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Abstract: There are numerical tools for representation, editing and simulation of continuous-
time state space models, e.g. numerous block-based tools like SIMULINK. Algorithms for
numerical and symbolical linearization are available but structurally fail to compute models
where nonlinear effects are essential. The paper presents a numerical method to find a
multilinear model as approximation which is valid in appropriate regions usually given by
the engineering application. The approximate model belongs to the class of Multilinear Time
Invariant systems (MTI systems) which can be represented within a tensor framework and thus,
tensor decomposition methods are applicable. The proposed approximation algorithm is applied
to a test case of a chemical system, which is inherently nonlinear and simulation results show
the improvement of the approximation of the behaviour compared to a linear model.
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1. INTRODUCTION

This paper provides a multilinearization method for non-
linear state space models. This task is formulated as a
minimization problem. The solution can be given in terms
of an orthogonality condition yielding a multilinear model
in tensor representation which was introduced in Lichten-
berg [2011]. The method is implemented numerically for
the case that no analytical representation of the model is
known, but e.g. a SIMULINK model can be evaluated.

The validity of our approach is illustrated by an example.
A model of a chemical system is derived. By investigation
of mass and energy balances which form the basis of
the model, one can observe many multilinear terms, i.e.
different states or inputs are multiplied but no squares
or higher orders of the states or inputs occur. Systems
that are modeled e.g. by mass, energy or heat balances
like chemical systems or heating systems often show an
inherent multilinear structure. Thus multilinearization of
similar systems should give good approximation results.

The multilinearity of heating systems was the inspiration
to model them as tensor systems, cf. Pangalos et al. [2013].
Tensor calculus is an active field of research, see e.g. Hack-
busch [2012]. We have already shown that standard ten-
sor decomposition methods are applicable to tensor sys-
tems, Pangalos et al. [2013].

The paper is organized as follows. Section 2 gives an
introduction to tensor systems and is followed by the
multilinearization method in Section 3. An application
example is provided in Section 4; conclusions are drawn
in Section 5.

? This work was partly supported by the project ModQS of the
Federal Ministry of Economics and Technology, Germany.

2. TENSOR SYSTEMS

In this section tensor systems are introduced for which the
definitions can be found in Lichtenberg [2011] or Lichten-
berg [2010]. A first example states a multilinear system in
matrix form. A translation to a tensor system is provided.
Throughout the paper it is assumed that all states can
be measured. An output function is not considered in this
paper.
First the monomial vector is introduced to state the
multilinear state space.

Definition 1. The monomial vector is defined as

m(x,u)=

(
1
um

)
⊗ · · · ⊗

(
1
u1

)
⊗
(

1
xn

)
⊗ · · · ⊗

(
1
x1

)
(1)

where x ∈ Rn with elements xi, i = 1, . . . , n is the state
vector and u ∈ Rm with elements uj , j = 1, . . . ,m is the
input vector and ⊗ denotes the Kronecker product.

For ease of notation β will be an abbreviation for 2n+m.
The state transition function of a multilinear state space
model in matrix representation is given by

ẋ = Fm(x,u) , (2)

where F ∈ Rn×β is the transition matrix.

Example 2.1. A second order model with one input reads

(
ẋ1

ẋ2

)
=

(
f11 f12 f13 f14 f15 f16 f17 f18

f21 f22 f23 f24 f25 f26 f27 f28

)


1
x1

x2

x1x2

u
ux1

ux2

ux1x2


. (3)

Proposition 2. Consider linear transformations for states
and inputs xi = aix̃i + bi and uj = an+j ũj + bn+j , with
indices i= 1, . . . , n and j = 1, . . . ,m. The state transition
function in the transformed coordinates is given by
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F̃ = diag
i=1,...,n

(
ai
−1
)
FT

with diag denoting the diagonal matrix with elements a−1
i

and a transformation matrix

T =

(
1 0

bn+m an+m

)
⊗ · · · ⊗

(
1 0
b1 a1

)
.

