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Abstract: An industrial case study in the form of a large-scale hydraulic network underlying
a district heating system is considered. A distributed control is developed that minimizes the
aggregated electrical energy consumption of the pumps in the network without violating the
control demands. The algorithm is distributed in the sense that all calculations are implemented
where the necessary information is available, including both parameters and measurements. A
communication network between the pumps is implemented for global optimization. The local
implementation of the algorithm means that the system becomes a Plug & Play control system
as most commissioning can be done during the manufacture of the pumps. Only information on
the graph-structure of the hydraulic network is needed during installation.

Keywords: District Heating Systems, Plug & Play Process Control, Optimization,
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1. INTRODUCTION

An industrial system distributed over a network is studied.
The system is a large-scale hydraulic network underlying a
district heating system with an arbitrary number of end-
users. A distributed control is developed that minimizes
the aggregated electrical energy consumption of the pumps
in the network without violating the control demands
at the end-users. The regulation problem addressed is
distributed pressure setting of district heating systems,
where multiple pumps are distributed across the network,
as proposed in Bruus et al. (2004) for widening the range
of district heating systems.

Similar networks and models arise for instance in mine
ventilation networks and cardiovascular systems. These
classes of systems are the motivation for the works Hu
et al. (2003), Koroleva and Krstić (2005), Koroleva et al.
(2006), where nonlinear adaptive controllers are proposed
to deal with the presence of uncertain parameters.

The control of the proposed district heating systems is
treated in Jensen and Wisniewski (2013), De Persis et al.
(2013) and De Persis and Kallesøe (2011), amongst others.
In the latter, where the system model is derived, it is shown
that the system is over-actuated. Here this over-actuation
is used for energy optimal control. The chosen algorithm
design ensures that all necessary model information can
be embedded in the pumps during production, meaning
that the pumps and their control can be plugged into
the hydraulic network, without further commissioning,
except for information on the network graph, which can
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easily be obtained by the commissioning personnel. This
is in accordance with the philosophy behind Plug & Play
Process Control, Stoustrup (2009).

As stated before, the hydraulic networks treated in this
work are over-actuated, which is the reason why the en-
ergy optimization is possible. Over-actuated systems and
their control are discussed both in theory and in prac-
tice, for example in flight applications, ship applications,
and car safety control Boskovic et al. (2002), Lue et al.
(2004), Tønn̊as and Johansen (2008), Laine and Andreas-
son (2007), Zaccarian (2007). These papers deal with the
control problem as a centralized control problem. In the
systems considered here it is natural to distribute the
control and optimization problem between the pumps in
the hydraulic network. Distributed optimization is handled
for example in Rantzer (2009), Nedić and Ozdaglar (2009),
Nedić et al. (2010).

The paper starts by introducing the system model and the
optimization problem in Section 2. In Section 3, convexity
of the optimization problem is proven, and the algorithm
for the energy optimization is derived in Section 4. Section
5 presents experimental results obtained on a laboratory
setup, which emulates a small district heating system.
Section 6 comprises concluding remarks.

2. PROBLEM FORMULATION

A district heating system with distributed pumping is
considered. The model of this system is derived in De
Persis and Kallesøe (2011), where it is shown that the
model has the following structure

Jq̇ =f(BT q) + ∆he + F∆hb

yi =µi(qi) , i = 1, 2, . . . , n ,
(1)

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 11926



where q ∈ R
n is a vector of free variables coinciding with

the flows through the valves at the end-users; f ∈ C1

describes the natural damping in the system; B is an
n-by-m fundamental cycle matrix of the system graph;
∆he ∈ R

n is the vector of pressures delivered by the pumps
at the end-users; ∆hb ∈ R

k is the vector of pressures
delivered by the so called booster pumps; µi(qi) is the
pressure drop across the ith end-user valve. The vectors
∆he and ∆hb form the control inputs to the system.

