ( 1) ( ) ( ) ( ) ( )
j j j

k k k k k  A Bx x u , (1) 

where 0,1, , 1k N   refers to the discrete-time index, 

the subscript 1, 2,j   is the iteration index, 

1, ,
( ) ( ) ( ) i

T
q MT T

j j M j
k k k


  
 

u u u  is the control input, 

1, ,
( ) ( ) ( ) x

T
q MT T

j j M j
k k k


  
 

x x x  is the system state, 

, ,
( ), ( )

i j i j
k ku x  are the input and state of the i-th axis, 

1, 2, ,i M , and ( )kA  and ( )kB  are appropriately sized 

iteration-invariant real-valued matrices. 

In practice, most system models inevitably contain some 

form of model uncertainty.  To address these uncertainties in 

our later controller design, we assume that the true system 
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 ( ), ( )
t t t

P k kA B  corresponds to the nominal model 

 ( ), ( )P k kA B  with uncertainties, given in the form, 

  ( ) ( ) 1+ ( )  ,
t A

k k kA A Δ  (2) 

  ( ) ( ) 1+ ( )  .
t B

k k kB B Δ  (3) 

With the above uncertainty definition, the actual model 

of the multi-axis system can be described as, 

 ( 1) ( ) ( ) ( ) ( )  .
j t j t j

k k k k k  A Bx x u  (4) 

In Section 3, the cross-coupled NNOILC approach will 

be studied for both the nominal system in (1), as well as the 

true system given by (4). 

2.1  Assumptions 

For the purpose of analyzing the algorithm’s properties, 

three reasonable assumptions are made here. 

Assumption 1. The re-initialization condition is satisfied 

throughout the repeated iterations, i.e., 

 (0) (0),   1, 2,
j d

j  x x , (5) 

where (0)
j
x  is the initial value of the system state at j-th 

iteration, and (0)
d
x  is the desired initial value of the system 

state. 

Assumption 2. There exists an appropriate control input 

( )
j

ku , which drives the system state to track ( 1)
d

k x  over 

the finite interval  0, 1k N  , i.e., 

 ( 1) ( ) ( ) ( ) ( )
d d d

k k k k k  A Bx x u . (6) 

Assumption 3. Both the true and nominal plants, 

 ( ), ( )
t t t

P k kA B ,  ( ), ( )P k kA B , are stable or can be 

readily stabilized via feedback. 

2.2  Contour Error 

To guarantee the completeness of this paper, the contour 

error is briefly defined here.  The interested reader can refer 

to Tang & Landers (in press) for further details. 

Contour error is a function of individual axis errors and 

time.  For a general class of multi-axis systems, contour error 

can be defined as a linear approximation of the closest 

distance from the actual position to the instantaneous tangent 

line of the reference trajectory with respect to time.  

Specifically, for two-axis systems, contour error can be 

defined as,  

 
1 1 2 2

( ) ( , ) ( ) ( , ) ( )k k k k k     c e c e , (7) 

where ( )kε  is the contour error, ( )
i

ke  ( 1, 2i  ) is the 

individual axis error, ( , )
i

kc ( 1, 2i  ) is the coupling gain 

and is used to define the contour error with respect to the 

individual axis errors, and   is the instantaneous angle of the 

reference trajectory with respect to the 1
st
 axis of the two-axis 

system.  The coupling gains are generally time-varying gains 

that change with respect to the desired trajectory.  Linearized 

coupling gains have the following format, 

 
1 2
( , ) sin ( );   ( , ) cos ( )c k k c k k      . (8) 

Note that the use of trajectory-dependent coupling gains 

leads to a time-varying controller.  Define 

 1 2
( ) ( ), ( )

T

k e k e ke ,  ( , ) sin ( ), cos ( )
T

k k k   c , and 

contour error (7) can be rewritten into the following compact 

form, 

 ( ) ( , ) ( )
T

k k k  c e . (9) 

3. CROSS-COUPLED NON-LIFTED NOILC 

In this section, we consider the multi-axis system given 

in (1) to develop cross-coupled NNOILC approach and 

analyze its properties. 

