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Abstract: This paper studies the global leader-following consensus problem for a group of
discrete-time linear systems with bounded controls. For each follower agent, we construct a
bounded nonlinear feedback control law which uses the information of other agents obtained
through multi-hop paths in the communication network. The number of hops each agent uses to
obtain its information about other agents is no bigger than the largest algebraic multiplicity of
the eigenvalues on the unit circle of the system matrix. We show that these control laws achieve
global leader-following consensus when the communication topology is a strongly connected and
detailed balanced directed graph and the leader is a neighbor of at least one follower agent.
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1. INTRODUCTION

In recent years, coordinated control of multi-agent systems
has drawn substantial attention. As a fundamental ap-
proach to achieving group-wide behavior, consensus entails
all agents in the system to converge to an agreement state
by using only local information. Much effort has been made
towards solving consensus problems when the models of
agents in the system are in continuous-time (see, e.g.,
Saber and Murray [2004], Ren, Beard and Atkins [2005],
Jin and Murray [2006], Yu et al. [2011], Li et al. [2011]).
Fewer results have been obtained on multi-agent systems
operating in discrete-time. Examples of these results are
Wang and Xiao [2006], Casbeer et al. [2008] and Chen,
Lü and Lin [2013]. In particular, Wang and Xiao [2006]
presents a so-called “pre-leader-follower” decomposition
approach to solving consensus problems for discrete-time
multi-agent systems with time delays. Casbeer et al. [2008]
considers the consensus problem for agents with discrete-
time double-integrator dynamics and shows that consen-
sus can be achieved when the communication topology
contains at least one directed spanning tree and average
consensus can be achieved when the communication topol-
ogy is strongly connected and balanced. Chen, Lü and
Lin [2013] establishes criteria for consensus of discrete-
time multi-agent systems with nonlinear local rules and
time-varying delays.

There are also results on consensus of multi-agent systems,
both in continuous-time and in discrete-time, that take
into consideration input saturation, which is ubiquitous in
real world applications. It is clear that global consensus

? This work was supported in part by the National Natural Science
Foundation of China under grant Nos. 61221003 and 61273105.

with bounded controls (see Meng et al. [2011] and Yang
et al. [2013]), like global stabilization with bounded con-
trols (see, e.g., Teel [1992], Sussmann and Yang [1991],
Yang et al. [1997]), is only possible for agents that are not
exponentially unstable (that is, all poles of the agent lie
on the closed left-half plane in the continuous-time setting,
or on or inside the unit circle in the discrete-time setting).
In particular, it is established in Meng et al. [2011] that
global leader following consensus with bounded controls is
possible if the agents are represented by double integrators
or by higher order neurally stable linear systems. Yang
et al. [2013] deals with the discrete-time counterparts of
Meng et al. [2011].

The results of Meng et al. [2011] have been extended to
agents that are represented by a chain of integrators of an
arbitrary length in Zhao and Lin [2013]. More specifically,
a bounded nonlinear feedback control law is constructed
for each follower agent in the group, which uses its informa-
tion about other agents obtained through multi-hop paths
in the communication network. The number of hops each
agent uses to obtain its information about other agents
is no bigger than the number of integrators in the agent.
Global leader-following consensus is then established un-
der these feedback control laws when the communication
topology among follower agents is a strongly connected
and detailed balanced directed graph and the leader is a
neighbor of at least one follower agent.

In this paper, we consider the global leader following
consensus problem for a multi-agent system where the
agents are represented by a general discrete-time linear
system with a bounded control. Under the assumption that
these linear systems are stabilizable with all their poles
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lying on or inside the unit circle, we construct, for each
follower agent in the system, a bounded nonlinear feedback
control law which also uses a multi-hop relay protocol. The
number of hops each agent uses to obtain its information
about other agents is no bigger than the largest algebraic
multiplicity of the eigenvalues of the system matrix on
the unit circle. We will show that global leader-following
consensus is achieved under these feedback control laws
when the communication topology among follower agents
forms a strongly connected and detailed balanced directed
graph and the leader is a neighbor of at least one follower
agent.