Proof: Inserting the state xi and input uj transformations

with ẋi = ai ˙̃xi in (2) leads to

˙̃x = diag
i=1,...,n

(
ai
−1
)
FTm(x̃, ũ) = F̃m(x̃, ũ). �

The state transition function in matrix representation (2)
is translated to a state transition tensor in the following.
We need standard definitions of tensors and contracted
products, which can be found e.g. in Kolda and Bader
[2009] or Cichocki et al. [2009].

Definition 3. A Tensor

X ∈ RI1×I2×···×In
of order n is an n-way array where elements xi1i2···in are
indexed by ij ∈ {1, 2, . . . , Ij} for j = 1, . . . , n.

Definition 4. A canonical polyadic (CP) tensor

K = [X1,X2, . . . ,Xn] · λ ∈ Rr1×r2×···×rn

is a tensor of dimension r1 × · · · × rn, with elements given
by the sums of the outer products of the column vectors
of so-called factor matrices Xi ∈ Rri×r, weighted by the
elements of the so-called weighting or parameter vector λ.
An element of the tensor K is given by

Kjk...p =

r∑
i=1

λi (X1)ji (X2)ki . . . (Xn)pi .

If no weighting vector is given, it is assumed to be a vector

of ones, i.e. λ = (1 1 · · · 1)
T

.

Definition 5. The contracted product of two tensors X
and Y with X∈RI1×···×In×In+1×···×In+m and Y∈RI1×···×In

〈X |Y 〉 (k1, . . . , km)=

I1∑
i1=1

· · ·
In∑
in=1

xi1...ink1...kmyi1...in, (4)

with ki ∈ {1, 2, . . . , In+i}, i = 1, . . . ,m is a tensor of
dimension In+1 × · · · × In+m .

The notation R×(n+m)2 will denote the space R

n+m times︷ ︸︸ ︷
2×...×2

.
The state transition function of a tensor system is given
in terms of a contracted tensor product

ẋ = 〈F |M(x,u) 〉 , (5)

with the state transition tensor F ∈ R×(n+m)2×n and the
monomial CP tensor

M(x,u)=

[(
1
um

)
,. . .,

(
1
u1

)
,

(
1
xn

)
,. . .,

(
1
x1

)]
∈ R×

(n+m)2.

The scalar elements of a tensor of dimension R×(n+m)2

are indexed by a subscript vector i = (i1 · · · iβ). Since
every element of i can take 2 values, i.e. 1 or 2, there
are 2n+m different index vectors possible. They are de-
noted by ii, i=1, . . . , 2n+m. Thus the elements of M(x,u)
are given by µii(x,u). Since the state transition tensor F
has one additional dimension its scalar elements are de-
noted by ϕii,j with j=1, . . . , n indexing the last dimen-
sion.
As contracted products can efficiently be computed in CP
form, a decomposition

F = [Fum , . . . ,Fu1
,Fxn , . . . ,Fx1

,FΦ] · λf (6)

of the state transition tensor having rx factors is desirable
as illustrated by Example 2.1.

Let O = (1 0)
T

and I = (0 1)
T

for better readability. With
factor matrices

Fx1
= (O I O I O I OIO I O I O I OI )

Fx2
= (OO I I OO I IOO I I OO I I )

Fu = (OOOO I I I IOOOO I I I I )

FΦ =
(

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
)
,

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

and a 16 elements parameter vector

λf = ( f11 f12 f13 f14 f15 f16 f17 f18 . . .

f21 f22 f23 f24 f25 f26 f27 f28 )T

the state transition tensor

F = [Fu,Fx2 ,Fx1 ,FΦ] · λf
can be constructed. The contracted product of the decom-
posed tensors can be calculated by simple matrix opera-
tions see Lichtenberg [2011]

〈F |M(x,u) 〉 = FΦ

(
λf ~

(
FTu

(
1
u

))
~ · · ·(

FTx2

(
1
x2

))
~

(
FTx1

(
1
x1

)))
, (7)

where the Hadamard (elementwise) product is denoted
by ~. The contracted product (7) is equal to the right
hand side of the transition equation (3).

