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Abstract: Pursuit formation control of double-integrator Multi-Agent Systems (MASs) is
considered in this paper. To achieve a formation, a hierarchical control scheme is proposed
in two layers. In the first layer, in a leaderless architecture, each agent pursues another one in
a cyclic topology to achieve a regular polygon formation around a centroid, namely, pursuit
centroid, and in the second layer, the agents agree on a pursuit centroid around which they
pursue each other. Despite existing cyclic pursuit approaches in the literature which are based
on agents with kinematic models and constant forward speeds, the proposed approach is based
on agents with double-integrator dynamics without speed constraints. Numerical simulations
for a team of six agents confirm the accuracy of the proposed control scheme.
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1. INTRODUCTION

Control of mobile autonomous agents is an interesting
topic of research in the area of control theory and robotics.
Motivated by recent developments in communication net-
works, electronics, sensors technology, and computing sci-
ence, decentralized control of MASs recently has found
many applications such as surveillance, search and rescue
missions, maintenance, monitoring missions, and so on.
These systems provide us opportunities to use simple,
small, and cheap agents instead of employing a sophisti-
cated and large agent, and they are more reliable, robust,
flexible, and precise for doing tasks (Ghommam et al.
[2011], Merino et al. [2012], Palunko et al. [2012]).

Formation control is a challenging problem in the area of
MASs expressed as maintaining relative positions between
agents in a desired geometric pattern. Regarding com-
munication topologies associated with MASs, two classes
of approaches can be considered in formation control,
namely, acyclic and cyclic. In acyclic approaches, all agents
are connected via a directed topology in which there are
no any loops. Therefore, the stability analysis of these ap-
proaches is reduced to two agents: one agent as a follower
which tracks another one as a leader. Hence, the ease of im-
plementation and stability analysis is the main character-
istic of these approaches. However, since no loops exist in
the associated communication topology, no feedbacks are
sent from the followers to their leaders (Lin et al. [2013],
Mesbahi and Hadaegh [2001]). In some applications, to
increase the degree of precision in formation keeping, the
agents track a virtual leader as a reference signal. In other
words, they track a relative position with respect to the
trajectory of the virtual leader, and the formation will be

kept rigid during maneuvers with high precision. However,
the virtual leader cannot find its trajectory autonomously,
and therefore this issue decreases the degree of autonomy
in the MAS (Rezaee et al. [In Press], Tan and Lewis
[1996]). On the other hand, in a cyclic approach, all the
agents are connected via a topology such that each agent
is a follower of other agents and no independent leaders
exist in the MAS.

Cyclic pursuit is a swarming behavior in decentralized
MASs based on cyclic communication topologies. This
scenario is inspired by living organisms in groups such
as beetles and ants to increase the chance of finding
foods or avoiding predators which has found a lot of
engineering applications. Indeed, the rotational motion
around a centroid increases their searching capability
(Behroozi and Gagnon [1975], Marshall and Tsai [2011]).

For the first time, cyclic pursuit was mathematically
studied in Klamkin and Newman [1971], Behroozi and
Gagnon [1975], and Behroozi and Gagnon [1979], and
recently it is applied for formation control of MASs.
For instance, cyclic formation control of single-integrator
kinematics in regular patterns around a centroid was
studied in Lin et al. [2004] in which the centroid was
obtained from an agreement problem. However, first-order
kinematics cannot model a large number of agents in
practice. Hence, considering single-integrator kinematics
restricted its applications. That approach was extended for
unicycle kinematics in Marshall et al. [2004] and Marshall
and Tsai [2011]. In those papers, each agent pursued
another one in a regular polygon formation while all
the agents were rotating on a circle around a centroid.
Since the agents were considered with constant forward
speeds, in the case of identical speeds, they rotated after

