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Abstract: Block-oriented models are often used to model a nonlinear system. This paper
presents an identification method for parallel Wiener-Hammerstein systems, where the obtained
model has a decoupled static nonlinear block. This decoupled nature makes the interpretation of
the obtained model more easy. First a coupled parallel Wiener-Hammerstein model is estimated.
Next, the static nonlinearity is decoupled using a tensor decomposition approach. Finally,
the method is validated on real-world measurements using a custom built parallel Wiener-
Hammerstein test system.

1. INTRODUCTION

Block-oriented models are often used to model nonlinear
systems. A block-oriented model consists of two types
of blocks: linear-time invariant (LTI) blocks and static
nonlinear (SNL) building blocks. They offer insight about
the system to the user due to this highly structured
nature. There are many different types of block-oriented
models, as is discussed in Giri and Bai [2010]. The simplest
ones are Hammerstein (SNL-LTI) and Wiener (LTI-SNL)
models. These two basic block-oriented models can be
extended to Wiener-Hammerstein (LTI-SNL-LTI), and
Hammerstein-Wiener (SNL-LTI-SNL) models by adding
blocks in series. Another extension can be made to parallel
Hammerstein and parallel Wiener models by connecting a
number of Hammerstein or Wiener models in parallel (see
Schoukens et al. [2011] and Schoukens and Rolain [2012b]).
This paper presents an identification method for parallel
Wiener-Hammerstein systems.

A parallel Wiener-Hammerstein system consists of a num-
ber of Wiener-Hammerstein systems placed in parallel,
as is shown in Figure 1. All the Wiener-Hammerstein
subsystems share the same input, and the output of the
parallel Wiener-Hammerstein system is obtained by sum-
ming up the outputs of the different subsystems. It is
shown in Palm [1979] that a wide class of discrete time
Volterra systems can be approximated arbitrary well using
a parallel Wiener-Hammerstein model structure. However,
no method is presented there to identify such a model.

A parallel Wiener-Hammerstein system identification ap-
proach is presented in Schoukens et al. [2013], but the
resulting model has one multiple-input-multiple-output
(MIMO) static nonlinearity, rather then a single-input-
single-output (SISO) static nonlinearity for each paral-
lel branch. Other parallel Wiener-Hammerstein system
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Fig. 1. A 3-branch parallel Wiener-Hammerstein system:
different Wiener-Hammerstein systems placed in par-
allel. The static nonlinear block f [i] of the i-th branch
sandwiched in between the LTI blocks H [i](q) and
S[i](q). The noise source v(k) is additive colored noise.

identification methods are presented in Baumgartner and
Rugh [1975], Wysocki and Rugh [1976] and Billings and
Fakhouri [1979]. However these methods are restricted
to the SM system class. A system belonging to the SM

system class has M parallel branches, where the static
nonlinearity of branch m is given by the monomial (.)m.
Only one branch for each degree of the nonlinearity is
allowed. This reduces the model flexibility significantly.

This paper presents a method to identify a parallel
Wiener-Hammerstein model with a SISO static nonlinear-
ity for each branch, rather than one big static nonlinearity
for all the branches together. First a parallel Wiener-
Hammerstein model containing one MIMO static nonlin-
earity is estimated with the parallel Wiener-Hammerstein
identification method proposed in Schoukens et al. [2013].
The MIMO static nonlinearity is modeled by a set of
multivariate polynomials. Next, the MIMO static nonlin-
earity is decoupled using a tensor decomposition approach,
imposing common factors. The decoupling algorithm is an
extended version of the algorithm that is presented in Tiels
and Schoukens [2013].

A decoupled nonlinearity has different advantages. Firstly,
it is more easy to increase the model complexity. The
number of model parameters tends to grow very fast
for an increasing model complexity of a MIMO static
nonlinearity, for sure when for instance a multivariate

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 505



polynomial is used. A linear dependency of the degree is
achieved when decoupled polynomials are used. Secondly,
the ability to interpret the model is increased by using
different SISO static nonlinearities instead of one MIMO
static nonlinearity.