3. MULTILINEARIZATION METHOD

In this part we look for a multilinear approximation

h(x)=〈F |M(x) 〉=
2n∑
i=1

ϕiiµii(x) (8)

=ϕi1·1+ϕi2·x1+ϕi3·x2+ϕi4·x1x2+· · ·+ϕiβ·x1x2· · ·xn
with x ∈ Rn and F ∈ R×(n)2 of a given nonlinear
function f(x). Here β is equal to 2n. The approximation
should be valid in a certain domain D ⊂ Rn

xi ∈ [xi,l, xi,u] , i = 1, . . . , n,

which is bounded by the fixed extreme values xi,l<xi,u of
the variables. The approach will be extended in subsec-
tion 3.3 to approximate nonlinear systems.

3.1 Approximation problem

To find the best multilinear approximation h(x) of a non-
linear function f(x), a measure for the distance between
approximation and original function has to be defined.
The inner product space of the nonlinear functions f(x)
is denoted by N with the inner product of two func-
tions f1(x) ∈ N and f2(x) ∈ N

〈f1(x), f2(x)〉w :=

∫
D

f1(x)f2(x)w(x) dx, w(x) > 0, (9)

where w(x) is a weighting function used to define the
importance of good approximation properties for certain
regions in the domain D. With this inner product a norm

‖f(x)‖w :=
√
〈f(x), f(x)〉w (10)

can be defined. The space of multilinear functions M
is a subset of N . The approximation problem can be
formulated as follows
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min
h(x)∈M

‖h(x)− f(x)‖w . (11)

The solution is the best approximation h(x) ∈ M of
the nonlinear function f(x) with respect to the given
norm (10). Since N is an inner product space it is strict
convex and the approximation problem has a unique
solution, Schaback and Werner [1992]. A polynomial h(x)
solves this problem (11), if and only if the orthogonality
condition〈

ĥ(x), h(x)− f(x)
〉
w

= 0, ∀ĥ(x) ∈M (12)

is fulfilled, Kincaid and Cheney [1996]. This means
that h(x) is the best approximation of f(x), if and only
if the difference between h(x) and f(x) is orthogonal to

all other elements ĥ(x) ofM. A base {µi1(x), . . . , µiβ (x)}
of M is given by the elements of the monomial ten-
sor M(x). This base is called monomial base in the fol-

lowing. The function ĥ(x) can be expressed with respect
to the monomial base {µii(x)} like h(x) in (8)

ĥ(x) =
〈
F̂ |M(x)

〉
=

2n∑
k=1

ϕ̂ikµik(x), (13)

with F̂ ∈ R×(n)2. Inserting (13) in (12) leads to〈
2n∑
k=1

ϕ̂ikµik(x) , h(x)− f(x)

〉
w

= 0. (14)

This results in a linear system of 2n equations

〈µik(x), h(x)− f(x)〉w = 0, k = 1, . . . , 2n. (15)

The unknowns of these equations are the coefficients ϕii
of the function h(x). Inserting (8) and rearranging gives

2n∑
i=1

ϕii〈µik(x),µii(x)〉w=〈µik(x),f(x)〉w, k=1, . . . , 2n. (16)

Now it is possible to represent (16) as matrix equation

Φ

ϕi1
...
ϕiβ

 =

 〈f(x), µi1(x)〉w
...〈

f(x), µiβ (x)
〉
w

 , (17)

with

Φ =

〈µi1(x), µi1(x)〉w · · ·
〈
µi1(x), µiβ (x)

〉
w

...
. . .

...〈
µiβ (x), µi1(x)

〉
w
· · ·
〈
µiβ (x), µiβ (x)

〉
w

 . (18)

The solution of (17) are the desired coefficients of the
best approximation h(x) = 〈F |M(x) 〉, Ackleh [2010].
The matrix Φ is called Gramian matrix. It is difficult
to solve (17) reliably because the Gramian matrix is ill
conditioned, therefore we try to simplify the system by
choosing an appropriate base of M.