The remainder of this paper is organized as follows. In
Section 2, we state the problem of global leader-following
consensus and recall basic definitions and relevant results
in graph theory. In Section 3, we construct a bounded
nonlinear feedback control law for each follower agent
in the system and prove that these control laws achieve
global leader-following consensus. Simulation results are
presented in Section 4. Section 5 concludes the paper.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider a group of N follower agents, each described by
the dynamics of a discrete-time linear system,

xi(t+ 1) = Axi(t) + bui(t), i = 1, 2, · · · , N, (1)

where xi = [xi1, xi2, · · · , xin]T ∈ Rn and ui ∈ R are
respectively the states and control inputs of agent i.

Assumption 1. All eigenvalues of A are inside or on the
unit circle and the pair (A, b) is stabilizable.

Let the leader be also described by the dynamics of a
discrete-time linear system,

x0(t+ 1) = Ax0(t), (2)

where x0 = [x01, x02, · · · , x0n]T ∈ Rn.

The global leader-following consensus problem we are
to study is stated as follows. Consider a multi-agent
system consisting of the group of follower agents (1)
and the leader agent (2) operating on an underlying
communication network. For an a priori given arbitrarily
small scalar δ > 0, construct a bounded state feedback
law ui = hi(x0, x1, · · · , xN ), |hi(x0, x1, · · · , xN )| ≤ δ for
all (x0, x1, · · · , xN ) ∈ R(N+1)n, for each follower agent,
such that all these feedback laws together achieve global
leader-following consensus, that is, for all initial conditions
xi(0) ∈ Rn, i = 0, 1, · · · , N ,

lim
t→∞

(xi(t)− x0(t)) = 0, i = 1, 2, · · · , N.

The communication topology among agents is repre-
sented by a directed graph GN = (V, E), where V =
{ν1, ν2, · · · , νN} is a finite, nonempty set of nodes (each n-
ode denotes a follower agent) and E ∈ V×V is a set of edges
(each edge denotes an ordered pair of nodes). An edge
(νj , νi) in a directed graph denotes that νi has access to the
information form νj . A directed path in a directed graph
is a sequence of edges of the form (νi1, νi2), (νi2, νi3), · · · .
A directed path (νi, νi1), (νi1, νi2), · · · , (νik−1, νj) between
νi and νj is called a k-hop path, and νi is called a kth

neighbor of νj .

Let AN = [aij ] ∈ RN×N be the adjacency matrix associat-
ed with GN , where aij > 0 if (νj , νi) ∈ E and aij = 0 oth-

erwise. Here we assume that aii = 0 for all i = 1, 2, · · · , N .
Let LN = [lij ] ∈ RN×N be the Laplacian matrix associated
with AN , where lii =

∑n
i=1 aij and lij = −aij when i 6= j.

A directed graph is detailed balanced if there exist some re-
al numbers vi > 0, i = 1, 2, · · · , N , such that viaij = vjaji,
for all i, j = 1, 2, · · · , N (Jiang and Wang [2009]). Let
v = [v1, v2, · · · , vN ]T and diag{v} = diag{v1, v2, · · · , vN}.
The leader agent is labeled as ν0. The communication
between a follower agent νi and the leader agent ν0 is
denoted as ai0, where ai0 > 0 if νi has access to the
information of ν0 and ai0 = 0 otherwise. Denote M =
LN + diag{a10, a20, · · ·, aN0}.
Assumption 2. The directed graph GN is strongly connect-
ed and detailed balanced and ai0 > 0 for at least one
i, i = 1, 2, · · · , N .

Lemma 3. Under Assumption 2, all eigenvalues of M are
on the open right-half plane, and the matrix diag{v}M +
MTdiag {v}=2MTdiag{v} is positive definite.

In the above lemma, the fact that all eigenvalues of M
are on the open right-half plane is established in Ren and
Cao [2011] and the fact that diag{v}M + MTdiag{v} =
2MTdiag{v} is positive definite can be established based
on the analysis given in the proof of Lemma 4 in Hu
and Hong [2011]. Let Γ = MTdiag{v} and γij be the
(i, j)th entry of Γ. Let the eigenvalues of Γ be ordered as
0 < λ1 ≤ λ2 ≤ · · · ≤ λN .

3. MAIN RESULTS

Under an appropriate state transformation, the dynamics
of each follower can be rewritten in the following form

Σi :

{
xi◦(t+ 1) = A◦xi◦(t) + b◦u(t),

xi�(t+ 1) = A�xi�(t) + b�u(t), i = 1, 2, · · · , N,
where

(1) xi◦(k) ∈ Rn◦ and xi�(t) ∈ Rn� , with n◦ + n� = n,
(2) all the eigenvalues of A◦ are on the unit circle, and

the pair (A◦, b◦) is controllable, and
(3) all the eigenvalues of A� are strictly inside the unit

circle.

