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A.C. Satici ∗ Mark W. Spong ∗∗

∗ University of Texas at Dallas, Richardson, Texas, USA (e-mail:
acsatici@utdallas.edu).

∗∗ University of Texas at Dallas, Richardson, Texas, USA (e-mail:
mspong@utdallas.edu).

Abstract: In this paper, we exploit symmetry properties of multi-agent robot systems to design control
laws that preserve connectivity while swarming. We start by showing that the connectivity controller is
invariant under the action of the special Euclidean group SE(3) and therefore is amenable to reduction
of the dynamics by this action. We then utilize the reduced Euler-Lagrange equations that split the
Euler-Lagrange equations for the multi-agent system into horizontal and vertical parts. The invariance
of the connectivity controller implies that its control effort has zero vertical component. We then use the
resulting vertical equations of motion to design a control law that asymptotically stabilizes the centroid
and the orientation of the swarm at a desired pose.
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1. INTRODUCTION

Mobile robot networks afford an inexpensive and robust
method for achieving certain coverage tasks or cooperative
missions. Many of the algorithms employed to achieve such
tasks depend on communication between any two robots and
hence require connectivity of the communication network. As a
result, the problem of maintaining connectivity in mobile robot
networks is an active area of research. For many applications,
the edges or links in the mobile robot network are functions
of the relative positions of nodes in the network. Thus, the
connectivity of the network is affected by the motion of the
robots, and the motion controllers must maintain connectivity
in addition to achieving other goals.

One of the most important goals of a multi-agent mobile net-
work is coverage or surveillance of a given area. This requires
the agents to swarm or move in formation along a desired path/-
trajectory. In other words, it is desired that the centroid of the
formation move along a specified desired trajectory. In addition
when avoiding contact with the environment is an issue, we may
also want to specify a desired orientation trajectory of the multi-
agent system.

A review of different methods to control and maintain connec-
tivity can be found in Zavlanos et al. [2011]. Connectivity can
be maintained in a centralized or decentralized manner. One of
the simplest methods of ensuring connectivity is to assume that
the network is initially connected, and that existing edges in
the network are maintained for all time Ji and Egerstedt [2007],
Zavlanos and Pappas [2005]. Another centralized method for
maintaining connectivity in a group of mobile robots is to
maximize the second smallest eigenvalue of the graph Lapla-
cian Kim and Mesbahi [2006], when the edge strengths are
non-increasing functions of the distance between robots. The
resulting graph is always connected Kim and Mesbahi [2006].
This method is effective for solving rendezvous problems, and
can be extended to other applications Zavlanos et al. [2011].

This paper addresses both control problems, i.e. swarming
and connectivity maintenance. The connectivity controller is
applied as in Satici et al. [2013], This controller achieves
and maintains connectivity. We show that this connectivity
controller is invariant under the action of the special Euclidean
group SE(3). This becomes important when we introduce the
splitting of the Euler-Lagrange equations into horizontal and
vertical parts where the horizontal part governs the behavior
of the multi-agents system’s internal configuration, i.e., the
position of the agents relative to each other, while the vertical
part govern the behavior of the agent formation as a rigid body.
The fact that the connectivity control is invariant under the
SE(3) action implies that the control effort expended by this
controller has no vertical part.

After the splitting of the Euler-Lagrange equations into hori-
zontal and vertical parts, we make use of the vertical part of
the resulting equations to impose asymptotically convergent
swarming behavior into the system. In other words, we use the
available control input in the vertical direction to asymptotically
stabilize the desired multi-agent centroid and orientation trajec-
tory. We provide simulation results where we take three-agents
each of whose configuration space is R3 and show that they
can be made to swarm with the desired centroid and orientation
while the connectivity measure is increased to a desired value.

One of the contributions of this paper is that it presents a
framework in which swarming behavior of agents each living
in R3 can be cast into a canonical form globally. In other
words, as opposed to Michael et al. [2006], this work does not
assume that the configuration space of the robots can be written
as the product of a base space S and a group G. Although
given in its coordinate form, the Lagrange-Poincaré equations,
or the reduced Euler-Lagrange equations, hold globally. This
means, one can potentially find a coordinate system whose
domain of validity is larger that the one used in this paper
and use this coordinate system to achieve the desired swarming
behavior. The fact that inputs in charge of swarming behavior
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operates along the directions tangent to the group orbits, means
that any existing controller that acts in the horizontal space is
unaffected provided the kinetic energy (metric) of the original
system is group invariant. We exploit this property to employ
our earlier connectivity controller to simultaneously achieve a
desired connectivity measure.