It is possible to prove that asymptotic output regulation
of the system (1) can be obtained with a PI-controller of
the form

ξ̇ =−K(y − r)

u =ξ −N(y − r) ,
(2)

where K > 0 and N > 0 are diagonal; r > 0 is constant
and

u = ∆he + F∆hb . (3)

A proof can be found in De Persis et al. (2013).

As K and N are diagonal the controllers only rely on
information available locally at each end-user pump. On
the other hand, the controller is affecting both the end-
user pump and booster pump pressures. Evaluating the
connection between the control output and the pump
pressures (3), it is recognised that full control can be
obtained by using ∆he only. This means that the structure
of the control can be depicted as shown in Fig. 1. Therefore
as long as ∆hb is piecewise constant and ∆he is feasible in
a neighbourhood around ∆he = −f(BT q∗)− F∆hb, then
the equilibrium point of the system

Jq̇ =f(BT q) + ξ −N(µ(q)− r) + F∆hb

ξ̇ =−K(µ(q)− r)
(4)

is globally asymptotically stable. The goal of this work is to
choose ∆hb such that the steady state power consumption
of the pumps in the system is minimized. In other words,
at the desired equilibrium r = µ(q) we seek values of ∆hb

such that P =
∑n

i=1 P
e
i +

∑k

j=1 P
b
j is minimized. Here P e

i

is the power consumption of the ith end-user pump and P b
j

is the power consumption of the jth booster pump. This
means that the following minimization problem should be
solved

min
∆hb

P = min
∆hb





n
∑

i=1

P e
i +

k
∑

j=1

P b
j





Subject to: Jq̇ = f(BT q) + ξ −N(µ(q)− r) + F∆hb

ξ̇ = −K(µ(q)− r)
0 ≤ ∆he ≤ κe

0 ≤ ∆hb ≤ κb .

It is assumed that the control (2) is fast enough to ensure
that r = µ(q) almost all the time. The reference r is

e

b

Fig. 1. A block diagram of the control structure.

assumed to be constant, which implies that q̇ = ξ̇ = 0
can be assumed almost all the time. These assumptions
are similar to traditional assumptions in cascaded control.
Using these assumptions, the minimization problem is
simplified to a static optimization problem;

min
∆hb

P = min
∆hb





n
∑

i=1

P e
i +

k
∑

j=1

P b
j



 (5a)

Subject to: 0 = f(BT q∗) + ξ∗ + F∆hb

ξ∗ = ∆he

r = µ(q∗)
0 ≤ ∆he ≤ κe

0 ≤ ∆hb ≤ κb .

(5b)

Note that q∗i = µ−1
i (ri) is constant as long as ri is constant

as µi(·) is a continuous function.

Since f(BT q∗) is a constant vector, the equality constraint
in (5b) is affine in ∆hb and thus define a convex set, say C1.
Also, it is immediately seen that the inequality constraints
are affine hence they form a convex set, say C2. We need
to ensure that the problem is feasible, that is, C1∩C2 6= ∅.
To this end, it is observed that q∗i > 0 since ri > 0 and
µi(·) is strict monotonically increasing. Furthermore, he
following lemma is needed

Lemma 1. De Persis and Kallesøe (2011) Under the net-
work Assumptions 1-3 in De Persis and Kallesøe (2011),
q ∈ R

n
+ implies −f(BT q) ∈ R

n
+.

From De Persis and Kallesøe (2011) it is known that the
entries of the matrix F in (5) belongs to the set {0, 1},
f(0) = 0 and f(·) ∈ C1, hence it follows from Lemma
1 that there exists Ri > 0 for i = 1, 2, . . . , n and ∆he,
∆hb, such that for 0 ≤ ri ≤ Ri the constraints of (5) are
fulfilled, since ∆he + F∆hb > 0 if ∆he > 0 and ∆hb > 0.
This means that C1 and C2 has a non-empty intersection
for properly chosen r. It is worth noting that in practice the
problem is always feasible, since the network is designed
to accommodate the control objective at the end-users.