3.2 Orthonormalization

An orthonormal base {µi1(x), . . . , µiβ
(x)} of M is com-

puted to simplify (17) which means that〈
µii(x), µij (x)

〉
w

=

{
0 for i 6= j

1 for i = j
∀i, j = 1, . . . , 2n. (19)

A tensor M(x) ∈ R×(n)2 with the orthonormal base
elements µii(x), i = 1, . . . , 2n is constructed in conformity
with M(x) and its elements µii(x). To orthonormalize the

monomial base the orthogonalization algorithm of Gram-
Schmidt is applied, Ackleh [2010]. It iteratively gives the
new basis vectors

µi1(x)=
µi1(x)

‖µi1(x)‖w
,

µik
(x)=

µik(x)−
k−1∑
i=1

〈
µik(x), µii(x)

〉
w
µii(x)∥∥∥∥µik(x)−

k−1∑
i=1

〈
µik(x), µii(x)

〉
w
µii(x)

∥∥∥∥
w

, k=2, . . . ,β.

Now the matrix (18) can be computed with the orthonor-
mal base

{
µii(x)

}
. Because of orthonormality all off-

diagonal elements of Φ are zero and the diagonal elements
are equal to one. Therefore the matrix equation reads

Iβ

ϕi1
...
ϕiβ

 =


〈
f(x), µi1(x)

〉
w

...〈
f(x), µiβ

(x)
〉
w

 , (20)

where Iβ denotes a 2n×2n identity matrix. By solving this
system of equations, the parameters ϕii of the multilinear
approximation h(x) of the function f(x) with respect to
the orthonormal base {µii(x)} are identified resulting in

h(x) =

2n∑
i=1

ϕiiµii(x) =
〈
F
∣∣M(x)

〉
. (21)

The elements of the tensor F ∈ R×(n)2 are computed
by (20) as

ϕii =
〈
f(x), µii(x)

〉
w
, ∀i = 1, . . . , 2n , (22)

which is the orthogonal projection of the nonlinear func-
tion f(x) on the orthonormal base polynomials, Kincaid
and Cheney [1996]. The orthonormal and the monomial
base span the same space M, thus all elements of the
orthonormal base can be expressed by a linear combination
of the monomial base elementsµi1(x)

...
µiβ

(x)

 =

ϑ11 · · · ϑ1β

...
. . .

...
ϑβ1 · · · ϑββ


µi1(x)

...
µiβ (x)

 . (23)

Inserting (23) in (21) leads to the function

h(x) =

2n∑
i=1

ϕiiµii(x) = 〈F |M(x) 〉 , (24)

which is the same as (21) but is now expressed with respect
to the base {µii} given by the monomial tensor. This
is the multilinear approximation h(x) of the nonlinear
function f(x) that minimizes (11).

3.3 Extension to nonlinear systems

The main purpose of this paper is to find a multilinear
approximation

ẋ = 〈F |M(x,u) 〉 = (h1(x,u) · · · hn(x,u))
T

(25)

of a given nonlinear system

ẋ = f(x,u) = (f1(x,u) · · · fn(x,u))
T

(26)

with n states x and m inputs u. The approximation should
be valid in a certain domain D, which is bounded by the
intervals of the operating range of the variables

xi ∈ [xi,l, xi,u] , i = 1, . . . , n , (27)

uj ∈ [uj,l, uj,u] , j = 1, . . . ,m. (28)
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The interval boundaries xi,l < xi,u and uj,l < uj,u of the
operation range are usually given by the engineering ap-
plication. Because of the n + m variables of the func-
tion f(x,u), β is equal to 2n+m here.
The approach of sections 3.1 and 3.2 is applicable to each
of the functions fj(x,u), j = 1, . . . , n in (26) to compute
the approximations hj(x,u) elementwise

hj(x,u)=〈F |M(x,u) 〉(j)=

2n+m∑
i=1

ϕii,jµii(x,u),∀j=1, . . . , n,

with the monomial tensor M(x,u) ∈ R×(n+m)2 with scalar

elements µii and the state transition tensor F∈R×(n+m)2×n

with scalar elements ϕii,j . Thus the approximation prob-
lem is given for each function fj(x,u), j = 1, . . . , n by

min
hj(x,u)∈M

‖hj(x,u)− fj(x,u)‖w ,∀j = 1, . . . , n . (29)