The basis of the proposed approach is to minimize the 

following cost function, 

 

2
( ) ( 1) ( 1) ( 1)

                 ( ) ( )+ ( ) ( )  ,

T

j co j j in j

T T

j j j j

J k Q k k k

k k k k

    

  

Q

R S

e e

u u u u
 (10) 

where ( ) ( ) ( )
j d j

k k k e x x  denotes the state errors, i.e., 

individual axis errors,  at sample index k of the system in the 

j-th iteration, ( )
j

k  represents the contour error at sample 

index k of the system in the j-th iteration, and 

1
( ) ( ) ( )

j j j
k k k


  u u u  is the “slew rate” of the control 

input along iteration axis.  The individual axis gain 
in

Q  and 

cross-coupled gain 
co

Q  refer to the weighting gains applied 

to individual axis errors and contour error, respectively.  

Moreover, weighting matrices , ,
in

Q R S  and weighting factor 

co
Q  are chosen to satisfy the convergence or robust condition 

in the theorems in Section 3. 

Note that unlike existing cross-coupled NOILC 

approaches (Barton et al., 2008; Barton et al., 2011), the cost 

function (10) only contains the information at an individual 

sample time within an iteration, rather than the entire trial’s 

error and input.  In addition, comparing with non-lifted 

NOILC (Sun & Alleyne, in press) for individual axis motion 

control, a penalty term on contour error ( 1)
j

k   is added, 

which will make the controller gain the extra performance 

benefits of contour tracking. 

Substituting (9) into (10) results in, 

 
( ) ( 1) ( ) ( 1) ( ) ( )

               + ( ) ( )  ,

T T

j j j

T

j j

J k k k k k k

k k

     Q R

S

e e u u

u u
 (11) 

where ( ) ( , 1) ( , 1)
T

in co
k Q k k     Q Q c c .  Note that 

after introducing the penalty term on contour error, the 

weighting matrix ( )kQ  becomes a time-varying matrix. 

Differencing the system model (1) along the iteration 

axis gives, 

 
1

( 1) ( 1) ( ) ( ) ( ) ( )
j j j j

k k k k k k


      A Bx x x u , (12) 

where 
1

( ) ( ) ( )
j j j

k k k


  x x x . Substituting (12) into 

(11), and using the optimality condition 
( )1

0
2 ( )

j

j

J k

k




u
, we 

can obtain the cross-coupled NNOILC update law as follows, 

1 1
( ) ( ) ( ) ( ) ( 1) ( ) ( )

j u j e j x j
k k k k k k k

 
    u L u L e L x .(13) 

In (13), 
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 

 

1

( ) ( ) ( ) ( )

                ( ) ( ) ( )  

T

u

T

k k k k

k k k



  

 

Q R S

Q R

L B B

B B ，

 (14) 

  
1

( ) ( ) ( ) ( ) ( ) ( )  
T T

e
k k k k k k



  Q R S QL B B B ， (15) 

 ( ) ( ) ( )  .
x e

k k k AL L  (16) 

From (13), we find that the dimensions of the matrices in 

the cross-coupled NNOILC update law depend only on the 

plant model and have no relation to the trial length. 

Remark 1. Since the weighting matrix ( )kQ  contains 

penalties on both individual axis errors and contour error, the 

proposed cross-coupled NNOILC update law (13) would 

make a tradeoff between individual axis tracking and contour 

tracking by selecting different individual axis gain 
in

Q  and 

cross-coupled gain 
co

Q . 

Rewriting (13) yields, 

 
 

1 1

1

( ) ( ) ( ) ( ) ( 1)

               ( ) ( ) ( )  .

j u j e j

x j j

k k k k k

k k k

 



  

 

u L u L e

L e e
 (17) 

Equation (17) shows that the structure of the proposed cross-

coupled NNOILC update law is conceptually similar to a PD-

type ILC, but here the D-term is the difference along the 

iteration axis rather than the time axis. 

Remark 2. The proposed cross-coupled NNOILC update 

law (17) includes information fed back from both the current 

iteration and previous iteration.  This would indicate that it 

has similarities to some of the current iteration ILC 

algorithms.  Therefore, according to the discussion in Bristow, 

Tharayil, & Alleyne (2006) and the references therein, the 

proposed cross-coupled NNOILC approach will benefit from 

the performance improvement afforded by the learned 

feedforward as well as robustness benefits afforded by the 

feedback element. 

The rest of this section focuses on the relevant properties 

of the proposed cross-coupled NNOILC approach with 

respect to nominal convergence, robust convergence, and 

computational complexity.  