In the following a method for converting the constrained
problem (5) to an unconstrained one is described. The pur-
pose for this is to enable the design of an on-line gradient
search algorithm. The tool chosen here is softening the
inequality constraints by the use of penalty functions, see
for instance Fletcher (1975).

Softing constraints The inequality constraints are soft-
ened by including penalty functions in the objective func-
tion as shown below

min
∆hb

P̃ = min
∆hb

( n
∑

i=1

(P e
i + sei (∆he,i))+

k
∑

j=1

(

P b
j + sbj(∆hb,j)

)

)

(6a)

Subject to: 0 = f(BT q∗) + ∆he + F∆hb

q∗ = µ(r)−1 ,
(6b)

where sei (·) and sbi(·) are additional terms included to pe-
nalize violation of the inequality constraints. One possible
implementation of these terms is given in (7),
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s∗i (x) =







κ(x− x)2 , x ≤ x
0 , x ≤ x ≤ x

κ(x− x)2 , x ≤ x
, ∗ = e, b (7)

where x and x are the maximum and minimum allowed
pressures of the ith pump, and κ > 0 is a gain. Fur-
thermore, note that the equality constraints of (5) are
reformulated. In the following two sections, the convexity
of the optimization problem (6) will first be analysed,
followed by the development of an optimization algorithm
that can be distributed between the pumps.

3. CONVEXITY

In this section it is shown that the problem (6) is a convex
program for systems of the form (1). This in turn means
that the minimum of the objective function exists and the
set of minimizers is convex, (see for instance (Jensen et al.,
2014, Thm 26)). Recall the definition of a convex program

Definition 1. Let C be a non-empty convex set in R
n, and

let f : C → R be a convex function on C. Then,

min
x∈C

f(x) (8)

is said to be a convex program.

The objective function in (6) is formed by the power
consumption of the pumps in the network and the penalty
functions. From the definition of the penalty functions in
(7) it is seen that they are convex.

To derive convexity of the power function, a model of
the pump operation is necessary. In Kallesøe (2005) it is
shown that centrifugal pumps can be modelled by two
polynomials for pump speeds ωi ≥ 0 and pump flows
qi ≥ 0.

∆hi(qi, ωi) = −ah2,iq
2
i + ah1,iqiωi + ah0,iω

2
i (9a)

Ti(qi, ωi) = −at2,iq
2
i + at1,iqiωi + at0,iω

2
i , (9b)

where ∆hi(·) is the pressure delivered by the ith pump,
Ti(·) is the shaft torque, and ah2,i, ah1,i, ah0,i, at2,i, at1,i,
at0,i are constant parameters describing the ith pump. The
power consumption Pi(·) of the pump is given by

Pi(qi, ωi) = ωiTi(qi, ωi) + P0, (10)

and calculable from the pump model described in (9). In
(10), P0 is a constant term describing the idle consumption
of the pump due to the control hardware on the pump. Due
to physical constraints of the pump, the following can be
assumed on the parameters (see Kallesøe (2005))

Assumption 1. It is assumed that the parameters of the
model (9) fulfil the constraints

ah2 > 0, ah0 > 0, at2 > 0, at1 > 0, at0 > 0 .

The derivative of the pressure delivered by the pump with
respect to its rotational speed can be derived from (9) to
be

d∆hi

dωi

(qi, ωi) = ah1,iqi + 2ah0,iωi. (11)

The rotation of the pump is limited to one direction,
which means that ωi ≥ 0. Then, from the model (9)
and Assumption 1 it is immediately seen that ∆hi > 0
implies that ωi > 0 for all qi since in this case (ah1,iqi +
ah0,iωi)ωi > ah2,iq

2
i ≥ 0. Furthermore, (ah1,iqi+ah0,iωi) >

0 and ah0,iωi > 0, which implies that 0 < ah1,iqi +

ah0,iωi < ah1,iqi + 2ah0,iωi = d∆hi

dωi

(qi, ωi). This proves
the following lemma.