The contribution of this paper is twofold. First, this pa-
per improves the decoupling method presented in Tiels
and Schoukens [2013]. Second, the decoupling approach
is integrated with the parallel Wiener-Hammerstein iden-
tification approach that is presented in Schoukens et al.
[2013], and applied on a custom built parallel Wiener-
Hammerstein test system.

in Section 2, the system, signals and stochastic framework
are introduced. Next, the proposed identification approach
is explained in Section 3. Finally, the proposed method is
validated on a measurement example in Section 4.

2. SYSTEM, SIGNALS AND STOCHASTIC
FRAMEWORK

This section describes the considered class of systems,
introduces the noise framework and defines the signal class
that is considered in this paper.

2.1 The system class

We consider parallel Wiener-Hammerstein systems. These
systems consists of different Wiener-Hammerstein systems
that share the same input signal (see Figure 1). The output
of the total system is obtained as the sum of the outputs
of the different branches.

All the LTI blocks are considered to be infinite impulse re-
sponse (IIR) filters, parametrized by a rational polynomial
in the backward shift operator q−1:

H [i](q) =
B

[i]
h (q)

A
[i]
h (q)

=
b
[i]
h,0 + . . .+ b

[i]
h,nbh,i

q−nbh,i

a
[i]
h,0 + . . .+ a

[i]
h,nah,i

q−nah,i

,

S[i](q) =
B

[i]
s (q)

A
[i]
s (q)

=
b
[i]
s,0 + . . .+ b

[i]
s,nbs,iq

−nbs,i

a
[i]
s,0 + . . .+ a

[i]
s,nas,iq

−nas,i

,

where nbh,i and nah,i are the orders of the numerator and
denominator of the front dynamics of the i-th parallel
branch respectively, nbs,i and nas,i are the orders of the
numerator and denominator of the back dynamics of the
i-th parallel branch.

The noiseless output y0(k) of a parallel Wiener-Hammerstein
system is given by:

xi(k) = H [i](q)u(k), i = 1, . . . , nbr (1)

ri(k) = f [i](xi(k)), i = 1, . . . , nbr (2)

y0(k) =

nbr∑
i=1

S[i](q)ri(k), (3)

where nbr is the number of parallel branches in the system,
f [i](xi) is the static nonlinearity of branch i and the signals
are defined in Figure 1.

2.2 Signals and noise

The excitation signal u(k) belongs to the Riemann equiv-
alence class of asymptotically normally distributed excita-
tion signals as defined in Pintelon and Schoukens [2012].

Fig. 2. A 3-branch parallel Wiener-Hammerstein model
with a MIMO static nonlinearity. A MIMO static
nonlinear block ĝ sandwiched in between the LTI
blocks Ĥ [i](q) and Ŝ[i](q).

This signal class includes random Gaussian noise signals,
but also periodic Gaussian noise signals and random phase
multisines.

The output is disturbed by an additive, colored Gaussian
noise disturbance v(k):

y(k) = y0(k) + v(k). (4)

2.3 Identifiability

A parallel Wiener-Hammerstein system suffers from some
identifiability issues. A finite gain and an arbitrary delay
can be exchanged between the blocks that are connected
in series. On top of this, a full rank linear transform can be
introduced between the LTI blocks and the static nonlinear
blocks. This transforms the parallel SISO nonlinearity in a
MIMO static nonlinearity. This issue is discussed in more
detail in Schoukens et al. [2013].

3. IDENTIFICATION APPROACH

A two step identification algorithm is proposed. First, a
parallel Wiener-Hammerstein model with a MIMO static
nonlinear block (see Figure 2) is estimated using the
algorithm that is presented in Schoukens et al. [2013],
and which is repeated briefly in this paper. Next, the
MIMO static nonlinearity is decoupled into a single SISO
static nonlinearity for each branch in the parallel Wiener-
Hammerstein model. This last step can increase the num-
ber of parallel branches in the model.