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 10054



achieving a regular polygon formation. In this condition,
the direction of the rotation was determined based on
the initial relative information of the agents. Moreover,
the constant forward speeds of the unicycles decreased
the performance of the agents to converge to a desired
formation. A similar approach was proposed in Marshall
et al. [2006] in which each agent speed was proportional to
the distance from the next agent. Those approaches were
extended in Sinha and Ghose [2005] for non-holonomic
first-order agents with different constant forward speeds.
Therefore, since the speeds were not identical, the agents
rotated on orbits with different radiuses, and in Ramirez-
Riberos et al. [2010] and Ramirez-Riberos et al. [2009]
cyclic pursuit in double-integrator agents was studied.
However, in those approaches, it was not feasible to control
the pursuit angular velocity. In other words, the pursuit
angular velocity just depended on the number of agents,
and when the formation radius was large, the agents linear
velocities became large which may not be practical.

In this paper, a hierarchical control scheme for cyclic
pursuit of double-integrator MASs in regular polygon
formations is proposed in two layers. In the first layer
(kinematics level), the desired velocity vector of each
agent is designed under which the agents keep relative
angles around a centroid such that a regular polygon
formation with cyclic pursuit is achieved. Since the MAS
is decentralized, it is supposed that the pursuit centroid of
the agents is not predefined. Therefore, in the second layer
(dynamics level), the agents control inputs are designed
such that while satisfying the kinematics level formulation,
the agents reach agreement on a pursuit centroid around
which they pursue each other. In summary, the main
contributions of the paper can be listed as follows:

- The proposed formation control scheme is based on
double-integrator dynamics. Therefore, it is more
practical than existing approaches in the literature
based on first-order kinematics and unicycles with
constant forward speeds.

- It is feasible to control the cyclic pursuit direction
and angular velocity.

The following notations are considered throughout this
paper. R expresses the set of real numbers, R+ and R−
present the set of positive and negative real numbers, re-
spectively, In is an n×n identity matrix, 0n×m is an n×m
matrix with zero entries,⊗ denotes the Kronecker product,
sgn(.) expresses the sign function, diag(M1,M2, · · · ,Mn)
is a block diagonal matrix composed of matrices M1,
M2, · · · , and Mn, ‖.‖2 presents the magnitude of a vector,
v0 denotes the initial value of a variable v, and eig(.) de-
notes the eigenvalues of a matrix. Moreover, if we consider
C1, C2, · · · , and Cn ∈ R, circ(C1,C2, · · · ,Cn) is called a
circulant matrix which is defined as follows:

circ(C1,C2, · · · ,Cn) =


C1 C2 · · · Cn

Cn C1 · · · Cn−1
...

...
. . .

...
C2 C3 · · · C1

 . (1)

The matrix defined in (1) can be specified by the set
C1,C2, · · · , and Cn which appear in the first row,
and other rows are formed by its previous row that is
right shifted with wrapping around. Moreover, if Ci, i ∈
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Fig. 1. Cyclic pursuit configuration in which each agent
pursues another one with relative degree ϑn where the
motion direction of the agents are depicted by arrows.

{1, 2, · · · , n} is an m×m matrix, then (1) is called a block
circulant matrix.

The paper outline is as follows. Regular polygon forma-
tion control in kinematics level is studied in Section 2.
Dynamics level control for agents agreement on a pursuit
centroid while satisfying the kinematics level formulation
is presented in Section 3. Simulation results are provided in
Section 4, and the paper ends with conclusions in Section
5.

2. CYCLIC PURSUIT IN KINEMATICS LEVEL

Consider a team of n agents which the ith agent position
is denoted by [xi yi] , i ∈ {1, 2, · · · , n}. The objective is
to design the ith agent desired velocity vector, [ẋi ẏi], for
cyclic pursuit in a regular polygon formation with angular
velocity $ ∈ R around a centroid [xc yc]. To achieve this
goal, a leaderless architecture is proposed such that each
agent pursues another agent with a relative angle ϑn on
a circle with centroid [xc yc]. In other words, as shown in
Fig. 1, each agent keeps a relative angle ϑn from another
one such that a regular polygon formation is rotating
around the centroid. This angle depends on the number of
the agents; therefore, if we suppose that each agent pursues
its front agent, a regular polygon formation is achieved if
ϑn = sgn($) 2π