The tensor system

ẋ = 〈F |M(x,u) 〉 =
〈
F
∣∣M(x,u)

〉
(30)

with the orthonormal base
{
µii(x,u)

}
minimizes (29)

analogous to (22) if the scalar elements of F are equal to

ϕii,j=
〈
fj(x,u), µii(x,u)

〉
w
,∀i=1,. . .,β, ∀j=1,. . .,n. (31)

Inserting (23) in (30) gives the desired coefficients ϕii,j

of F with respect to the monomial base {µii(x,u)} result-
ing in the tensor system (25) which is the best approxima-
tion of the nonlinear system (26) with respect to the given
norm (10).

3.4 Numerical implementation

Up to this point the system (26) to be approximated was
assumed to be known analytically. Here the application
of the multilinearization method to a nonlinear model
realized in SIMULINK is investigated. One way to com-
pute the introduced method is numerically. The resulting
changes will be shown in the following.

The SIMULINK model has to be evaluated in a sufficiently
large number N of sampling points for each of the vari-
ables x1, . . . , xn and u1, . . . , um in the operating range of
the system to get the dataset

(xi,uj , f(xi,uj)),∀i = 1, . . . , Nn, ∀j = 1, . . . , Nm. (32)

Since the nonlinear model is only known in the sampling
points, numerical integration has to be used to compute
the inner product (9), e.g. by using the trapezoidal rule,
Phillips and Taylor [1996].

Because of the inaccuracies introduced by numerical in-
tegration the calculation of the parameters ϕii,j contains
some errors. These errors gain influence if arbitrary large
intervals are used for the variables x and u. A large
error occurs if the intervals (27) and (28) contain high
offsets, e.g. if the states or inputs represent temperatures
in Kelvin. As a consequence the polynomials of the or-
thonormal base {µii(x,u)} get large coefficients in the
offset terms. Calculating the parameters of the multilinear
approximation by (31) numerically introduces some errors
in the parameters ϕii,j . Multiplying these parameters with
the large coefficients of the orthonormal base polynomials
in
〈
F
∣∣M(x,u)

〉
amplifies the error, such that there will

be a large error of the parameters ϕii,j with respect to the
monomial base polynomials µii(x,u) in 〈F |M(x,u) 〉. To
avoid such numerical problems it is necessary to scale the

variables to fixed intervals as shown in Section 2 resulting
in the scaled data set

(x̃i, ũj , f(x̃i, ũj)), ∀i = 1, . . . , Nn, ∀j = 1, . . . , Nm. (33)

Computing the multilinear approximation of the system
in the scaled variables x̃ and ũ gives the tensor sys-

tem ˙̃x =
〈
F̃ |M(x̃, ũ)

〉
, which can be transformed by (4)

to get the system 〈F |M(x,u) 〉 with variables x and u in
the desired intervals (27) and (28).

Another problem occurs if a model with a large number of
states n and inputs m is approximated, which is often the
case for real plants. The increase of the number of states
and inputs n+m leads to an exponential increase of the
number n 2n+m of parameters that have to be identified.
The number of sampling points in the data set (32)
increases by Nn+m. This leads to a high computational
effort. Having a closer look at some examples of systems
with an inherently multilinear structure one can see that
often many parameters in F are equal to zero especially
the coefficients related to monomials where many states
and inputs are multiplied.

Definition 6. The multilinear order describes the number
of variables that are multiplied in a multilinear monomial.

A function of maximal multilinear order k has only mono-
mials with an order lower or equal to k. Bounding the
maximal multilinear order for the approximation leads
to less parameters to be identified. The parameters con-
cerning the higher order terms are set to 0. The number
of elements in the multilinear bases {µii} and {µii} are
reduced too. Table 1 shows the number of parameters for
different maximal multilinear orders ηi(n), i = 1, 2, 3 of
a function with n variables. The index i describes the
maximal multilinear order.

n full order η1(n) η2(n) η3(n)

1 2 2 2 2

2 4 3 4 4

3 8 4 7 8

4 16 5 11 15

5 32 6 16 26

6 64 7 22 42

7 128 8 29 64

8 256 9 37 93

9 512 10 46 130

10 1024 11 56 176

11 2048 12 67 232

12 4096 13 79 299

.