3.1 Identification of a coupled model

The parallel Wiener-Hammerstein identification method
presented in Schoukens et al. [2013] starts by estimating
the best linear approximation (BLA) of the system under
test at different operating points. The BLA Gbla of a
system for any type of input signal, best in mean squares
sense, is defined in Pintelon and Schoukens [2012]:

Gbla(jωk) = arg min
G(jωk)

EU

{
‖Y (jωk)−G(jωk)U(jωk)‖2

}
,

(5)

where Y (jωk) is the discrete Fourier transform (DFT)
of the output y evaluated at frequency jωk, and where
U(jωk) is the DFT of the input u evaluated at frequency
jωk. Gbla(jωk) is the value of the frequency response
function (FRF) of the BLA at jωk. The expectation is
taken with respect to the random input U . Each BLA
is obtained using excitation signals that have a different
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power spectrum. This changes the operating point of the
system under test slightly for each BLA.

When input signals belonging to the Riemann equivalence
class of asymptotically normally distributed excitation sig-
nals are used, the BLA of a parallel Wiener-Hammerstein
system is given by:

Gbla(jωk) =

nbr∑
i=1

αiH
[i](jωk)S[i](jωk). (6)

The scaling factors αi depend on the input power spec-
trum, and on the nonlinearities that are present in the
system. It follows from eq. (6) that the poles of the BLA
are constant and independent of the applied excitation
signal, while the zeros of the BLA shift depending on the
applied excitation signal.

The BLAs of the different operating points ir are
parametrized using a common denominator approach:

Ĝ
[ir]
bla

(
q, θ̂bla

)
=
d̂
[ir]
0 + d̂

[ir]
1 q−1 + . . .+ d̂

[ir]
nd q

−nd

ĉ0 + ĉ1q−1 + . . .+ ĉnc
q−nc

, (7)

where each BLA has different numerator coefficients d̂
[ir]
i ,

but they all share the same denominator coefficients ĉi.

Next, the dynamics present in the BLAs are decomposed
over the different parallel branches of the model. To do
so, the singular value decomposition (SVD) is taken of the
matrix composed of the numerator coefficients:

D =


d̂
[1]
0 d̂

[1]
1 . . . d̂[1]nd

d̂
[2]
0 d̂

[2]
1 . . . d̂[2]nd

...
...

. . .
...

d̂
[R]
0 d̂

[R]
1 . . . d̂[R]

nd


T

, (8)

where R is the number of estimated BLAs. The SVD of D
yields an orthonormal basis for the space spanned by the
D-matrix:

D = ∆blaΣblaV
T
bla, (9)

The matrix ∆bla contains an estimate of the numerator
coefficients for each branch:

Ĝi(q) =
δ̂
[i]
0 + δ̂

[i]
1 q

−1 + . . .+ δ̂
[i]
ndq

−nd

ĉ0 + ĉ1q−1 + . . .+ ĉnc
q−nc

, (10)

where δ̂
[i]
j is the element of the j-th row and i-th column

of the matrix ∆bla. An estimate of the number of parallel
branches nbr present in the system is obtained by looking
at the spectrum of the singular values of D. Ĝi(q) is an
estimate of the dynamics that are present in branch i of
the parallel Wiener-Hammerstein model.

Finally, the estimated dynamics of each branch of the
parallel Wiener-Hammerstein model need to be allocated
to the front and back LTI blocks of the model. To do so, all
combinations of poles and zeros in the different blocks are
scanned, and a MIMO static nonlinear block is estimated
for each combination with a multivariate polynomial which
is linear in the parameters. Finally, the model with the
smallest simulation error is selected. The parameters of the
selected model are optimized further using a Levenberg-
Marquardt nonlinear optimization algorithm to refine the
model estimate. A more detailed description of this step
in the algorithm can be found in Schoukens et al. [2013].

In this paper, a low order multivariate polynomial is
used to model the MIMO static nonlinearity to limit the
number of coefficients. The next section presents a method
to decouple the MIMO static nonlinearity to one SISO
static nonlinearity for each branch. The complexity of the
models that describe the decoupled static nonlinearities is
increased in a later step. This decreases the model error,
while keeping the number of parameters in the model
relatively low (compared to a high order MIMO static
nonlinearity).