Under the same state transformation, the dynamics of the
leader agent is written as

Σ0 :

{
x0◦(t+ 1) = A◦x0◦(t), x0◦(t) ∈ Rn◦ ,
x0�(t+ 1) = A�x0�(t), x0�(t) ∈ Rn� .

Let a bounded state feedback control algorithm ui =
hi(x0◦, x1◦, · · · , xN◦) cause all states xi◦, i = 1, 2, · · · , N ,
to converge to the corresponding state of the leader a-
gent x0◦ asymptotically. Clearly, these same control laws
together achieve global leader-following consensus if ui(t)
goes to zero as time goes infinity. Thus, in the remainder
of this paper we will assume, without loss of generality,
that all the eigenvalues of A are on the unit circle.

Let the complex eigenvalues of A be α1 ± jβ1, α2 ± jβ2,
· · · , αq ± jβq, where αi’s and βi’s are not necessarily
distinct. Let there be p eigenvalues on the real axis. That
is, q ≥ 0, p ≥ 0 and n = 2q + p.

We next develop a state feedback control law for each
follower agent. We denote the difference between the state
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of a follower agent and the state of the leader agent as
x̄i(t) = xi(t)− x0(t), i = 1, 2, · · · , N . Then,

x̄i(t+ 1) = Ax̄i(t) + bui(t), i = 1, 2, · · · , N, (3)

where x̄i = [x̄i1, x̄i2, · · · , x̄in]T ∈ Rn.

Denote x̃k = [x̄1k, x̄2k, · · · , x̄Nk]T, k = 1, 2, · · · , n, and
x̃ = [x̃T

1 , x̃
T
2 , · · · , x̃T

n]T. Then system (3) can be written as

x̃(t+ 1) = (A⊗ IN )x̃(t) + (b⊗ IN )u(t),

where u(t) = [u1(t), u2(t), · · · , uN (t)]T and IN denotes the
N dimensional identity matrix.

According to Yang et al. [1997], there exists a non-singular
matrix T such that the dynamics of the transformed state
z = T x̃ can be written as

z(t+ 1) = Ãz(t) + B̃u(t),

where z = [zT1 , z
T
2 , · · · , zTn ]T, zk = [z1k, z2k, · · · , zNk]T,

k = 1, 2, · · · , n, and the matrices

Ã =

[
A1 A2

0 A3

]
, B̃ =

[
B1

B2

]
,

are defined according to the locations of the eigenvalues of
A as follows.

Case 1: p = 0, or p = 1 (λ = 1), or p ≥ 2. In this case,

A1=


IN ε2(p+q)−3Γ ε2(p+q)−5Γ · · · ε2q+1Γ

0 IN ε2(p+q)−5Γ · · · ε2q+1Γ
0 0 IN · · · ε2q+1Γ
...

...
...

. . .
...

0 0 0 · · · I


pN×pN

,

A2=


0 ε2q−1Γ 0 ε2q−3Γ · · · 0 εΓ
0 ε2q−1Γ 0 ε2q−3Γ · · · 0 εΓ
...

...
...

...
. . .

...
...

0 ε2q−1Γ 0 ε2q−3Γ · · · 0 εΓ


pN×2qN

,

A3=



α1IN −β1IN 0 −β1ε
2q−3Γ · · · 0 −β1εΓ

β1IN α1IN 0 α1ε
2q−3Γ · · · 0 α1εΓ

0 0 α2IN −β2IN · · · 0 −β2εΓ
0 0 β2IN α2IN · · · 0 α2εΓ
...

...
...

...
. . .

...
...

0 0 0 0 · · · αqIN −βqIN
0 0 0 0 · · · βqIN αqIN


,

B1=[ IN IN · · · IN ]
T

pN×N ,

B2=[−β1IN α1IN −β2IN α2IN · · · −βqIN αqIN ]
T

2qN×N ,

where ε > 0 is a design parameter whose value is to be
determined later.