2. BACKGROUND

In this section we introduce various definitions and background
material that we will use in the sequel. We also present the
final splitting of the original equations of motion, called the
Lagrange-Poincaré equations.

2.1 Preliminaries and definitions

We consider N agents, each of whose configuration qi is an
element of R3. These agents are all simple mechanical systems
with kinetic energy Ki(qi, q̇i) = 1

2mi‖q̇i‖2, where mi > 0 is
the mass of the ith agent and q̇i ∈ TqiR3 ∼= R3 is its velocity at
the position qi. Its potential energy is given by the action of the
gravity so that the Lagrangian is given by

(1)Li(qi, q̇i) =
1

2
mi‖q̇i‖2 −mig (qi · e3)

where g is the gravitational acceleration and e3 is the third
standard basis vector of R3. The Euler-Lagrange equations are

(2)
d

dt

∂Li
∂q̇i
− Li
qi

= miq̈i −mige3 = ui

where ui ∈ T ∗R3 ∼= TR3 is the control force on agent i.
Now, let us assume we can use our controls to cancel out the
gravitational acceleration. Thus, we use the controls to arrive
at the Lagrangian L̃i = 1

2mi‖q̇i‖2 which will be our initial
Lagrangian for each agent from now on.

The full configuration space consisting of all N agents is the
product space of each individual agent’s configuration space,

i.e., Q =

N∏
i=1

R3. The Euclidean group SE(3) acts on the

configuration space Q as follows. Consider the simplex C in
3-dimensions whose vertices are formed by the positions of
the individual agents. The special Euclidean group acts on this
simplex as a rigid body, i.e., rotates and translates it. We express
this mathematically by taking an element g = (R, p) ∈ SE(3)
and forming the following map Φ : SE(3)×Q→ Q

(3)Φg(q) = (Rq1 + (I −R)q̄+ p, . . . , RqN + (I −R)q̄+ p)

where I is the 3 × 3 identity matrix and q̄ =
1

N

N∑
i=1

qi is

the centroid of the simplex C. Let ξ = (ω, v) ∈ g be an
element of the Lie algebra of the Lie group SE(3) acting on
the configuration space Q. Then the infinitesimal generator
ξQ ∈ C∞(Q) of this group action (3) is given by

(4)ξQ(q) =
d

dε

∣∣∣∣
ε=0

exp (εξ) · q

= (ω × (q1 − q̄) + v, . . . , ω × (qN − q̄) + v)

For each q ∈ Q, the locked inertia tensor, is the map I(q) :
g→ g∗, defined by

(5)〈I(q)η, ζ〉 = ⟪ηQ(q), ζQ(q)⟫
where ⟪·, ·⟫ is the kinetic energy metric defined on TQ. The
locked inertia tensor specifies the inertia of the system whose
internal degrees of freedom are frozen. In other words, if the
relative distances of the robots are constrained to be constant,
then the locked inertia tensor is the inertia tensor resulting body.

Associated with the action of the group SE(3) on Q is a
momentum map J : TQ→ g∗ defined by

(6)〈J(q, q̇), ξ〉 = ⟪q̇, ξQ(q)⟫, ∀ξ ∈ g

The mechanical connection A : TQ→ g is then found by the
relation

(7)A(q, q̇) := I(q)−1 (J(q, q̇))

The horizontal space of the connection A is given by

(8)horq = {(q, q̇) ∈ TqQ : J(q, q̇) = 0}

which is the subspace of the tangent space at q ∈ Q that
is metric orthogonal to the orbits of the group action. The
vertical space consists of vectors that are mapped to zero by
the projection map π : Q→ Q/G

(9)verq = {ξQ(q) ∈ TqQ : ξ ∈ g}

These two subspaces of TqQ are complementary, i.e., any a
vector (q, q̇) ∈ TqQ can be decomposed as

(10)q̇ = horq q̇ + verq q̇

where

(11)verq q̇ = [A(q, q̇)]Q (q) and horq q̇ = q̇ − verq q̇

2.2 Connectivity controller

In Satici et al. [2013], we derived a control law for agents whose
dynamics are given by first-order integrators. Here, we use the
same connectivity controller in order to keep the agents at the
desired connectivity measure. In that work, it was shown that
the controller achieves the desired connectivity measure and no
more, i.e., it shuts off after the desired connectivity measure has
been obtained. This is a desired behavior because it allows one
to achieve additional criteria, such as formation control.