3.2 Decoupling the static nonlinearity

The decoupling method generates starting values for the
parameters of the decoupled Wiener-Hammerstein model,
described by:

x̃i(k) = H̃ [i](q)u(k), i = 1, . . . , nr (11)

r̃i(k) = f̃ [i](x̃i(k)), i = 1, . . . , nr (12)

ỹ(k) =

nr∑
i=1

S̃[i](q)r̃i(k), (13)

starting from its coupled polynomial representation:

x̂i(k) = Ĥ [i](q)u(k), i = 1, . . . , nbr (14)

r̂i(k) = ĝ[i](x̂(k)), i = 1, . . . , nbr (15)

ŷ(k) =

nbr∑
i=1

Ŝ[i](q)r̂i(k), (16)

where x̂(k) = [x̂1(k), · · · , x̂nbr
(k)]T . As already pointed

out, the decoupling step can increase the number of
branches (nr can be larger than nbr), but the goal is to
keep the number of branches nr small.

Some methods already exist to decouple the polynomial
representations in Volterra models (see Favier and Bouilloc
[2009]), and parallel Wiener models (see Schoukens and
Rolain [2012a]). For example, the method in Schoukens
and Rolain [2012a] splits the polynomial in a sum of
homogeneous polynomials, and uses tensor decomposition
methods to eliminate the cross-terms in each homogeneous
polynomial separately. This technique can be directly ap-
plied to each polynomial ĝ[i](x̂(k)), and is in Tiels and
Schoukens [2013] referred to as “separate decoupling”.
This results in a sum of optimally decoupled polynomial
representations (optimal in the sense of the smallest num-
ber of branches), but the total number of branches is not
necessarily optimal. Two other methods are presented in
Tiels and Schoukens [2013], referred to as “simultaneous
homogeneous” and “simultaneous all”, that can result in
a smaller total number of branches. This is realized by
imposing common factors in the tensor decompositions.
The main idea behind these methods is to impose that the
resulting SISO polynomials share the same input signals,
thus keeping the number of input filters H [i](q) small. The
“simultaneous all” approach suffers from the drawback
that, although the same input dynamics are shared for
all polynomials, the output dynamics in general differ
for different degrees of nonlinearity. Another drawback of
the method is that the coefficients of the resulting SISO
polynomials are all equal to one.

Here we present an improved version of the “simultaneous
all” method. Without loss of generality, the focus is
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on quadratic and cubic polynomials. Compared to the
“simultaneous all” approach in Tiels and Schoukens [2013],
in this paper, branches that share the same input dynamics
are imposed to share the same output dynamics as well.
Moreover, the flexibility of each branch in the decoupled
structure is increased by allowing arbitrary coefficients
β for the SISO polynomials. Although this increases the
complexity of the optimization problem, the increased
flexibility of each branch allows for a smaller total number
of branches.

Assume that ĝ[i](x̂(k)) is the sum of a quadratic and a
cubic homogeneous polynomial:

ĝ[i](x̂(k)) =

nbr∑
j1,j2=1

γ
[i]
j1j2

x̂j1(k)x̂j2(k)

+

nbr∑
j1,j2,j3=1

w
[i]
j1j2j3

x̂j1(k)x̂j2(k)x̂j3(k),

(17)

with Γ[i] the symmetric matrix of polynomial coefficients

γ
[i]
j1j2

, and W [i] the symmetric tensor of polynomial coef-

ficients w
[i]
j1j2j3

. The main tool to decouple these matrices
and tensors will be the canonical polyadic decomposition
(CPD) (see Carroll and Chang [1970], Harshman [1970],
Kolda and Bader [2009]). The CPD approximates a tensor
- in least squares sense - by a sum of rank-one tensors. Say,

for example, that W [i] has a CPD

W [i] ≈
nr∑
r=1

ψ[i]
r pr ◦ pr ◦ pr, (18)

where ◦ denotes the tensor product. This means that
element-wise:

w
[i]
j1j2j3

≈
nr∑
r=1

ψ[i]
r p

[i]
j1r
p
[i]
j2r
p
[i]
j3r
. (19)

The cubic multivariate homogeneous polynomial described

by W [i] is thus transformed into a sum of nr univariate

homogeneous polynomials ψ
[i]
r x̃3r(k), with x̃r = pTr x̂(k).