Case 2: p = 1 (λ = −1). In this case,

A1 =−IN , A2 =
[
0 ε2q−1Γ 0 ε2q−3Γ · · · 0 εΓ

]T
N×2qN

,

B1 =−IN ,
and A3 and B2 are as defined in Case 1.

Such a transformation T is explicitly constructed in Yang
et al. [1997] as T = R2R

−1
1 , where R1 = [b ⊗ IN , (Ab) ⊗

IN , · · · , (An−1b)⊗ IN ] and R2 = [B̃, ÃB̃, · · · , Ãn−1B̃].

We use an example to help illustrate the state transforma-
tion. Let the dynamics of the agent be represented by{

xi1(t+ 1) = xi1(t) + xi2(t) + xi3(t),
xi2(t+ 1) = xi2(t) + xi3(t),
xi3(t+ 1) = xi3(t) + ui(t).

In this case, the linear state transformation matrix T is
constructed as

T =

 ε4Γ2 (ε+ε3)Γ−ε4Γ2 I
0 εΓ I
0 0 I

 .
We note here that such a state transformation is construct-
ed from matrix Γ. From the expression of T , we can further
see that the state vector zi is a linear combination of the
states of agents that are within k hops away from agent
i, where k is less than the largest algebraic multiplicity of
the eigenvalues of the system matrix on the unit circle.

Based on the transformed states of the equation (3), we are
now ready to construct the following bounded consensus
control algorithm for each follower agent

ui=−
q∑
l=1

εl−1σ

εl N∑
j=1

γijzn−2l+2,i


−
q+p∑
l=q+1

εl−1σ

εl N∑
j=1

γijzn−l−q+1,i

, i = 1, 2, · · · , N,(4)

where σ : R→ R is a saturation function defined as σ(s) =
sign(s) min

{
|s|, δ2

}
, and 0 < ε ≤ min{ 1

2 ,
1

2NλN+2N−2}. It

is then easy to verify that |ui| ≤ 1−εp+q
1−ε

δ
2 < δ.

Theorem 4. Let Assumptions 1 and 2 hold. Then, under
the bounded control laws (4), the group of follower agents
(1) and the leader agent (2) achieve global leader-following
consensus. Moreover, each control input converges to zero
as time goes to infinity.

Proof: We start from the states zn−1 and zn and prove
that, in a finite time, zn will enter and remain in a bounded
set, where the first term of the control law remains in the
bounded set [− δ2 ,

δ
2 ]. Following similar analysis, we can

prove that the states zk, k = 1, 2, · · · , p, p+2, p+4, · · · , n,
will all enter one by one and remain in a bounded set, such
that each term in the control law remains in the bounded
set [− δ2 ,

δ
2 ]. Then the closed-loop system become a linear

system, for which global leader-following consensus can be
reality established.

Notice that the control laws (4) can be rewritten as

u = [u1, u2, · · · , uN ]T

=−
q∑
l=1

εl−1σ(εlΓzn−2l+2)−
q+p∑
l=q+1

εl−1σ(εlΓzn−q−l+1)

=−
q∑
l=1

εl−1σ(θn−2l+2)−
q+p∑
l=q+1

εl−1σ(θn−q−l+1),

where θk,i is the ith element of

θk =

{
εn−q−l+1Γzk, k = 1, 2, · · · , p,
ε

1
2 (n−l+2)Γzk, k = p+ 2, p+ 4, · · · , n.

Here we have slightly abused the notation by using σ to
denote both a scalar valued and a vector valued satura-
tion function, that is, for s = [s1, s2, · · · , sn]T, σ(s) =
[σ(s1), σ(s2), · · · , σ(sn)]T.

We first consider the evolutions of zn−1 and zn, which are
governed by

zn−1(t+ 1) = αqzn−1(t)− βq(zn(t) + u),
zn(t+ 1) = βqzn−1(t) + αq(zn(t) + u).
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Construct a Lyapunov function V1 = 1
2z

T
n−1Γzn−1 +

1
2z

T
nΓzn, which is positive definite. Then,

∆V1=
1

2
(αqzn−1 − βq(zn + u))TΓ(αqzn−1 − βq(zn + u))

+
1

2
(βqzn−1 + αq(zn + u))TΓ(βqzn−1 + αq(zn + u))

−1

2
zTn−1Γzn−1 −

1

2
zTnΓzn

=zTnΓu+
1

2
uTΓu

=−
N∑
i=1

ε−1θn,i

σ(θn,i) +

q∑
l=2

εl−1σ(θn−2l+2,i)

+

q+p∑
l=q+1

εl−1σ(θn−q−l+1,i)

+
1

2
uTΓu.