n . Therefore, the desired position of the ith
agent can be stated based on the position of the i + 1th
agent (modulo n) as follows:[

xdi
ydi

]
=

[
xc
yc

]
+

[
cosϑn sinϑn
− sinϑn cosϑn

] [
xi+1 − xc
yi+1 − yc

]
(2)

where
[
xdi y

d
i

]
is the desired position of the ith agent to

achieve a regular polygon formation around the centroid.
Moreover, the agent should rotate while it is keeping the
desired formation defined in (2). The following lemma
proposes a velocity vector for rotating around the centroid.

Lemma 1. (Rezaee and Abdollahi [2014]) In the following
state space equations, the trajectory of the states with
initial values [x0 y0] rotates on a circle with center [xc yc]

and radius
∥∥ [x0 − xc y0 − yc]

∥∥
2

with angular velocity $:

[
ẋ
ẏ

]
=

[
0 −$
$ 0

] [
x− xc
y − yc

]
.

By inspiring from (2) to provide a regular polygon forma-
tion and Lemma 1 to rotate around a centroid, Theorem
1 proposes the agents desired velocity vectors for cyclic
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pursuit in regular polygon formations. At first, let us state
the following lemma which our proof is based on.

Lemma 2. (Davis [1994]) If we define the ith of n roots of

unit by ω = e
2π
n j in which j =

√
−1, the block circulant

matrix defined in (1) can be stated as follows:

circ(C1,C2, · · · ,Cn) = F∗ndiag(D1,D2, · · · ,Dn)Fn

where F∗nFn = In, and
D1

D2

...
Dn

 =
√
n(F∗n ⊗ Im)


C1

C2

...
Cn


where Fn denotes an n×n Fourier matrix which is defined
as follows:

F∗n =
1√
n


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)

 .

Based on Lemma 2, the following theorem is stated.

Theorem 1. Consider a team of nmobile agents. Keeping a
regular polygon formation around a centroid [xc yc], each
agent pursues its front agent with angular velocity $, if
the ith agent velocity vector is defined as follows:

[
ẋi
ẏi

]
=

[
−λ −$
$ −λ

] [
xi − xc
yi − yc

]
+[

λ cosϑn λ sinϑn
−λ sinϑn λ cosϑn

] [
xi+1 − xc
yi+1 − yc

]
(3)

where λ ∈ R+.

Proof. Considering (3), if we define xi = [xi − xc yi − yc]>
one can get:

ẋi =

[
−λ −$
$ −λ

]
xi +

[
λ cosϑn λ sinϑn
−λ sinϑn λ cosϑn

]
xi+1 (4)

which can be written for the whole MAS as follows:
ẋ1

ẋ2

...
ẋn

 = C


x1

x2

...
xn


where C = circ(C1,C2,02×2, · · · ,02×2) and

C1 =

[
−λ −$
$ −λ

]
,C2 =

[
λ cosϑn λ sinϑn
−λ sinϑn λ cosϑn

]
.

By Lemma 2, C can be stated by its diagonalized form as
follows:

C = (F∗n ⊗ I2)diag(D1,D2, · · · ,Dn)(Fn ⊗ I2)

where D1,D2, · · · , and Dn can be stated as:

D1 = C1 + C2,

D2 = C1 + ωC2,

...
...

...

Dn = C1 + ωn−1C2.

(5)

Therefore, the eigenvalues of C are the set of the eigen-
values of Di, i ∈ {1, 2, · · · , n} which from (5) it follows
that:

Di =

[
−λ(1− ωi−1 cosϑn) −$ + ωi−1λ sinϑn
−(−$ + ωi−1λ sinϑn) −λ(1− ωi−1 cosϑn)

]
.