Following Satici et al. [2013], we define a weighted graph
G = (V,W ), where V = {1, . . . , N} is the set of nodes and
W : V × V × R+ → R+ is the function that determines the
weight of the edges. If wij(t) := W (i, j, t) = 0, then there is
no connection between nodes i and j. These edge weights give
rise to the graph Laplacian L ∈ RN×N defined as

(12)L(t) =

{
−wij(t) if i 6= j∑
k 6=i wik(t) if i = j

The Laplacian gives us a measure of the connectivity of the
graph G since the number of connected components in the
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graph is equal to the number of zero eigenvalues of L. Thus,
for the graph to be connected, at most one eigenvalue of L can
be zero. The second smallest eigenvalue λ2(L) thus becomes
an indicator of connectivity in the graph.

The Laplacian L can be converted to a reduced Laplacian
matrix M ∈ RN−1×N−1, whose eigenvalues are the largest
N − 1 eigenvalues of L. The matrixM is given by

(13)M = PTLP

where P ∈ RN×N−1 satisfies PT 1 = 0 and PTP = IN−1.
Thus, the determinant of M vanishes if and only if λ2(L)
vanishes.

The connectivity control law for first-order agents is defined to
be the gradient of the potential function

(14)Vc(q) =
ᾱ2 − det (M)

2

α2 − det (M)
2

where ᾱ denotes the desired value of the connectivity measure
and α is a lower bound on the connectivity measure below
which we do not want our measure to drop. The entries of
the Laplacian matrix and consequently the reduced Laplacian
matrixM are populated by the weights between pairs of agents.
This weighting between two robots is a monotonic function of
the Euclidean distance ‖qi − qj‖ between the positions of the
pair of robots.

With the equations of motion given by

(15)mq̈ = u

We choose the control input u as

(16)u = − (Vc)∗q + ũ

where we regard (Vc)∗q as an element of T ∗qQ and where ũ is
an additional control term to be designed. If we relabel ũ as u
again, then we arrive at the control system

(17)mq̈ + (Vc)∗q = u

Note that this is still a Lagrangian dynamical system with the
Lagrangian function L(q, q̇) = m

2

∑N
i=1‖q̇i‖2+Vc(q). There-

fore, when unforced, the system of differential equations (17)
is invariant with respect to the action of SE(3) if and only if
Vc(q) is invariant under the same action Olver [2000].
Proposition 1. The connectivity potential function Vc : Q →
Q is invariant under the action of SE(3) on Q.

Proof. Vc(q) is invariant under the action of SE(3) on Q
if and only if det (M(q)) is invariant under this action. If
wij(q) = wij (Φg(q)), then det (M (Φg(q))) = det (M(q)).
Since the weight wij are continuous monotonic functions of
the distance between two robots, this condition holds whenever
‖Φg(qi)− Φg(qj)‖= ‖qi − qj‖ . Finally, the following simple
calculation proves the assertion

‖Φg(qi)− Φg(qj)‖2

= ‖Rqi − (I −R)q̄ + p− (Rqj + (I −R)q̄ + p)‖2

= ‖R(qi − qj)‖2 = (qi − qj)TRTR(qi − qj) = ‖qi − qj‖2

3. CALCULATIONS FOR THE NECESSARY OBJECTS

In this section, we calculate the quantities that we have defined
in the last section for our system of N -agents, each of which
resides in the Euclidean 3-space. In addition, we shall write the
infinitesimal generator, the locked inertia tensor in coordinates
chosen for the Lie algebra g. We start with the calculation of
the locked inertia tensor, defined in equation (5).
Proposition 2. For the action of SE(3) on Q = R3N as given
in (3), the locked inertia tensor I(q) : g→ g∗ is given by

(18)I(q) = m

[∑N
i=1‖zi‖2I3 − zizTi 0

0 NI3

]
where zi = qi − q̄, 0 and I3 are the 3 × 3 zero and identity
matrix, respectively.

Proof.

Let η = (ω, v) and ζ = (ω′, v′) be two elements of g. We
calculate the right hand side of (5) by taking ⟪·, ·⟫ as the usual
Euclidean inner product on R3N .