Here, and hereafter in a similar situation, we have sup-
pressed the dependence on t of the state variables. If
|θn,i| ≥ ∆

2 for at least one i, i = 1, 2, · · · , N , then

∆V1 ≤−
∑

|θn,i|≥ δ2

ε−1θn,i

σ(θn,i) +

q∑
l=2

εl−1σ(θn−2l+2,i)

+

q+p∑
l=q+1

εl−1σ(θn−q−l+1,i)

−∑
|θni|< δ

2

ε−1θn,i

σ(θn,i)+

q∑
l=2

εl−1σ(θn−2l+2,i)+

q+p∑
l=q+1

εl−1σ(θn−q−l+1,i)

+
uTΓu

2

< −
∑

|θn,i|≥ δ2

ε−1 − 1− εp+q−1

1− ε

δ2

4

+
∑

|θn,i|< δ
2

(1− εp+q−1)δ2

4(1− ε)
+
NλNδ

2

2

< −δ
2

4

ε−1 − (N − 1)(1−εp+q−1)

1− ε
− 2NλN


< 0,

where we have used the facts that ε ≤ 1
2NλN+2N−2 and

|ui| < δ. The above derivation implies that zn will keep
decreasing and θn,i, i = 1, 2, · · · , N , will enter and remain

inside the interval (− δ2 ,
δ
2 ) in a finite time, after which,

the evolutions of zn−3 and zn−2 and the control laws u
respectively become

zn−3(t+1)=αq−1zn−3(t)−βq−1

zn−2(t)−
q∑
l=2

εl−1

×σ(εlΓzn−2l+2(t))−
q+p∑
l=q+1

εl−1σ(εlΓzn−q−l+1(t))

,
zn−2(t+1)=βq−1zn−3(t)+αq−1

zn−2(t)−
q∑
l=2

εl−1

×σ(εlΓzn−2l+2(t))−
q+p∑
l=q+1

εl−1σ(εlΓzn−q−l+1(t))

,
and

u=−εΓzn−
q∑
l=2

εl−1σ(εlΓzn−2l+2)−
q+p∑
l=q+1

εl−1σ(εlΓzn−q−l+1).

Following a similar analysis as in the analysis of the
evolutions of zn−1 and zn, we can show that all θk,i,
k = p + 2, p + 4, · · · , n, i = 1, 2, · · · , N , will enter and
remain inside the interval (− δ2 ,

δ
2 ) in a finite time.

We next consider the evolution of zp. We first consider
Case 1, p = 0, or p = 1, (λ = 1) or p ≥ 2. The evolution of
zp is governed by

zp(t+1) = zp(t)−
p+q∑
l=q+1

εl−1σ
(
εlΓzn−q−l+1(t)

)
= zp(t) + ū.

where

ū=−
p+q∑
l=q+1

εl−1σ
(
εlΓzn−q−l+1

)
= −

p+q∑
l=q+1

εl−1σ(θn−q−l+1).

Construct a Lyapunov function V2 = 1
2z

T
p Γzp, which is

positive definite. Then,

∆V2=
1

2
(zp + ū)TΓ(zp + ū)− 1

2
zTp Γzp

=zTp Γū+
1

2
ūTΓū

=−
N∑
i=1

ε−1−qθp,i

εqσ(θp,i)+

q+p∑
l=q+2

εl−1σ(θn−q−l+1,i)

+
ūTΓū

2
.

If |θp,i| ≥ δ
2 for at least one i, i = 1, 2, · · · , N , then

∆V2
≤−

∑
|θp,i|≥ δ2

ε−1−qθp,i

εqσ(θp,i) +

q+p∑
l=q+2

εl−1σ(θn−q−l+1,i)


−
∑

|θn,i|< δ
2

ε−1−qθp,i

εqσ(θp,i) +

q+p∑
l=q+2

εl−1σ(θn−q−l+1,i)


+

1

2
ūTΓū

<−
∑
|θn,i|≥δ2

ε−1− 1− εp−1

1− ε

δ2

4
+
∑

|θn,i|< δ
2

(1− εp−1)δ2

4(1− ε)