Lemma 2. For pump pressures ∆hi > 0, rotational speeds
ωi ≥ 0 and flows qi ≥ 0, then under Assumption 1

d∆hi

dωi

(qi, ωi) > 0 .

Using Assumption 1 it is possible to prove the following
proposition.

Proposition 1. Under Assumption 1 the objective function
in (6) is convex at the desired reference flow q∗, and with
∆hi within the feasibility set, if the parameter set of the
pump model (9) fulfils

3at0,ia
2
h1,i < 4ah0,i(at1,iah1,i + at2,iah0,i) (12)

for every pump i = 1, . . . , n+ k.

Sketch of the proof: Utilizing Lemma 2 it can be shown
that the second order derivative

d2Pi

d∆h2
i

(∆hi) > 0 ,

where Pi(∆hi) ≡ Pi(q
∗

i , ωi)ωi=ωi(∆hi)≡ωi(q∗i ,∆hi). This
shows convexity by the 2nd-order sufficient condition and
the fact that a sum of convex function is convex.

Convexity is necessary for the optimization approach pro-
posed in the paper to work. From Proposition 1 convexity
can only be stated when (12) is fulfilled. This requirement
is easy to check and pumps can even be designed for this.
Also, in practise, it seems that almost all centrifugal pumps
do fulfil (12).

4. ENERGY OPTIMIZATION

In this section, an algorithm that ensures energy optimal
distribution between the pressures provided by the end-
user pumps and the booster pumps is considered. An
on-line gradient based search algorithm for minimizing
the power consumption is derived. This is similar to the
approach taken in Jensen et al. (2014) for minimizing the
steady state energy consumption of the system. However,
in this exposition the true power function of the system is
used in the optimization problem, whereas in Jensen et al.
(2014) a bi-linear approximation of the power function
was used. Also, here the closed loop system does not
take the cascaded form described in Jensen et al. (2014),
considerably complicating the analysis. The derivative of
the objective function in (6) is given by

dP̃

d∆hb

(∆hb,∆he) =

n
∑

i=1

dP e
i

d∆hb

(∆he,i) +
dsei
d∆hb

(∆he,i)

+
k
∑

j=1

dP b
j

d∆hb

(∆hb,j) +
dsbj
d∆hb

(∆hb,j) ,

(13)

with ∆he = −f(BT q∗) − F∆hb. The derivative (13)
equals zero at the global optimum due to convexity of
the problem. We are seeking a solution, which can be
distributed between the pumps. From (13) it is recognized
that information on the operation of the end-user pumps
is necessary for the optimization, hence a communication
protocol between the pumps is needed.
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The terms d(P b
i +sbi)(∆hb,i)/d∆hb forms a vector describ-

ing the change of the power consumption and penalty in
the ith booster pump with respect to pressure delivered by
each booster pump. The booster pump pressures ∆hb can
be chosen freely as only the end-user pumps are employed
for the control, see Fig. 1. Since P b

i (·) and sbi(·) depends
only on ∆hb,i only the term d(P b

i + sbi)(∆hb,i)/d∆hb,i

is different from zero. This term is calculable at the ith

booster pump.

The terms d(P e
j + sej)(∆he,i)/d∆hb denotes the derivative

of the power consumption and penalty of the end-user
pumps with respect to the pressure delivered by the
booster pumps. The operation of the end-user pumps is
affected by the booster pumps as described by the equality
constraints in (6b). Recalling our assumption that q = q∗,
we obtain

∆he =− f(BT q∗)− F∆hb ⇒
d∆he

d∆hb

= −F

from which we get

dP e
j

d∆hb

(∆he,j) =
dP e

j

d∆he,j

(∆he,j)
d∆he,j

d∆hb

= −
dP e

j

d∆he,j

(∆he,j)Fj (14)

where ∆he,j = −fj(B
T q∗)− Fj∆hb and Fj is the jth row

of F .