⟪ηQ(q), ζQ(q)⟫

= m

N∑
i=1

(ω × (qi − q̄)) · (ω′ × (qi − q̄))

+ (ω × (qi − q̄)) · v′ + v · (ω′ × (qi − q̄)) + v · v′

= m

N∑
i=1

(ω · ω′)‖qi − q̄‖2 − (ω · (qi − q̄)) ((qi − q̄) · ω′)

+ (qi − q̄) · (v × ω′ + v′ × ω) + v · v′

(19)

where · represents the dot product. We have used the cyclic
invariance of the triple product and the Binet-Cauchy identity
that reads for any a, b, c, d ∈ R3,

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)

Now, the second term in the summation in equation (19) can be
written as

(ω · (qi − q̄)) ((qi − q̄) · ω′) = ziz
T
i ω · ω′

while the third term in the same equation (19) can be written as

(qi − q̄) · (v × ω′ + v′ × ω) = ẑi(v + v′) · (ω + ω′)

where ẑi is the skew-symmetric matrix constructed from the
components of zi. Thus, combining these equations together,
we see that (19) is equivalently written as

⟪ηQ(q), ζQ(q)⟫ = m

N∑
i=1

[
‖zi‖2I3 − zizTi −ẑi

ẑi I3

] [
ω
v

]
·
[
ω′

v′

]

= 〈m
N∑
i=1

[
‖zi‖2I3 + ziz

T
i −ẑi

ẑi I3

]
η, ζ〉

Finally, we note that
∑N
i=1 zi =

∑N
i=1 qi − q̄ = 0, so that∑N

i=1 ẑi = 0. As a result, I(q) reduces to its form given in
equation (18).
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We next proceed with the calculation of the momentum
map (6).
Proposition 3. For the action of SE(3) on Q = R3N as given
in (3), the locked momentum map J : TQ→ g∗ is given by

(20)J = m

(
N∑
i=1

zi × q̇i,
N∑
i=1

q̇i

)
∈ g∗

Proof. Let ξ = (ω, v) ∈ g, we have

⟪q̇i, ξQ(q)⟫ = m

N∑
i=1

q̇i · (ω × (qi − q̄) + v)

= m

N∑
i=1

ω · (zi × q̇i) + v · q̇i

= 〈m

(
N∑
i=1

zi × q̇i,
N∑
i=1

q̇i

)
, (ω, v)〉

Finally, in our case of SE(3) acting on Q =
∏N
i=1 R3, the

mechanical connection is calculated as follows:

A(q, q̇) := I(q)−1 (J(q, q̇))

=
1

m

[(∑N
i=1‖zi‖2I3 − zizTi

)−1

0

0 1
N I3

]
m

[∑N
i=1 zi × q̇i∑N
i=1 q̇i

]

=


(

N∑
i=1

‖zi‖2I3 − zizTi

)−1( N∑
i=1

zi × q̇i

)
1

N

N∑
i=1

q̇i


(21)

When we introduce a basis {ea}6a=1 of se(3), we can express
any element ξ of se(3) as ξ = ξaea. Corresponding to the rep-
resentation, the infinitesimal generator ξQ(q) can be expressed
as ξQ(q) = Ki

a(q)ξa ∂
∂qi (summation convention in force).

If we choose ea as the constant vector with a 1 at the ath position
and 0 everywhere else, and identify these vectors with the basis
matrices of se(3) as follows

e1 ↔

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 e2 ↔

 0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0


e3 ↔

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 e4 ↔

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


e5 ↔

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 e6 ↔

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


we get the following components for the Lie algebra element
ξ ∈ g:

ξ = ξaea = ω1e1 + ω2e2 + ω3e3 + v1e4 + v2e5 + v3e6

By the definition of the infinitesimal generator (4), we find the
following components for ξQ(q)

(22)
[ξQ(Q)]

3i−2
= zi3ξ

2 − zi2ξ3 + ξ4

[ξQ(Q)]
3i−1

= −zi3ξ1 + zi1ξ
3 + ξ5

[ξQ(Q)]
3i

= zi2ξ
1 − zi1ξ2 + ξ6

so that

(23)K3i−2 :3i =

[
0 zi3 −zi2 1 0 0
−zi3 0 zi1 0 1 0
zi2 −zi1 0 0 0 1

]

for i ∈ {1, . . . , N}. Now, in coordinates, the locked inertia ten-
sor is given by Iab = gijK

i
aK

j
b , where gij are the components

of the metric tensor relative to coordinates qi, i ∈ {1, . . . 3N}
on Q. Therefore, in our case, gij = mδij , where δij is the
Kronecker delta. As a result, we have

(24)Iab = m

3N∑
i=1

Ki
aK

i
b

Moreover, we get the components of the mechanical connection
from the definition (7) as Aaj = IabgijKi

b = IabKj
b .

4. LAGRANGE-POINCARÉ EQUATIONS

We next work out the equations of motion in as much detail
as possible for the case N = 3. The final equations are quite
involved but can be worked out by a symbolic manipulation
software like Mathematica Wolfram Research [2012]. When
we have more than three agents the same procedure can be
followed without modification, but the resulting equations are
more involved.