The following two theorems explore the asymptotic and 

monotonic convergence for the nominal plant model (1). 

Theorem 1. If the system (1) ( 0,1, , 1k N  ) is 

controlled by the cross-coupled NNOILC update law (13), 

the asymptotic convergence of the individual axis errors and 

contour error of the controlled system along the iteration axis 

is guaranteed by, 

 
  

1

( ) ( ) ( ) + 1,  

                        0,1, , 1.

T
k k k

k N




 

  

B Q B R S R
 (18) 

Proof. The proof of the asymptotic convergence of the 

individual axis errors is similar to the Theorem 1 in Sun & 

Alleyne (in press).  Because the individual axis errors are 

asymptotic convergent along iteration axis, according to the 

relationship between the contour error and the individual axis 

error (7), the contour error is also asymptotically convergent 

along iteration axis. 

ILC systems that are asymptotically convergent may still 

experience large transients in the iteration domain prior to 

convergence (Phan, Longman, & Moore, 2000).  This may 

not be acceptable for several physical systems, such as 

motion control manufacturing platforms.  Therefore, 

monotonic convergence is desirable, although requiring 

stricter conditions for learning gains. 

Theorem 2. For the system (1), the presented cross-

coupled NNOILC update law (13) can guarantee the 

controlled system to be monotonically convergent along the 

iteration axis with any symmetric positive definite weighting 

matrices ( ),kQ R  and a positive define S  that ensures the 

following inequality: 

  
1

1 .
T

lift lift lift lift lift lift



  B Q P R S R  (19) 

We define lifted system matrices, 

(0)

 ,

( 1)
lift

N

 

 
  

B 0

B

0 B

(0 )

 ,

( 1)
lift

N

 

 
  

Q 0

Q

0 Q

 ,
lift

 

 
 
 

R 0

R

0 R

 ,
lift

 

 
 
 

S 0

S

0 S

0 ,0

1,0 1, 1

0

=
lift

N N N

H

H H
  

 

 

 
 

P , 

where 
lift

P  is the convolution matrix of the system, 

 
,

( 1),                         ,

( 1) ( 1) ( ),   .
h l

h h l

h l l h l

 
 

  

B
H

A A B
 (20) 

Proof. Similar to the Theorem 2 in Sun & Alleyne (in 

press). 

Remark 3. If rR I  ( 0r  ), the monotonic convergence 

condition can be further derived as, 

 2 0  .
T T

lift lift lift lift lift lift lift
  B Q P P Q B S  (21) 

From (21), a sufficiently large S  can guarantee 

monotonic convergence. 

The following two theorems study the robustness of the 

proposed cross-coupled NNOILC approach when considering 

the true system (4) with the uncertainties ( ), ( )
A B

k kΔ Δ . 

Theorem 3. Consider the true system (4) 

( 0,1, , 1k N  ), with multiplicative uncertainties 

( ), ( )
A B

k kΔ Δ .  If this system is controlled by the cross-

coupled NNOILC update law (13), robust asymptotic 

convergence of the individual axis errors and contour error of 

the controlled system along the iteration domain is 

guaranteed by weighting matrices ( ), ,kQ R S  satisfying the 

following inequality, 

 

 

  

1

( ) ( ) ( ) +

      ( ) ( ) ( ) ( ) 1 ,

              0,1, , 1.

T

T

B

k k k

k k k k

k N






  

  

B Q B R S

R B Q B Δ  (22) 

Proof. Similar to Theorem 1. 

Remark 4. If rR I  ( 0r  ), the robust asymptotic 

convergence condition (22) can be further simplified as, 

 
1

2

( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 .
T T

B
i

k k k k k k k


 B Q B S B Q B Δ (23) 

The proof of (23) can reference Lemma 2 in Barton & 

Alleyne (2011).  In addition, one can derive from (23) that a 
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sufficiently large S  can overcome model uncertainties, and 

achieve robustness. 

Remark 5. For ILC systems, performance is defined in 

terms of the final steady state error to which the system 

converges.  Similar to the analysis in Barton & Alleyne 

(2011), we can conclude that the minimum steady state error 

requires 
2

0
i
S . 

Combining Remark 4 and Remark 5, the weighting 

matrix S  should provide a balance between the robustness 

and the performance of the system.  