The change in power consumption of the ith pump given a
change in pressure can be calculated based on the model
of the pump presented in (9). The power consumption of
the ith pump is calculated from the shaft torque using
Pi(·) = ωiTi(·) + P0. Calculating the derivative of Pi(·)
with respect to ∆hi the following expression is obtained

dPi

d∆hi

(∆hi) =
dPi/dωi

d∆hi/dωi

(qi, ωi)

∣

∣

∣

∣

qi=q∗
i

=
−at2,iq

∗

i
2 + 2at1,iq

∗

i ωi + 3at0,iω
2
i

ah1,iq∗i + 2ah0,iωi

∣

∣

∣

∣

ωi=ωi(∆hi)

, (15)

which can be calculated locally at every pump in the
network, assuming that qi and ωi are available by either
measurements or estimation.

The optimizer In the following the optimization algo-
rithm is presented. The algorithm utilizes the derivatives
presented above, which is made available via a communi-
cation network.

Let the pressure delivered by the boosting pumps be
updated using the following expression

∆ḣb,j =− γ

(

d(P b
j + sbj)

d∆hb,j

(qj ,∆hb,j)

−
n
∑

i=1

d(P e
i + sei )

d∆he,i

(qi,∆he,i)Fij

) (16)

for some small γ (γ > 0). Then the equilibrium point
of the closed loop system will be such that the power
consumption of the pumps is minimal while meeting the
control objective y = µ(q) = r.

To realize this, first observe that the closed loop system is
given by

Jq̇ =f(BT q) + ξ −N(µ(q)− r) + F∆hb

ξ̇ =−K(µ(q)− r)

∆ḣb =− γ

(

d(P b + sb)

d∆hb

(q,∆hb)+

−FT d(P e + se)

d∆he

(q,∆he)

)

.

Assuming the PI-controller is able to obtain output regu-
lation meaning that q = q∗, where q∗ = µ−1(r). Then the
following is true

∆he = ξ∗ =− f(BT q∗)− F∆hb

∆ḣb =− γ

(

d(P b + sb)

d∆hb

(q∗,∆hb)+

−FT d(P e + se)

d∆he

(q∗,∆he)

)

(17)

Using P̃ (q∗,∆hb) = P b(q∗,∆hb)+sb(∆hb)+P e(q∗,∆he)+
se(∆he),where ∆he = −f(BT q∗) − F∆hb as a Lyapunov

function candidate which fulfils P̃ (·) > 0 on the feasibility
set defined in (6b). Then it is immediately seen that

d

dt
P̃ (q∗,∆hb) =− γ

∣

∣

∣

∣

d(P b + sb)

d∆hb

(q∗,∆hb)

− FT d(P e + se)

d∆he

(q∗,∆he)

∣

∣

∣

∣

2

. (18)

From (18) it follows that ∆hb converges to largest invariant
set of the reduced system (17) where

dP b

d∆hb

(q∗,∆hb)− FT dP e

d∆he

(q∗,∆he) = 0. (19)

Since (6) is a convex program, the steady state value of
∆hb is a solution to (6).

Remark 1. Following (Jensen et al., 2014, App. B) it can
be shown that there exists gain κ∗ > 0 such that for
all κ > κ∗ the objective function in (6) has a local
minimum within the feasibility set, say C, of the original
optimization problem (5), since the objective function of
(5) is continuous and C is compact.

The gradient dP ∗/d∆h∗ for ∗ = e, b is bounded on the
boundary of C when q = q∗. Furthermore, C is invariant
for the system

ẋ =−

(

dsb

d∆hb

(∆hb)− FT dse

d∆he

(∆he)

)

(20)

by design. Hence, it follows that there exists gain κ∗ >
0 such that for every κ > κ∗, C is invariant for the
reduced system (17). Therefor it follows that for any initial
condition ∆hb,0 ∈ C, ∆hb(t) ∈ C for every t > 0.