The CPD is often calculated via an alternating least-
squares (ALS) approach (see e.g. Kolda and Bader [2009]).
Recently, other algorithms to calculate the CPD of a tensor
were proposed in Sorber et al. [2013a] that obtain a better
overall performance than ALS.

To impose that the univariate polynomials, obtained

from decoupling all the matrices Γ[i] and all the tensors

W [i], share the same input signals x̃r, these matrices
and tensors are stacked in a partially symmetric tensor
T ∈ R(nbr+1)×(nbr+1)×(nbr+1)×2×nbr , such that:

T ≈
nr∑
r=1

[
pr
1

]
◦
[
pr
1

]
◦
[
pr
1

]
◦
[
β2r
β3r

]
◦mr, (20)

where,
mjr = φ[j]r , j = 1, . . . , nbr. (21)

The one stacked with the pr vector imposes a partial
symmetry in the matrix, which is used during the decom-
position step. The entries of T are given by 1 2 :
1 Due to symmetry tj1j2(nbr+1)jj4 is also equal to tj1(nbr+1)j2jj4
and t(nbr+1)j1j2jj4 for j = 1, 2.
2 Note that the entries given by (24) and (25) are unknown, however,
this issue can be handled by treating them as missing elements in
the tensor to be decomposed.

tj1j2j32j4 = w
[j4]
j1j2j3

, (22)

tj1j2(nbr+1)1j4 = γ
[j4]
j1j2

, (23)

tj1j2j31j4 ≈
nr∑
r=1

pj1rpj2rpj3rβ2rφ
[j4]
r , (24)

tj1j2(nbr+1)2j4 ≈
nr∑
r=1

pj1rpj2rβ3rφ
[j4]
r , (25)

for j1, j2, j3, j4 = 1, . . . , nbr.

The tensor T is decoupled using the Tensorlab toolbox
by Sorber et al. [2013b] which can handle missing entries
and partial symmetry. This results in a decoupled parallel
Wiener-Hammerstein model, as described by (13). The
input dynamics, SISO polynomials, and output dynamics
of the decoupled model are given by:

H̃ [r](q) =

nbr∑
j=1

pjrĤ
[j](q), (26)

f̃ [r](x̃r(k)) = β2rx̃
2
r(k) + β3rx̃

3
r(k), (27)

S̃[r](q) =

nbr∑
j=1

φ[j]r Ŝ
[j](q), (28)

for r = 1, . . . , nr. The resulting model has nr branches,
where nr is set by the user.

Note that the optimization does not take into account the
actual input/output data. The optimization is only done
starting from the estimated polynomial coefficients. This
allows us to generate relatively quickly decent starting
values for the parameters of the decoupled structure. In
a next step, these parameters can be further optimized
starting from the input/output data.

4. MEASUREMENT EXAMPLE

The proposed method is illustrated on an experimental
setup.

4.1 System and measurement setup

The device under test (DUT) is a 2-branch parallel
Wiener-Hammerstein system. The front and back LTI
blocks of each branch are third order IIR filters. The static
nonlinearity of each branch is realized with a diode-resistor
network.

The signals are generated by an arbitrary waveform gen-
erator (AWG), the Agilent/HP E1445A, at a sampling
frequency of 625 kHz. An internal low-pass filter with a
cut-off frequency of 250 kHz is used as a reconstruction
filter for the input signal. The in- and output signals of
the system are measured by the alias protected acquisition
channels (Agilent/HP E1430A) at a sampling frequency of
78 kHz. The AWG and acquisition cards are synchronized
to avoid leakage errors.