We start by choosing coordinates for the group variables in
the trivialization of the principal bundle π : Q → Q/SE(3).
Consider the coordinates (φ, θ, ψ, x̄, ȳ, z̄) ∈ R6 on SE(3).
The first three components of these coordinates are EulerXYZ
angles, i.e.,

R = exp (φe1) exp (θe2) exp (ψe3)

and the last three are the coordinates of the center of mass of
the three agents (since we assume mi = m, ∀i ∈ N , this is
equal to the centroid of the triangle formed by q1, q2 and q3).

For the base spaceQ/SE(3), we use the coordinates (r1, r2, r3)
on V ⊆ Q/SE(3) (V open in Q/SE(3)), defined as the
distances between each of the agents

(25)
r1 =

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

r2 =
√

(x1 − x3)2 + (y1 − y3)2 + (z1 − z3)2

r3 =
√

(x2 − x3)2 + (y2 − y3)2 + (z2 − z3)2

For any tangent vector (r, g, ṙ, ġ) ∈ T(r,g)(V ×G), we have

(26)A(r, g, ṙ, ġ) = Adg (Ae(r) · ṙ + v)

where Ae is the g-valued 1-form on R defined by Ae(r) ·
ṙ = A(r, e, ṙ, 0) and v = g−1ġ.
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The given left-invariant Lagrangian L : TQ → R induces a
reduced Lagrangian l : TQ/G → R which is represented in
local coordinates corresponding to a local trivialization as

l(rα, ṙα, ηa)

Rewriting the reduced Lagrangian l(rα, ṙα, ηa) in terms of the
“locked” angular velocity ξ defined by ξa = Aaαṙ

α + ηa, we
get the locked Lagrangian, i.e.,

(27)llock(rα, ṙα, ξa) = l(rα, ṙα, ξa −Aaαṙα)

The Lagrange-Poincaré equations then are written in coordi-
nates as

(28a)
d

dt

∂llock

∂ṙα
− ∂l

∂rα
=
∂llock

∂ξd
(
Bdbαξ

b +Bdαβ ṙ
β
)

+ uhα

(28b)
d

dt

∂llock

∂ξb
= cadb

∂llock

∂ξa
ξd +

∂llock

∂ξa
Babαṙ

α + uvb

where cadb are the structure constants of the Lie algebra se(3) of

SE(3), Bdbα = cdabA
a
α and Bdαβ =

∂Adβ
∂rα −

∂Adα
∂rβ

+ cdbaA
b
βA

a
α are

the components of the curvature of A.

In this construction Aaα, called the connection coefficients, are
the components of the map Ae.

To express (r, e) in terms of q = {(xi, yi, zi)}3i=1 ∈ Q, we first
show how the elements of SE(3) in the local trivialization are
defined. We define the rotation matrix R as the matrix whose
columns are defined by the vectors (u1, u2, u3):

(29)

u1 =
q1 − q2

‖q1 − q2‖

u2 =
q1 − q3

‖q1 − q3‖
−
(

q1 − q3

‖q1 − q3‖
· u1

)
u1

u3 =
u1 × u2

‖u1 × u2‖

Therefore, the identity element of SE(3) is defined by the
following equations

(30)
q1 + q2 + q3 = (0, 0, 0)

q1 − q2 = (a1, 0, 0)

q1 − q3 = (a2, b2, 0)

for some a1, a2, b2 ∈ R. Solving these equations, we get the
relations

(31)
x1 =

a1 + a2

3
, x2 =

−2a1 + a2

3
, x3 =

a1 − 2a2

3

y1 =
b2
3
, y2 =

b2
3
, y3 =

−2b2
3

z1 = z2 = z3 = 0

Given r1, r2, r3, we can then find the values of a1, a2, b2 as

(32)

a1 = r1

a2 =
r2
1 + r2

2 − r2
3

2r1

b2 =

√√√√(r2
2 −

(
r2
1 + r2

2 − r2
3

2r1

)2
)

Thus, (r, e) = (r1, r2, r3, 0, 0, 0, 0, 0, 0) corresponds to

q0 =

(
a1 + a2

3
,
b2
3
, 0,
−2a1 + a2

3
,
b2
3
, 0,

a1 − 2a2

3
,
−2b2

3
, 0

)
where a1, a2, b2 are given by (32). Evaluating the components
of the mechanical connection A : TQ→ g at q0, we get