The robust convergence condition (22) is independent of 

uncertainty ( )
A

kΔ .  However, this independence with respect 

to the system dynamics may result in poor transients for the 

cross-coupled NNOILC.  Therefore, monotonic convergence 

is analyzed below. 

Theorem 4. Consider the true system (4), controlled by 

the cross-coupled NNOILC update law (13).  Robust 

monotonic convergence of the controlled system is 

guaranteed along the iteration domain by any weighting 

matrices ( ), ,kQ R S  satisfying the following inequality, 

 
  

  

1

,

, , ,
    <1 .

T

lift lift lift lift t lift lift lift

T

lift lift lift lift B lift lift A lift t lift



  

  

B Q B A Ψ R S

R B Q B Δ A Δ Ψ

 (24) 

where 
(0)

 ,

( 1)
lift

N

 

 
  

A 0

A

0 A

,

(0)

 ,

( 1)

B

B lift

B
N

 

 
  

Δ 0

Δ

0 Δ
,

(0)

 ,

( 1)

A

A lift

A
N

 

 
  

Δ 0

Δ

0 Δ

 

,

2

1

(0)

(1) (0)
 .

( ) (0) ( 2) ( 3) ( 2)

t

t t

t lift

N

t t t t t

m

m N N N





 

 

 

 
 

 
   

 


0 0 0

B

A B
Ψ

0

A B A B B 0

 

Proof. Similar to Theorem 2. 

Remark 6. The matrices used to check either the nominal 

monotonic convergence condition (19), (21) or robust 

monotonic convergence condition (24) are all in lifted form, 

which is not necessary for the asymptotic convergence cases.  

Therefore, the determination of monotonic convergence is 

still limited by the trial length as with existing cross-coupled 

NOILC approaches.  There are two solutions.  One is to 

choose S  large enough, as mentioned in Remark 3 and 

Remark 4.  The other one is to apply numerical techniques to 

minimize the complexity.  One example is the implicitly 

restarted Arnoldi/Lanczos method (IRLM) which was 

utilized in Barton, Bristow, & Alleyne, (2010) to reduce the 

computational complexity to scale linearly with the trial 

length.  While the convergence analysis is limited, it should 

be noted that the implementation of the cross-coupled 

NNOILC is still in a non-lifted form and so does not suffer 

from the complexity issues. 

Finally, the computational complexity of the proposed 

approach will be discussed.  A typical measure of 

computational complexity is the number of floating point 

operations, or flops.  Similar to the analysis in subsection 3.3 

in Sun & Alleyne (in press), the computational complexity of 

the presented cross-coupled NNOILC update law (13) and 

existing cross-coupled NOILC (Barton et al., 2008) in one 

iteration is O(N) and O(N
3
), respectively.  Therefore, the 

proposed cross-coupled NNOILC approach is more efficient 

and applicable than existing cross-coupled NOILC for long 

trials. 

4. EXPERIMENTS 

In order to verify the effectiveness of the proposed cross-

coupled NNOILC approach, a multi-axis robotic testbed is 

used.  The h-bridge gantry style robotic system consists of 

stacked x, y, and z axes all mounted orthogonally to one 

another.  This robotic system is used for manufacturing parts 

and devices with fine feature sizes via material addition or 

deposition as would occur in an additive manufacturing 

scheme.  A picture is shown in Fig. 1 and more detailed 

description can be found in Bristow & Alleyne (2006) where 

the system was used for 3D additive manufacturing. 

To illustrate the performance of the proposed approach 

clearly, our experiments here only focus on the movements of 

x- and y-axes. 

For the controller design, dynamic models for the x- and 

y-axes were developed and feedback controllers were 

designed.  Using a swept sine frequency response, 1-kHz 

sampled dynamic models of the x- and y-axes are, 

   

    

2 2

2 2

0.0172 0.759 1.706z 0.9596 0.0324z 0.8968
( )  ,

0.9972 1 1.676z 0.9479 0.3736 0.4904
x

z z z
G z

z z z z

    


     

                                                                                (25) 

   

    

2 2

2 2

0.0459 0.9963 1.768z 0.9567 0.2238z 0.7933
( ) ,

0.9972 1 1.764z 0.9562 0.1784 0.7898
y

z z z
G z

z z z z

    


     

                                                                                             (26) 

where z represents the z-transform of the discrete-time 

dynamics.  The high performance feedback controllers that 

stabilize the x- and y-axes plant models (25) and (26) are, 

 
     

     

3.5 1.92 0.8881 0.8583
( )  ,

1 .001 0.5185 0.1691
x

z z z
C z

z z z

  


  
 (27) 

 
   

   

1.5 1.377 0.9147 0.776
( )  .