..
.
..

.

..
.
..

.

..

Table 1. Number of parameters for a system of
certain order

The necessary steps to perform a multilinearization of a
SIMULINK model can be summarized as follows.

Algorithm 1. Multilinearization

• Choose a maximal multilinear order,
• Specify the operation range D of the system,
• Choose the number N of sampling points for x and u
• Evaluate the SIMULINK model in the sampling

points to get the dataset (32),
• Orthonormalize the monomial base of chosen order
• Scale the determined data to the interval [−1, 1],
• Calculate the parameters of the best multilinear ap-

proximation ˙̃x =
〈
F̃ |M(x̃, ũ)

〉
of the scaled system
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• Inverse transformation of the parameters in F̃ by (4)
to get the tensor F and thus the best multilinear
approximation (25) of the nonlinear model in the
desired operating range D.

4. APPLICATION

In this section the proposed multilinearization method is
applied to a chemical system and simulation results are
shown. The model belongs to a class of systems which can
not be described appropriately by LTI models from an
application point of view.

4.1 Chemical system

The model of the chemical system consists of a reactor with
inflow and outflow, a stirrer and jacket cooling, see Fig. 1
and is called constant stirred tank reactor (CSTR). It is
often used in industrial applications, e.g. for cyclopentenol
production, cf. Chen and Allgöwer [1998].

Q̇

A, B, C, D

V̇, Tr, cA, cB

A

V̇, Tin, cA,in

Tj

Vr, Tr, cA, cB

Fig. 1. Constant stirred tank reactor (CSTR)

The model was introduced by Engell and Klatt [1993] as
benchmark process for nonlinear controllers. The reaction
taking place inside the reactor follows the reaction scheme
of van de Vusse

A → B → C, 2A → D.

The educt A reacts to the desired product B. Two byprod-
ucts C and D arise out of unwanted side reactions. The
production of B is influenced by the user by controlling
the volume flow of the inflowing educt A and the power
of the jacket cooling. The constituent reactions inside the
reactor are modeled by mass and energy balances resulting
in a model with 4 states and 2 inputs

x = [cA cB Tr Tj ]
T
, u =

[
V̇

Vr
Q̇

]T
, (34)

where cA is the concentration of educt A, cB is the
concentration of product B, Tr is the temperature inside
the reactor and Tj is the temperature of the jacket. The

input u1 is the incoming volume flow V̇ related to the
volume Vr of the reactor. The inflow contains the educt A
with a concentration of cA,in and has the temperature Tin.
Since the volume of the medium inside the reactor is
constant, the outgoing volume flow is equal to the inflow.
The power Q̇ of the jacket cooling is used as second input.

Considering the mass balances of the elements inside the
reactor the concentrations of educt A and product B are
computed as in Rothfuss et al. [1996] by

ċA = −k1(Tr)cA − k2(Tr)c
2
A + (cA,in − cA)u1, (35)

ċB = k1(Tr)cA − k1(Tr)cB − cBu1, (36)

where k1(Tr) and k2(Tr) are reaction rates depending on
the temperature Tr and are given by Arrhenius laws

ki(Tr) = ki0 exp

(
−Ei
Tr

)
, i = 1, 2, (37)

with parameters ki0 and Ei, i = 1, 2. Using the energy
balance of the reactor and the jacket the temperatures Tr
and Tj are given by

Ṫr=− 1

ρCp
[k1(Tr) (∆HABcA+∆HBCcB)+ · · ·

k2(Tr)∆HADc
2
A

]
+α (Tr−Tj)+(Tin−Tr)u1, (38)

Ṫj = β(Tr − Tj) + γu2, (39)

with density ρ, heat capacity Cp, heat transfer coeffi-
cients α, β and γ and reaction enthalpies ∆HAB , ∆HBC

and ∆HAD. The numerical values of all parameters can
be found in Utz et al. [2006]. Inserting (37) to (35), (36)
and (38) results in a system of four nonlinear differential
equations, such that the behavior of the introduced chem-
ical system is described by a nonlinear model

ẋ = f(x,u). (40)

The example was chosen to check Algorithm 1 and to
show the performance of multilinear approximations of the
nonlinear model in comparison to linear approximations.
Next, the differential equations (40) are implemented in
SIMULINK by the block diagram shown in Fig. 2.