Hence, one can get:

eig(C) = −λ(1−ωi−1 cosϑn)∓ j(−$+ωi−1λ sinϑn). (6)

To analyze the eigenvalues of C, they should be decom-
posed into real and imaginary terms. Hence, from (6), since

ω = e
2π
n j it can be stated that:

eig(C) = −λ
(
1− cos(σi ∓ ϑn)

)
∓ j
(
−$∓ λ sin(σi ∓ ϑn)

)
where σi = 2π(i−1)

n . In other words, eig(C) is the union of
the sets E1 and E2 where

E1 = −λ
(
1− cos(σi − ϑn)

)
− j
(
−$ − λ sin(σi − ϑn)

)
,

E2 = −λ
(
1− cos(σi + ϑn)

)
+ j
(
−$ + λ sin(σi + ϑn)

)
.

At first, let us analyze E1. Two conditions are considered
to analyze E1:

i) i 6= 2: Since ϑn = 2π
n , in this condition, one can get

σi − ϑn 6= {0, 2π}, i ∈ {1, 3, 4, · · · , n}. Hence:

−1 ≤ cos(σi − ϑn) < 1,

and since λ ∈ R+ one can get −λ
(
1 − cos(σi −

ϑn)
)
< 0, i.e., E1 contains n − 1 eigenvalues on the

open left half plane.
ii) i = 2: In this condition, σi − ϑn = 0; therefore, one

can say that cos(σi − ϑn) = 1 and sin(σi − ϑn) = 0.
Hence, E1 = j$, i.e., j$ is the nth eigenvalue in the
set E1.

For E2, when i 6= n, we get the same results as E2 in a case
that i 6= 2, and if i = n, then E2 = −j$. In other words,
−j$ is the nth eigenvalue of the set E2.

Therefore, according to the above-mentioned issues, C
has 2n − 2 eigenvalues on the open left half plane and
2 eigenvalues on ∓j$. Since all the eigenvalues on the
open left half plane will not appear in the steady state
response (as t → ∞), it means that xi has a steady

sinusoidal response with frequency |$|
2π , and since xi =

[xi − xc yi − yc]>, the vector [xi yi] rotates around [xc yc]

with frequency |$|
2π . In this condition, since each agent

steady state has 2 eigenvalues on ∓j$, considering (4)
its behavior can be described by one of the following two
systems:

i) [xi yi] rotates around [xc yc] with angular velocity $;
therefore, it can be said that:[

ẋi
ẏi

]
=

[
0 −$
$ 0

] [
xi − xc
yi − yc

]
. (7)

ii) [xi yi] rotates around [xc yc] with angular velocity
−$; therefore, one can get:[

ẋi
ẏi

]
=

[
0 $
−$ 0

] [
xi − xc
yi − yc

]
. (8)

By the first system, considering (3) and (7) one can
conclude:[

xi
yi

]
=

[
xc
yc

]
+

[
cosϑn sinϑn
− sinϑn cosϑn

] [
xi+1 − xc
yi+1 − yc

]
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which implies that while the agents are rotating with
angular velocity $ around the centroid [xc yc], each agent
reached the desired position defined in (2), and a regular
polygon formation is obtained.

By the second system, since xi = [xi − xc yi − yc]>, if (8)
is substituted into (4), it can be said that:

[
−λ 2$
−2$ −λ

]
xi +

[
λ cosϑn λ sinϑn
−λ sinϑn λ cosϑn

]
xi+1 = 02×1

which can be written for the whole MAS as follows:

C̃


x1

x2

...
xn

 = 02n×1 (9)

where C̃ = circ(C̃1,C2,02×2, · · · ,02×2) and

C̃1 =

[
−λ −2$
2$ −λ

]
.

Similar to C, C̃ has 2n−2 eigenvalues on the open left half

plane and 2 eigenvalues on ∓j2$. Therefore, det(C̃) 6= 0,
and from (9) one can get:

x1

x2

...
xn

 = 02n×1.