1.001 0.5185 0.1691
y

z z z
C z

z z z

  


  
 (28) 

The reference signal applied to the system is a raster 

scanning trajectory ( 2000N  ), in which the motion 

consists of long periods of low frequency content followed 

by short periods of high frequency transitions with a sudden 

change in y axis direction.  This type of trajectory is 

commonly used in atomic force microscopy (AFM), as well 

as other manufacturing systems which require sharp 

transitions between signals.  Fig. 2. shows the overall raster 

trajectory as well as the individual x- and y-axes position 

reference plots. The circled points in Fig. 2 illustrate the most 

challenging points for contour tracking. 
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Fig. 1. Image of the multi-axis robotic testbed 

To demonstrate the effectiveness of the proposed 

approach, the cross-coupled NNOILC approach is applied to 

the closed-loop system consisting of the x- and y-axis linear 

motors of robotic testbed and feedback controllers (27) and 

(28).  Three different values of cross-coupled gain 
co

Q  are 

applied here to compare their effects on the improvement of 

contour error: 0.2
co

Q  , 0.5
co

Q  and 1
co

Q  . The other 

controller parameters are chosen as 
0.5 0

0 0.5
in

 
  
 

Q , 

0.0008 0

0 0.0002

 
  
 

R , 
0.0003 0

0 0.0002

 
  
 

S , and 

 ( , ) sin ( ), cos ( )
T

k k k   c .  All of these sets of 

weighting terms satisfy the convergence condition analyzed 

in Section 3. 

 
(a) Raster scan trajectory 

 
(b) Individual axis reference signals 

Fig. 2. Reference trajectory 

Fig. 3. gives the individual learning errors of the x- and 

y-axes with different cross-coupled learning gains.  Fig. 4 

shows the contour learning errors of the x- and y-axes with 

different cross-coupled gains. Individual axis learning error is 

defined as the root mean square (RMS) of the motor’s 

position errors over the whole time interval for one iteration. 

Contour learning error is defined as the RMS of the contour 

errors over the whole time interval for one iteration. 

As illustrated in Fig. 3, all of the individual axis learning 

errors with different cross-coupled gains converge in the 

iteration domain.  As may be expected, the cross-coupled 

NNOILC provides a slightly worse performance when 

observing the behavior of the individual x- or y-axis.  In fact, 

close examination indicates that the cross-coupled NNOILC 

approach achieves its coordination by improving the 

converged error of x-axis and deteriorating the converged 

error of y-axis.  Fig. 4 illustrates that the cross-coupled 

NNOILC with larger cross-couple gain does a much better 

job when we evaluate the contour error of x- and y-axes.  It is 

the deterioration of y-axis performance here that serves to 

provide greater benefit to the overall system coordination. 

 
Fig. 3. Individual learning errors of cross-coupled NNOILC 
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Fig. 4. Contour learning errors of cross-coupled NNOILC 

The reason for this is evident when considering the design of 

the robot.  The x-axis carries the y- and z- axes.  Therefore, it 

has the highest inertia as evidenced in the open loop 

dynamics of (25) and (26).  The linear motors driving the two 

axes are the same. Therefore, the y- axis has a higher closed 

loop bandwidth due to its lower inertia.  The best way for the 

system to achieve good contour tracking is to have the y- axis 

sacrifice some of the performance available to it in order to 

better match the performance of the slower x-axis. 

5. CONCLUSIONS 

In this paper, a novel cross-coupled non-lifted norm 

optimal iterative learning control (cross-coupled NNOILC) 

approach has been proposed.  By applying the proposed 

approach to a robotic multi-axis system, the contour error can 

be noticeably improved.  This was demonstrated on an 

experimental system.  Comparing the presented approach to 

existing cross-coupled NOILC approaches, the omission of a 

lifted framework reduces the computational complexity 

associated with the algorithm’s implementation.  The 

properties of the proposed cross-coupled NNOILC approach 

are also analyzed, including convergence, robustness, and 

computational complexity. 
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