The communication structure The gradient of the power
dP̃ (∆hb,∆he)/d∆hb,i can be calculated by first calculat-
ing (15) locally at end-user- and booster pumps respec-
tively and then (according (14)) communicating the result
of the calculation of (15) at the jth end-user pump to the
lth booster pump if Fjl 6= 0. Thus, the only information on
the hydraulic network which is necessary is the structure
of the matrix F , the entries of which determines which
end-user pumps the individual boosting pump needs infor-
mation from. Assuming that there exist a communication
network, the necessary exchange of information is illus-
trated on a two end-user case in Fig. 2. Here the pressure
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Heat
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C17
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C25
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C28

C29

Expansion tank

dp4 dp3 dp2 dp1

C20

dp

Pipeline

Pump

Valve

Pressure diff. sensor

1C

Fig. 3. Sketch of the hydraulic network used in the experiments.

control is located at the two end-user pumps, which also
calculates the derivative necessary for the optimization.

5. EXPERIMENTAL RESULTS

In this section, results obtained with the proposed opti-
mization control are presented. These results are obtained
on a laboratory setup which emulates the hydraulic dy-
namics of a district heating system with four end-users.
Due to physical constraints imposed by the size of the
setup, the system dynamics are 5-10 times faster than
what would be expected in a real district heating system.
The setup is the same as described in De Persis and
Kallesøe (2011), where additional details can be found.
The hydraulic network diagram of the setup is illustrated
in Fig. 3. This is a system with four end-user pumps, here
denoted {c9, c19, c23, c27}, and two booster pumps denoted
{c1, c5}. The control of each end-user pump is obtained
using the controller described in (2), hence the pumps
{c9, c19, c23, c27} are controlled such that the pressures
{dp1, dp2, dp3, dp4} equals a reference value via a set of
PI-controllers. The pumps {c1, c5} are used for energy
optimization, hence they are controlled according to (16).
The tests are done in accordance with the communication
strategy shown in Fig. 2, meaning that the derivatives
used for optimization are calculated at the PI-controllers
controlling the pressures and communicated to - and used
at - the two optimizers at the booster pumps. The network
graph implies in this case that the derivatives from the
pumps {c9, c19, c23, c27} are used in the optimizer placed

Heat source

dp

dp

dp

Centrifugal pump

Heat exchanger

Pressure sensor

dp2

dp1

he2

he1

hb

dp-ctrl

opt

dp-ctrl
dPe1
d he1

dPe2
d he2

Communication line

Fig. 2. A sketch of a small District Heating System with
distributed optimization control.

at pump c1 and the derivatives from the pumps {c9, c27}
are used in the optimizer placed at pump c5.

The results of the experiment are shown in Fig. 4. The
system is started from rest and at time ∼35 [s], all outputs
are at the reference value of 0.2 [Bar]. This is achieved
mainly by the use of the end-user pumps {c9, c27, c19, c23}.
At 35 [s] the power consumption of the pumps is ∼75 [W]
and is decreasing until the system has converged at 400
[s] where the consumption is ∼36 [W]. This means that
for this case, 39 [W] has been saved or approximately 50
%. Furthermore, a step response has been obtained by
changing the reference to 0.3 [Bar] at time 600 [s] and
back again at time 900 [s]. As it can be seen from the
figure, the outputs converge fast to the new reference, and
subsequently the optimizing controller also converges to
the power optimal distribution of pump pressures.

6. CONCLUSION

A distributed approach for optimizing control is derived
for a general class of hydraulic networks that forms the
backbone in district heating systems. The optimizer is
shown to work in all hydraulic networks that fulfil a
few assumptions. Therefore the approach forms a Plug
& Play optimizing control approach, as only information
on the network structure is necessary during installation.
All other necessary information can be implemented be-
forehand as part of an intelligent pump. The approach is
exemplified via an experiment on a small scale laboratory
setup emulating a system with four end-users.
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