(33)A =

[
A11 A12 A13
1
3I3

1
3I3

1
3I3

]
where A11, A12, A13 are functions of r1, r2, r3. The matrix
[Ae]of Ae in these coordinates is then

(34)[Ae] =

[
A11
1
3I3

]
It is usually not always easy to write down the original La-
grangian L : TQ → R in the bundle trivialization. Therefore,
we compute the equation (28) using the chain rule. The hori-
zontal equations (28a) can be written

(35)
d

dt

(
∂L

∂q̇i
∂q̇

∂ṙα
−
∂L

∂q̇i
∂q̇i

∂ξa
Aaα

)
+

(
∂L

∂q̇i
∂q̇i

∂ξa

)(
∂Aaβ

∂qj
∂qj

∂rα

)
ṙβ

=
∂L

∂q̇i
∂q̇i

∂ξd
Bdbαξ

b +
∂L

∂q̇i
∂q̇i

∂ξd
Bdαβ ṙ

β + uhα

and the vertical equations (28b) can be written

(36)
d

dt

(
∂L

∂q̇i
∂q̇i

∂ξb

)
= cadb

∂L

∂q̇i
∂q̇i

∂ξa
ξd +

∂L

∂q̇i
∂q̇i

∂ξa
Babαṙ

α + uvb

where uh, uv are the horizontal and vertical components of the
control input u, and

(37)Bdαβ =
∂Adβ
∂qi

∂qi

∂rα
− ∂Adα

∂qi
∂qi

∂rβ
+ cdbaA

b
βA

a
α

Bdbα = cdabA
a
α

Remark 4. Calculation of the curvature of the mechanical con-
nection A(q, q̇) shows that the connection is not flat. This
means Kobayashi and Nomizu [1996] that the principal bundle
π : Q → Q/SE(3) is not a direct product of spaces, i.e., we
cannot globally write Q = Q/SE(3) × SE(3). Therefore, we
need to use the Lagrange-Poincaré equations in order to get
a globally meaningful representation of the equations of mo-
tion, split into horizontal and vertical variations. The particular
parametrization we select for the group and the internal space
then may shrink the domain of definition but this is a choice
that can be improved upon by the control designer.

These equations of motion are second-order differential equa-
tions, governing the evolution of the variables r1, r2, r3, φ, θ, ψ,
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x̄, ȳ, z̄. Note that the horizontal equations (35) immediately
drop out as second order differential equations; however, the
vertical equations (36) yield the evolution of the locked angular
velocity ξ, which is related to the group velocity ġ through a
linear mapping given by equation (48). Note that, although in
these particular coordinates the representation may be local, the
Lagrange-Poincarè equations (28) are global.

From the standard coordinates q = {(xi, yi, zi)}Ni=1 to the
principal bundle trivialization (r, g), there exist a local diffeo-
morphism Ξ : Q → Q such that (r, g) = Ξ(q). Therefore, the
relation between the velocities is

(38)
[
ṙ
ġ

]
= Ξ∗q q̇

or from the velocity q̇ to the “rigid” body velocity, this reads

(39)
[
ṙ
η

]
=

[
I 0
0 g−1

]
Ξ∗q q̇

and from the velocity q̇ to the locked angular body velocity ξ,
this reads

(40)ν :=

[
ṙ
ξ

]
=

[
I 0

[Ae] I

] [
I 0
0 g−1

]
Ξ∗q q̇

For convenience, we define another map Ψ∗q : TqQ→ TΞ(q)Q
by

(41)Ψ∗q :=

[
I 0

[Ae] I

] [
I 0
0 g−1

]
Ξ∗q

so that (40) simply reads ν = Ψ∗q q̇.

Even though the exact equations of motion in these coordinates
are too long to fit in this paper, it is in the following form

(42)r̈ = fh(r, ṙ, g, ξ) +Ghh(r, g)uh +Ghv(r, g)uv

ξ̇ = fv(r, ṙ, g, ξ) +Gvh(r, g)uh +Gvv(r, g)uv

where fh and fv along with the input matrices Ghh, Gvv , Gvh
and Ghv can be computed from equations (35) and (36). In our
particular problem, they turn out to be

G(r, g) =

[
Ghh Ghv
Gvh Gvv

]
=

1

m
Ψ∗Ψ

T
∗

where we have used the matrix representation of Ψ∗ on the
right hand side. These expressions are obtainable, precisely
because we have access to all the terms in these equations,
for instance ∂q̇i

∂ξb
is the ith row of the matrix of Ψ−1

∗Ξ(q) and
similarly every other term is computable from the ordinary rules
of differentiation.