Finally, buffers with a high input impedance, added be-
tween the acquisition cards and the in- and output of the
DUT, avoid that the circuit is loaded by the 50 Ohm input
impedance of the acquisition card. The buffers are very
linear (≈ 85 dBc at full scale and 1 MHz) up to 10 V peak
to peak, and have an input impedance of 1 MΩ and a 50
Ω output impedance.
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4.2 Signal generation

The input signal u(k) is a random phase multisine (see
Pintelon and Schoukens [2012]) containing N = 131072
samples with a flat amplitude spectrum. The excited
frequency band ranges from fs

N to fs
2 , viz.:

u(k) = A

N/2∑
n=1

cos(2πn
fs
N
k + φn), (29)

The phases φn are independent uniformly distributed ran-
dom variables ranging from 0 to 2π. Twenty realizations
of the multisines are used. The input signal is applied at 5
different rms values that are linearly distributed between
100 mV and 1 V.

The signals are measured at a sampling frequency of 78
kHz, which is 8 times slower than the sampling frequency
at the generator side, resulting in N = 16384 samples per
period.

4.3 Model estimation

First, the BLAs of the DUT are estimated at the different
operating points (or input amplitudes in this case). The
BLAs are parameterized using a discrete time LTI model
of order 12 in both the numerator and denominator.

Starting from these BLAs, an initial 2-branch coupled
parallel Wiener-Hammerstein model is estimated. The
model has 2 parallel branches, and the MIMO static
nonlinearity is modeled with a 3rd order multivariate
polynomial. A static nonlinearity of low degree is used such
that the number of parameters in the model description is
limited. However, this simple static nonlinearity is able
to provide sufficiently good initial values for the following
steps.

Next, the low order multivariate polynomial is decoupled
using the approach that is presented in Section 3.2, and a
decoupled parallel 2-branch Wiener-Hammerstein model
with 3rd order polynomial SISO static nonlinearities is
constructed based on this result.

Finally, the static nonlinearities in the low order decoupled
parallel Wiener-Hammerstein model are replaced by poly-
nomials of order 15. A Levenberg-Marquardt optimization
algorithm is applied on the high order decoupled 2-branch
parallel Wiener-Hammerstein model to further optimize
the parameters. In this step, other static nonlinear models
such as artificial neural networks can also be used to model
the static nonlinearities of the model.

4.4 Model validation

The model is validated using a different realization of the
random phase multisines that are described in Section
4.2. The results of the validation are shown in Table 1
and Figure 3. Table 1 shows three figures of merit: the
rms value of the simulation error rms(e), the standard
deviation of the simulation error σe, and the mean value
of the simulation error µe, as defined below:

rms(e) =

√√√√ 1

N

N∑
k=1

e2(k), (30)

σe =

√√√√ 1

N

N∑
k=1

(e(k)− µe)2, (31)

µe =
1

N

N∑
k=1

e(k), (32)

where e(k) is the difference between the measured output
y(k) and the modeled output ŷ(k).

The low order decoupled model has a clear performance
loss compared to the coupled model. However, it provides a
good starting value to further increase the static nonlinear-
ity model complexity for further optimization. Increasing
the model order in the coupled model is very costly in
the number of parameters. Describing the coupled static
nonlinearity with a 15th order multivariate polynomial
would require 136 parameters, where only 32 parameters
are needed to describe the 15th order polynomials of the
decoupled static nonlinear blocks.

The high order decoupled model performs very well. Figure
3 shows that the model error is about 50 dB lower than
the output spectrum for an excitation signal with an rms
value of 550 mV. Furthermore, the model error is about
30 dB lower than the total distortion level of the output
spectrum. The total distortion level includes the noise
distortions and distortions due to the nonlinear behavior
of the system (see Pintelon and Schoukens [2012]). This
shows that the model describes the nonlinear behavior of
the system very well. Finally, the model error is 10 to 20 dB
higher than the noise floor. This suggests that the model
quality can still be improved, for instance by increasing
the order of the static nonlinearity even more.