It means that all the agents have identical initial positions
which are not feasible. Therefore, the ith agent behavior,
i ∈ {1, 2, · · · , n}, cannot be described by (8). Its behavior
should be described by (7) which means that while keeping
a regular polygon formation around the centroid [xc yc],
each agent pursues its front agent with angular velocity
$, and this proves the theorem. �

Remark 1. In the proposed approach, it was supposed that
ϑ = sgn($) 2π

n . In other words, each agent pursues its
front agent. However, a similar procedure can prove the
proposed theorem when ϑ = −sgn($) 2π

n .

Therefore, Theorem 1 designs agents desired velocity vec-
tors for cyclic pursuit with angular velocity $ while keep-
ing a regular polygon formation. The following example
confirms the accuracy of the proposed formation control
strategy.

Example 1. Consider a MAS containing six agents with
initial positions [3 − 4], [6 4], [0 7], [−3 5], [1 2], and
[1 − 6], respectively. By satisfying the desired velocity
vector defined in (3), when [xc yc] = [0 0], $ = 0.2, and
λ = 4, a counter-clockwise cyclic pursuit of the six agents
in a hexagonal formation is obtained which is depicted in
Fig. 2.

It should be noted that the MAS is decentralized, and to
increase the MAS autonomy, the pursuit centroid defined
in (3) should not be known a priori. In the next section,
while satisfying the kinematics level formulation of Theo-
rem 1, the agents control inputs are designed in order to
agree on a pursuit centroid around which a regular polygon
formation with cyclic pursuit is achieved.

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

x
y

 

 

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5
Agent 6

Fig. 2. The cyclic pursuit of the six agents in Example 1.

3. PURSUIT CENTROID AGREEMENT IN
DYNAMICS LEVEL

Based on the obtained results is kinematics level in Section
2, this section proposes a dynamics level control strategy to
achieve a regular polygon formation of double-integrator
MASs with cyclic pursuit around a non-predefined cen-
troid. To achieve this goal, the pursuit centroid of each
agent of Theorem 1 is modeled by a single-integrator.
Therefore, all the pursuit centroids should agree on a
value as the centroid of a regular polygon formation via
an agreement strategy. Lemma 3 proposes an agreement
strategy for single-integrator kinematics.

Lemma 3. (Marshall et al. [2004]) Consider n single-
integrator agents updated as follows:

ξ̇i = α(ξi+1 − ξi), i ∈ {1, 2, · · · , n}
where ξi ∈ R is the ith agent state and α ∈ R+. Then, all
the states converge to the average of their initial values.

Therefore, inspired by Lemma 3, the following theorem is
proposed for cyclic pursuit of double-integrator MASs in
a regular polygon formation around a centroid which will
be obtained from an agreement strategy.

Theorem 2. Consider the following double-integrator MAS:[
ẍi
ÿi

]
=

[
uxi
uyi

]
, i ∈ {1, 2, .., n}

where [xi yi] is the position, and [uxi uyi] is the ith agent
control input vector. Keeping a regular polygon formation
around a non-predefined centroid, each agent pursues its
front agent with angular velocity $, if the ith agent control
input is as follows:

[
uxi
uyi

]
= Ξ̇i + α

([
ẋi+1

ẏi+1

]
−
[
ẋi
ẏi

]
+ Ξi − Ξi+1

)
(10)

where α ∈ R+, and
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Ξi =

[
−λ $
−$ −λ

] [
xi
yi

]
+

[
λ cosϑn λ sinϑn
−λ sinϑn λ cosϑn

] [
xi+1

yi+1

]
.