5. CONTROL LAW

The Lagrange-Poincarè equations split the Euler-Lagrange
equations such that the horizontal set of equations (28a) govern
the behavior of the shape (internal) space, i.e., the relative posi-
tions of the agents with respect to each other, while the vertical
set of equations (28b) govern the behaviour of the virtual rigid
body some of whose points consist of the individual agents.

The control law that we design has two purposes

(1) Keep the connectivity of the graph above a certain threshold
and increase it to a predefined value

(2) Move the agents as a rigid body from an initial configura-
tion to a desired final configuration

We saw in section 2.2 that the connectivity of the agents de-
pends on the distances between the agents. This was formalized
by constructing the elements of the adjacency matrix as a de-
creasing function of the distance between each individual agent.
It was also shown that the determinant of the Laplacian matrix,
which is used as the measure of connectivity of the graph,
is invariant under the action of the special Euclidean group
SE(3). Thus, the connectivity controller as given in Satici et al.
[2013] has vanishing vertical component, uv = A (grad Vc).
This is easily shown as follows

(Vc ◦ exp (tξ)) (q) = Vc(q)⇒
d

dε

∣∣∣∣
t=0

(Vc ◦ exp (εξ)) (q) = 0

⇒ (Vc)∗q · ξQ(q) = 0⇒ ⟪grad Vc, ξQ⟫ = 0

Therefore, independent of the connectivity controller, we may
design the vertical component uv of our control input u to
swarm the agents in the desired manner. We shall not touch the
horizontal part of the controller when we design the swarming
aspect and thus the connectivity task shall be achieved no matter
how we choose uv .

Correspondingly the control inputs are mapped by the pull back
Ψ∗ as follows

(43)u = Ψ∗Ξ(q)ũ := Ψ∗Ξ(q)

[
uh

uv

]
where u is the vector of control inputs in equation (15) applied
to each Euclidean component of R3N . In the chosen coordi-
nates, this reads

(44)u = ΨT
∗Ξ(q)

[
uh

uv

]
where we view Ψ∗Ξ(q) as the matrix of the linear mapping
between tangent spaces. Since we will set uh = 0 for the
development of the swarming controller, we are actually not
interested in the first 3N − 6 columns of the matrix of ΨT

∗Ξ(q).

To ensure connectivity of the agents and increase it to a de-
sired value, we apply the preliminary control law presented
in section 2.2. That is, we set the connectivity controller as
the gradient of the determinant of reduced Laplacian M that
is constructed from the Laplacian L by the transformation
M = PTLP , where P is matrix that satisfies PTP = I and
PT1 = 0. Our final control law shall be the sum of what we get
from the swarming component and the connectivity controller,
i.e.,

(45)u = uc + ΨT
∗Ξ(q)

[
0
uv

]
In this equation uc is given by the connectivity controller with
added damping in the horizontal direction, i.e.,
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(46)uc = (Vc)∗q − kdΨ
T
∗Ξ(q)

[
ṙ

−Ae(r) · ṙ

]
where Vc is the connectivity potential as given in (14) In this
potential function, we have two parameters, α and ᾱ; the former
is a lower bound on the connectivity measure of the network
and the latter is the measure that we would like to achieve. Once
this measure is achieved, the connectivity controller smoothly
shuts down and does not increase it anymore.

On the other hand, we select the vertical control effort uv so
as to render the vertical Lagrange-Poincarè equations asymp-
totically stable. Working with equation (42), we may select uv
as

uv = G−1
vv

[
−kd (ξ − ξref )−Gvh(r, g)uh − fv(r, ṙ, g, ξ)

]
(47)

where ξref is a reference velocity input that renders the left-
invariant group kinematics asymptotically stable; that is, ξref is
such that if ξ → ξref , then the left invariant group kinematics

(48)ġ = g (ξ −Ae(r) · ṙ)

asymptotically converges, i.e., g → gd. In the next section 6, we
use this control law to stabilize the “rigid-body”, or swarming
behaviour of three robots, each evolving in the Euclidean 3-
space, R3, while achieving a desired connectivity measure and
keeping the overall connectivity intact for all time.