The static nonlinearities that are present in the high order
decoupled model are shown in Figure 4. They show a
saturating behavior. This is what is to be expected since
the static nonlinearities in the system are generated by
electrical diode-resistor networks.

5. CONCLUSION

This paper presents an improved method to decouple
a MIMO static nonlinearity described by multivariate
polynomials into different SISO polynomial static non-
linearities using tensor decomposition methods. This de-
coupling approach is integrated with a parallel Wiener-
Hammerstein identification method to obtain parallel
Wiener-Hammerstein models with different SISO static
nonlinearities rather than one MIMO static nonlinearity.
The approach is applied on a measurement example to
show the good performance of the proposed method.
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Fig. 4. The estimated static nonlinearity of the first and
second branch of the parallel Wiener-Hammerstein
model are shown in blue triangles and green circles
respectively.

J. D. Carroll and J. J. Chang. Analysis of individual
differences in multidimensional scaling via an N -way
generalization of ”Eckart-Young” decomposition. Psy-
chometrika, 35(3):283–319, 1970.

G. Favier and T. Bouilloc. Parametric complexity re-
duction of Volterra models using tensor decomposi-
tions. In 17th European Signal Processing Conference
(EUSIPCO), pages 2288–2292, Glasgow, Scotland, Aug.
2009.

F. Giri and E.W. Bai, editors. Block-oriented Nonlinear
System Identification, volume 404 of Lecture Notes in
Control and Information Sciences. Springer, Berlin
Heidelberg, 2010.

R.A Harshman. Foundations of the PARAFAC procedure:
Models and conditions for an ”explanatory” multimodal
factor analysis. UCLA Working Papers in Phonetics, 16:
1–84, 1970.

T. G. Kolda and B. W. Bader. Tensor decompositions and
applications. SIAM Rev., 51(3):455–500, 2009.

G. Palm. On representation and approximation of nonlin-
ear systems Part II: Discrete Time. Biological Cybernet-
ics, 34:49–52, 1979.

R. Pintelon and J. Schoukens. System Identification:
A Frequency Domain Approach. Wiley-IEEE Press,
Hoboken, New Jersey, 2nd edition, 2012.

M. Schoukens and Y. Rolain. Crossterm elimination in
parallel Wiener systems using a linear input transfor-
mation. IEEE Trans. Instrum. Meas., 61(3):845–847,
2012a.

M. Schoukens and Y. Rolain. Parametric Identification of
Parallel Wiener Systems. IEEE Trans. Instrum. Meas.,
61(10):2825–2832, 2012b.

M. Schoukens, R. Pintelon, and Y. Rolain. Parametric
Identification of Parallel Hammerstein Systems. IEEE
Trans. Instrum. Meas., 60(12):3931–3938, 2011.

M. Schoukens, G. Vandersteen, and Y. Rolain. An iden-
tification algorithm for parallel Wiener-Hammerstein
systems. In 52nd IEEE Conference on Decision and
Control (CDC), Florence, Italy, Dec. 2013.

L. Sorber, M. Van Barel, and L. De Lathauwer.
Optimization-based algorithms for tensor decomposi-
tions: canonical polyadic decomposition, decomposition
in rank-(Lr, Lr, 1) terms and a new generalization.
SIAM J. Optim., 23(2):695–720, 2013a.

L. Sorber, M. Van Barel, and L. De Lathauwer. Ten-
sorlab v1.0. Available online, February 2013b. URL
http://esat.kuleuven.be/sista/tensorlab/.

K. Tiels and J. Schoukens. From coupled to decou-
pled polynomial representations in parallel Wiener-
Hammerstein models. In 52nd IEEE Conference on
Decision and Control (CDC), Florence, Italy, Dec. 2013.

E.M. Wysocki and W.J. Rugh. Further results on the
identification problem for the class of nonlinear systems
Sm. IEEE Trans. Circuits Syst., 23(11):664–670, 1976.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

510