Proof. The agents desired velocity vectors for cyclic pur-
suit in a regular polygon formation around a centroid
[xc yc] was proposed in Theorem 1. Now, if the pursuit
centroid in Theorem 1 is not pre-defined, a variable pur-
suit centroid [xci y

c
i ] can be defined for the ith agent. In

this condition, while satisfying the desired velocity vec-
tors designed in Theorem 1, the agents pursuit centroids
should reach agreement on a common value. Therefore,
considering (3) it can be said that:[

ẋi
ẏi

]
=

[
−λ $
−$ −λ

] [
xi − xci
yi − yci

]
+[

λ cosϑn λ sinϑn
−λ sinϑn λ cosϑn

] [
xi+1 − xci
yi+1 − yci

]
. (11)

Note that from Theorem 1, since zero is not an eigenvalue
of C1 + C2, det(C1 + C2) 6= 0. Hence, by (11) one can
conclude:

[
xci
yci

]
= (C1 + C2)−1

(
Ξi −

[
ẋi
ẏi

])
. (12)

To achieve agreement on a pursuit centroid, inspired by
Lemma 3, the ith agent pursuit centroid should be updated
as follows: [

ẋci
ẏci

]
= α

([
xci+1
yci+1

]
−
[
xci
yci

])
. (13)

Substituting (12) into (13) yields:

(C1 + C2)−1
(

Ξ̇i −
[
ẍi
ÿi

])
=

α(C1 + C2)−1
(

Ξi+1 −
[
ẋi+1

ẏi+1

]
− Ξi +

[
ẋi
ẏi

])
which implies that:[

ẍi
ÿi

]
= Ξ̇i + α

([
ẋi+1

ẏi+1

]
−
[
ẋi
ẏi

]
+ Ξi − Ξi+1

)
. (14)

Therefore, to satisfy the agreement strategy defined in
(13), (14) should be satisfied, and the control input defined
in (10) guarantees this. Therefore, considering all the
above-mentioned issues, a common pursuit centroid will
be obtained for (11). On the other hand, considering the
results of Theorem 1 for (11), a regular polygon formation
of the agents with cyclic pursuit around the centroid with
angular velocity $ is obtained. Therefore, the proof is
completed. �

Hence, Theorem 2 proposes a control strategy for cyclic
pursuit of double-integrator MASs in regular polygon
formations. The following section verifies the accuracy of
the proposed control strategy via a simulation example.

4. SIMULATION RESULTS

Consider six double-integrator agents to achieve a hexago-
nal formation with cyclic pursuit. The positions and veloc-
ities of the agents are initialized with the values presented
in Table 1. Furthermore, let us consider $ = −0.5, λ = 1,
and α = 5.

Table 1. The Initial Conditions of the Agents

Agent Position Velocity
1 [7 − 8] [0.5 1]
2 [0.5 − 6] [−0.5 − 1]
3 [−1.5 − 1.5] [−1 2]
4 [1 5] [2 0]
5 [8 2] [1 − 2.5]
6 [6 − 1] [4 − 1.5]

By employing the formation control strategy defined in
(10), the trajectories of the agents pursuit centroids are
depicted in Fig. 3 which show that the agreement is
achieved. Moreover, the agents trajectories are depicted
in Fig. 4, and Fig. 5 demonstrates the angular velocities of
the agents around the agreed centroid. The figures confirm
that the agents pursue each other in a hexagonal formation
with angular velocity −0.5.

0 1 2 3 4 5 6 7 8 9
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

y

 

 

Centroid 1
Centroid 2
Centroid 3
Centroid 4
Centroid 5
Centroid 6

Fig. 3. The agents agreement on a pursuit centroid.

5. CONCLUSIONS

Cyclic pursuit of double-integrator MASs in regular poly-
gon formations was studied in this paper. In a hierarchical
architecture, two layers were introduced. In the first layer,
the agents desired velocity vectors were designed such
that they reached a regular polygon formation with cyclic
pursuit around a centroid. Then, in the second layer, the
agents agreed on a pursuit centroid around which they
pursued each other. Despite existing approaches in the
literature for cyclic pursuit of MASs in regular polygon
formations, the proposed approach was based on agents
with double-integrator dynamics. Moreover, in the pro-
posed approach, it was feasible to control the cyclic pursuit
direction and angular velocity.
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Fig. 4. The hexagonal formation of the agents with cyclic
pursuit.
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Fig. 5. The agents angular velocities around the agreed
centroid.
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