6. SIMULATION

In this section we demonstrate the use of the equations of
motion and the control law that we have developed in sections 4
and 5. The setting has three robots each of whose configuration
is R3. They are assumed to move without the action of gravity,
or we may assume that we’ve used active controls to remove
the action of gravity. This way the Lagrangian of each robot is
equal to its kinetic energy. The Lagrangian of a group of such
agents is then

(49)L =
m

2

3∑
i=1

(
‖ẋi‖2 + ‖ẏi‖2 + ‖żi‖2

)
The equations of motion in the original coordinates for each
i ∈ {1, 2, 3} are

(50)
mẍi = uxi

mÿi = uyi

mz̈i = uzi

Viewing the configuration space Q = R9 as a principal bundle
with structure group SE(3), we assign the coordinates (r, g)
that we have constructed in section 4 to Q.

Since we do not want to interfere with the horizontal or shape-
space dynamics, we set ũi = 0 for i = 1, 2, 3 and design ũj , for
j = 4, . . . , 9 such that the centroid x̄, ȳ, z̄ and the orientation
parametrized by φ, θ, ψ converges to a desired location, given
by (x̄d, ȳd, z̄d, φd, θd, ψd). Now, we want to apply the control
law (47) and (48). For that we need to come up with ξref which
will make g → gd asymptotically. To do that, we compute the

0

2

4

012345
0

1

2

3

4

5

6

x
y

z

Fig. 1. Implicit plot

relation between
(
ψ̇, θ̇, φ̇

)
and

(
η1, η2, η3

)
, which turns out to

be

(51)

η1

η2

η3

 = T

ψ̇θ̇
φ̇


T =

[ − sin θ 0 1
cos θ sin θ cosφ 0
cos θ cosφ − sinφ 0

]

and the relation between ( ˙̄x, ˙̄y, ˙̄z) and
(
η4, η5, η6

)
is

(52)

η4

η5

η6

 = RT

 ˙̄x
˙̄y
˙̄z

−RT [x̄ȳ
z̄

]

Now the reference signal for
(
ψ̇, θ̇, φ̇, ˙̄x, ˙̄y, ˙̄z

)
is straightfor-

ward:

(53)


ψ̇ref
θ̇ref
φ̇ref
˙̄xref
˙̄yref
˙̄zref

 = −kp


ψ − ψd
θ − θd
φ− φd
x̄− x̄d
ȳ − ȳd
z̄ − z̄d


Using the relations (51) and (52), we convert these references
to ηref , which in turn converts to ξref through the relation
ξref = ηref + Ae(r) · ṙ. Finally, the vertical control input that
was presented in equation (47) can be implemented and the final
control law becomes

(54)u = uc + ΨT
∗Ξ(q)

[
03×1

uv6×1

]
If we select kd in equation (47) and kp in equation (53) such
that kd ≥ 2kp than the whole system becomes fully damped,
and we can expect convergence to the desired centroid location
and orientation without overshoot. In the simulation, we have
selectedm = 1, kp = 2 and kd = 4 and arrived at the behaviour
depicted in Fig. 1.
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Convergence of the centroid and the orientation to their desired
location, which is selected to be (x̄d, ȳd, z̄d, φd, θd, ψd) =
(3, 4, 5, π4 ,

π
3 ,

π
3 ), is shown in Fig. 2. The initial pose was

parametrized by ( 1
3 ,

1
3 ,

1
3 ,−0.8861,−π4 , 0).

Fig. 3 depicts the evolution of the connectivity parameter, the
second smallest eigenvalue of the LaplacianL. In this particular
simulation the initial value was equal to λ2(M(t0)) = 0.3957
and it ends up at the desired value λ2(M(tf )) = 2, not
interfering with the convergence of the group coordinates, as
was predicted by the theory.

7. CONCLUSION

In this work, we have tackled the problem of swarming multiple
agents while preserving connectivity. We have used the theory
of reduced Euler-Lagrange equations, or Lagrange-Poincarè
equations as was developed by Marsden and Scheurle Marsden
and Scheurle [1993]. This development allows us to split the
original Euler-Lagrange equations into horizontal and vertical
parts where the horizontal equations govern the evolution of
the internal space and the vertical components govern the
evolution of the swarming behaviour. It is important to note
that this splitting makes global sense. Although we have used
a particular bundle trivialization to finish the control design, it
is possible to use the same equations with a different bundle
trivialization with larger domain of validity. The control design
phase would then follow exactly as presented.

We have shown that the connectivity controller affects only the
horizontal components and so leaves us free to design a swarm-
ing component in the resulting split equations of motion. We
have exploited this structure to impose an asymptotically con-
vergent swarming behavior. Finally, we presented simulation
results that supports the arguments presented in the theoretical
part of the paper.

As part of future work, we would like to extend the use of this
decomposition for connectivity control and swarming behavior
to agents whose configuration space is a Lie group rather than
the Euclidean vector space.
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