+
1

2
NλNε

2qδ2

<−
ε−1 − (N − 1)(1− εq−1)

1− ε
− 2NλNε

2q

δ2

4
≤ 0,

where we have used the facts that ε ≤ 1
2NλN+2N−2 and

|ū| ≤ εqδ. Therefore, the state zp will keep decreasing and

θp,i will enter and remain inside the interval (− δ2 ,
δ
2 ) in

a finite time, after which the evolutions of zp−1 and the
control laws u respectively become,

zp−1(t+ 1) = zp−1(t)−
q+p∑
l=q+2

εl−1σ(εlΓzn−q−l+1),

and

u=−
q∑
l=1

ε2l−1Γzn−2l+2−ε2q+1Γzp−
q+p∑
l=q+2

εl−1σ
(
εlΓzn−q−l+1

)
.

Following a similar analysis as in the analysis of the evolu-
tion of zp, we can show that all θk,i, k = 1, 2,· · ·, p, i =
1, 2, · · · , N , will enter and remain inside the interval
(− δ2 ,

δ
2 ) in a finite time, after which the closed-loop system

(3) becomes

z1(t+1) =
(
I − ε2(p+q)−1Γ

)
z1(t),
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z2(t+1) =
(
I − ε2(p+q)−3Γ

)
z2(t)− ε2(p+q)−1Γz1(t),

...

zp(t+1) =
(
I − ε2q+1Γ

)
zp(t)−

q+p∑
l=q+1

ε2l−1Γzn−q−l+1,

zp+1(t+1) = α1zp+1(t)− β1

(
I − ε2q−1Γ

)
zp+2(t)

+β1

q+p∑
l=q+1

ε2l−1Γzn−q−l+1,

zp+2(t+1) = β1zp+1(t) + α1(I − ε2q−1Γ)zp+2(t)

−α1

q+p∑
l=q+1

ε2l−1Γzn−q−l+1,

zp+3(t+1) = α2zp+3(t)− β2(I − ε2q−3Γ)zp+4

+β2

ε2q−1Γzp+2(t) +

q+p∑
l=q+1

ε2l−1Γzn−q−l+1

,
zp+4(t+1) = β2zp+3(t) + α2

(
I − ε2q−3Γ

)
zp+4

−α2

ε2q−1Γzp+2(t) +

q+p∑
l=q+1

ε2l−1Γzn−q−l+1

,
...

zn−1(t+1) = αqzn−1(t)− βq(I − εΓ)zn(t)+

βq

 q∑
l=2

ε2l−1Γzn−2l+2+

q+p∑
l=q+1

ε2l−1Γzn−q−l+1

,
zn(t+1) = βqzn−1(t) + αq(I − εΓ)zn(t)−

αq

 q∑
l=2

ε2l−1Γzn−2l+2+

q+p∑
l=q+1

ε2l−1Γzn−q−l+1

.
It is trivial to show that limt→∞ zk(k) = 0, k = 1, 2, · · · , p,
since Γ is positive definite and ε ≤ 1

2NλN+2N−2 .

We then consider the evolutions of zp+1 and zp+2,

zp+1(t+ 1)=α1zp+1(t)−β1

(
zp+2(t)− ε2q−1Γzp+2(t)

)
+β1

q+p∑
l=q+1

ε2l−1Γzn−q−l+1, (6)

zp+2(t+ 1)=β1zp+1(t)+α1

(
zp+2(t)− ε2q−1Γzp+2(t)

)
+α1

q+p∑
l=q+1

ε2l−1Γzn−q−l+1. (7)

We first consider the linear system

zp+1(t+1)=α1zp+1(t)−β1

(
zp+2(t)− ε2q−1Γzp+2(t)

)
,(8)

zp+2(t+1)=β1zp+1(t)+α1

(
zp+2(t)− ε2q−1Γzp+2(t)

)
,(9)

for which we construct a Lyapunov function V3 =
1
2z

T
p+1Γzp+1+ 1

2z
T
p+2Γzp+2, which is positive definite. Then,

∆V3=−ε2q−1(zp+2Γ)
T

Γzp+2 +
1

2
ε4q−2 (zp+2Γ)

T
Γ (Γzp+2)

=−ε−1θTp+2θp+2 +
1

2
ε2q−2θTp+2Γθp+2

≤−
ε−1 − 1

2
ε2q−2λN

θTp+2θp+2

≤0,

where we have used the facts that ε ≤ 1
2NλN+2N−2 and

q ≥ 1 (the states zp+1 and zp+2 do not exist when q = 0).