Fig. 2. CSTR system in Simulink

4.2 Multilinearization

For application of the multilinearization method of Sec-
tion 3 the user has to set up the parameters of the Algo-
rithm 1. The weighting function of the inner product (9) is
set to 1 for this example. The nonlinear model (40) of the
CSTR system has 4 states and 2 inputs which add up to 6
variables of the multilinear functions fj(x,u), j = 1, . . . , 4
with x ∈ R4 and u ∈ R2.

The corresponding full state transition tensor F consists
of 26 =64 parameters to be estimated. The bases {µii(x,u)}
and {µii(x,u)} would have 64 elements each. As applying
Algorithm 1 would lead to a long computation time the
maximal multilinear order is bounded as described in
Section 3. For the CSTR system example it is sufficient
to use a multilinear model with maximum order 2. By
this restriction the number of parameters as well as base
elements are reduced by factor 3 to 22, see Table 1.

The operating ranges of the systems states and inputs are
defined as

cA∈
[
0
kmol

l
, 1

kmol

l

]
, cB∈

[
0
mol

l
, 0.75

kmol

l

]
, Tr∈[104◦C, 116◦C],

Tj∈[104◦C, 116◦C],
V̇

Vr
∈
[
0h−1, 2.5h−1

]
, Q̇∈

[
0
kJ

h
,−1

MJ

h

]
.
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A good trade-off between computation time and numerical
accuracy for the number of sampling points for this Exam-
ple has been shown to be N = 10 leading to Nn+m = 106

evaluations of the SIMULINK model stored in the
dataset (32). Executing the Algorithm 1 results in a
state transition function denoted by ẋ = 〈F10 |M(x, u) 〉.
A linear approximation ẋ = Ax + Bu of (40) around an
operating point inside the operation range is computed by
the MATLAB/SIMULINK built-in function linmod.

Fig. 3 shows the input trajectories and the simulated state
trajectories of the nonlinear system and the multilinear
and linear approximations.

nonlinear multilinear linear
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Fig. 3. Input trajectories and simulated state trajectories
of nonlinear, multilinear and linear model

The simulation result shows the advantages of the multi-
linear approximation compared to the linearization of the
original system. The differences between the trajectories
of the original and the multilinear approximated system
are much smaller than the differences between original
and linear approximation. The error of the multilinear
approximation results from the nonlinear terms of the
CSTR system (40), e.g. the exponential terms (37), that
cannot be described exactly by multilinear terms. But
the approximation is much better than in the linear case.
The numerical error of the multilinear approximation can
be reduced further by increasing the number of sampling
points N . The estimated tensor system is a good and phys-
ical meaningful approximation of the given SIMULINK
model.

5. CONCLUSIONS AND FUTURE WORKS

This paper shows a method to multilinearize a nonlin-
ear state space model. The result is a multilinear state
space model represented as a tensor system. To find the
best approximation, a minimization problem is formulated
and solved by a system of linear equations which can
be simplified by determining an orthonormal base of the
multilinear functions. The parameters of the multilinear
approximation can be computed by orthogonal projection
of the orthonormal base elements on the nonlinear func-
tion. During the implementation some numerical problems
occurred, which could be handled by scaling the data to
fixed intervals reducing the numerical error. The com-
putational effort was reduced by introducing a maximal

multilinear order. The application of the presented multi-
linearization method on a chemical systems example shows
its advantages over a linear approximation.

The multilinearization method is designed for systems
with continuous signals. The multilinear behaviour of
heating systems is shown in Pangalos et al. [2013] which
justifies modeling them as tensor systems. Since heating
systems often show hybrid behavior, see e.g. Pangalos and
Lichtenberg [2012], the extension of the multilinearization
method to hybrid tensor systems is of interest. Further re-
search is going in the direction of finding efficient controller
design procedures for MTI systems.
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