Therefore, we have ∆V3 ≤ 0 and ∆V3 ≡ 0 only when
zp+1(t) = zp+2(t) ≡ 0. That is, the linear discrete-time
system (8)-(9) is asymptotically stable, which in turn
implies that the states zp+1(t) and zp+2(t) of system (6)-
(7) approach zero as time goes to infinity. Following a
similar analysis of the evolutions of zp+1 and zp+2, we can
show that limt→∞ zk(t) = 0, k = p+ 3, p+ 4, · · · , n, which
means limt→∞(xik(t) − x0k(t)) = 0, k = 1, 2, · · · , n, i =
1, 2, · · · , N, and limt→∞ ui(t) = 0, i = 1, 2, · · · , N.
We next consider Case 2, p = 1 and λ1 = −1, and

z1(t+ 1) = −z1(t) + εqσ(εq+1Γz1(t)).

Construct a Lyapunov function V4 = 1
2z

T
1 Γz1. Then,

∆V4=−zT1 Γεqσ
(
εq+1Γz1

)
+

1

2
ε2qσ(εq+1Γz1)TΓσ

(
εq+1Γz1

)
=−ε−1θ1σ(θ1) +

1

2
ε2qσ(θ1)TΓσ(θ1)

≤−
ε−1 − 1

2
ε2qλN

σ(θ1)Tσ(θ1)

<0,

where we have used the fact that ε ≤ 1
2NλN+2N−1 . Thus,

we have limt→∞ xi1(t) = 0.

As we have proven in Case 1, limt→∞ zk(t) = 0, k =
2, 3, · · · , n, which in turn means that limt→∞(xik(t) −
x0k(t)) = 0, k = 1, 2, · · · , n, i = 1, 2, · · · , N, and
limt→∞ ui(t) = 0, i = 1, 2, · · · , N.

4. SIMULATION RESULTS

Consider a group of 3 follower agents, each described by{
xi1(t+ 1) = xi1(t) + xi2(t) + xi3(t),
xi2(t+ 1) = xi2(t) + xi3(t),
xi3(t+ 1) = xi3(t) + ui(t), i = 1, 2, 3.

The dynamics of the leader agent is described as{
x01(t+ 1) = x01(t) + x02(t) + x03(t),
x02(t+ 1) = x02(t) + x03(t),
x03(t+ 1) = x03(t).

The communication topology among the followers is rep-
resented by a directed graph which satisfies Assumption
2. The associated adjacency matrix AN is given by

AN =

[
0 −1 −1
−2 0 −2
−1 −1 0

]
,

and a01 = 1, a02 = a03 = 0. Choose v1 = v3 = 0.2, v2 =
0.1, then λN = 0.7464. Choose ε = 0.1 to satisfy ε <

1
2NλN+2N−2 .

Also, let δ = 2. For the simulation purpose, we pick initial
states of the follower agents and the leader agent as

x0(0) =

[
0.1
1
6

]
, x1(0) =

[−6
16
26

]
, x2(0) =

[
20
−10
36

]
, x3(0) =

[
20
18
12

]
.

Under the feedback control laws (4), the evolutions of the
differences between the states of the follower agents and
the corresponding state of the leader agent are shown in
Fig. 1(a), 1(b) and 1(c), respectively. Shown in Fig. 1(d)
are the inputs the follower agents. We can see that the
leader-following consensus is achieved.
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(c) The difference between x̄i3 and x̄03, i = 1, 2, 3.
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(d) The evolution of ui, i = 1, 2, 3.

Fig. 1. The evolutions of the agents.

5. CONCLUSIONS

In this paper we have studied the global leader-following
consensus problem for a group of discrete-time linear sys-
tems with bounded control. We constructed, for each fol-
lower agent, a bounded nonlinear feedback control, which
uses the information of other agents obtained through
multi-hop paths in the communication network. We es-
tablished that global leader-following consensus is achieved
under the feedback control laws we have constructed when
the communication topology among follower agents forms
a strongly connected and detailed balanced directed graph
and the leader is a neighbor of at least one follower agent.
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