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Abstract: This paper addresses the synthesis of delay-dependent local stabilizing controllers for,
possibly open-loop unstable, nonlinear quadratic systems with a varying time-delay in the state. We
develop methods for designing static nonlinear quadratic state feedback controllers that guarantee the
local asymptotic stability of the closed-loop system zero equilibrium point in some polytopic region
of the state-space while ensuring a region of stability inside this polytope. Control designs based on
either the Razumikhin or the Lyapunov-Krasovskii approaches are considered. The proposed designs
are delay-dependent and are formulated in terms of linear matrix inequalities. A numerical example is
presented to illustrate the application of the stabilization methods.
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1. INTRODUCTION

Stability analysis and stabilization of nonlinear time-delay sys-
tems are problems of considerable theoretical and practical
relevance which are receiving increasing attention of control
system researchers. These problems are known to be hard, in
particular when one is interested in computing estimates of the
system domain of attraction (DOA) and/or designing locally
stabilizing controllers with a guaranteed region of stability.

Over the past decade, several approaches of global stabiliza-
tion have been proposed in the literature, such as, state feed-
back linearization (Zhang and Cheng [2005]), sum of squares
(Papachristodoulou [2005]), backstepping (Mazenc and Bli-
man [2006]) and forwarding (Jankovic [2009]). In addition,
input-to-state stability and stabilization have been studied in,
e.g. Pepe and Jiang [2006], Fridman efr al. [2008] and Pepe
[2009]. In the context of DOA estimation, Melchor-Aguilar
and Niculescu [2007] have presented techniques to compute
DOA estimates for linear time-delay systems with a Lipschitz-
type nonlinearity, for both constant and time-varying delays.
On the other hand, Coutinho and de Souza [2008] have de-
veloped methods for DOA estimation and ., analysis for a
class of nonlinear systems subject to a constant time-delay and
polytopic-type parameter uncertainty, which includes systems
with rational functions of the state and uncertain parameters
as well as some trigonometric nonlinearities. As for the issue
of designing local stabilizing controllers for open-loop unsta-
ble nonlinear time-delay systems while providing a guaran-
teed region of stability, linear matrix inequality (LMI) based
methods of delay-independent state feedback stabilization have
been recently proposed in de Souza and Coutinho [2012] for
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the class of nonlinear quadratic time-delay systems, namely
state-delayed systems with quadratic nonlinearities in the state
variables and bilinear terms in the state and control signal.

Inspired by de Souza and Coutinho [2012], in this paper we
address the problem of delay-dependent local stabilization of,
possibly open-loop unstable, nonlinear quadratic systems with
a time-varying delay in the state. The motivation for consider-
ing delayed-state systems with quadratic nonlinearities is that
they can represent a large number of processes, and include the
so-called bilinear time-delay systems as a special case (see, for
instance, Amato et al. [2007], Coutinho and de Souza [2012],
and the references therein). We develop LMI based synthesis
methods of static nonlinear quadratic state feedback controllers
to ensure the local asymptotic stability of the origin with a
guaranteed region of stability inside some polytopic region of
the state-space. Two control design approaches are proposed.
The first one, referred to as the Razumikhin approach, is based
on the Razumikhin stability theorem, whereas the second one,
referred to as the Lyapunov-Krasovskii approach, builds on a
Lyapunov-Krasovskii functional.

Notation. R*T =[0,), R" is the n-dimensional Euclidean
space, R™" is the set of m x n real matrices, I, is the nxn
identity matrix, 0, and 0,,x, are the nxn and m X n matrices
of zeros, respectively, and diag{:--} denotes a block-diagonal
matrix. For a real matrix S, S’ denotes its transpose, He(S)
stands for S+ 5, and S > 0 means that S is symmetric and
positive-definite. For a symmetric block matrix, the symbol *
stands for the transpose of the blocks outside the main diagonal
block. The Banach space of continuous functions ¢ : [—d,0] —
R” with finite norm |||z =: sup_z<,<¢ ||¢(?)|| is denoted by
%}, where | - || is the Euclidean vector norm, and x, € €} is
a segment of the function x(-) given by x,(s) =x(t+s), Vs€
[—d,0].
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2. PROBLEM FORMULATION

Consider the following class of nonlinear quadratic systems
with a time-delayed state:

X(1) = A(x(2))x(t) +Aq (x(2))%(2) + B(x(t))u(t), "
x(1) = 9(1), Vi €[-d,0], X(1):=x(r—1(t))
where x(t) € 2 C R" is the state, u(t) € R™ is the control input,
Z is some polytopic region of the state-space containing the
system origin (to be specified later), ¢(-) € € is the system
initial function, and 7(¢) is a varying time-delay satisfying

0<1(t)<d, t(t)<h<e, Vt>0, 2)

with d and h being given positive scalars. The matrices A(-),
Ay4(-) and B(-) are real affine functions, that is:

n n
A(x) =Ao+ Y xiAi, Ag(x)=Agy+ Y XiAd,
i=1 i=1
n 3)
B(x) =Bo+ Y xiBi,

i=1
where x; denotes the i-th component of x, and A;, A4, and B; are
given constant matrices.

The equilibrium solution x =0 of system (1) with u =0 is
allowed to be unstable and it is assumed that the following
linear system:

x(1) = Aox(r) +AgyX(t) + Bou(t),
x(t) = ¢(t)7 Vie [—d,O],

is delay-dependent stabilizable via a linear state feedback u(t)=
Kx(t). For notation simplicity, in the sequel the argument ¢ of
x(1), X(t), u(t) and 7(¢) will be often omitted.

Given upper bounds d and / on the delay and its time-
derivative, respectively, this paper focuses on designing a non-
linear quadratic static state feedback control law as follows:
n
K(x) =Ko+ Y xiKi, “)
i=1
that ensures the local asymptotic stability of the equilibrium
solution x =0 of the closed-loop system. In addition, we also
aim at deriving a stability region for the controlled system,
namely a set of initial functions ¢ for the closed-loop system
of (1) and (4) such that x(¢) — 0 as t — oo.

u=K(x)x,

The problem of local stabilization while providing a stability
region will be referred to as regional stabilization, and it will be
addressed in this paper via two approaches. The first one builds
on the Razumikhin stability theorem while the second approach
is based on Lyapunov-Krasovskii functionals, with both being
of delay-dependent type.

3. PRELIMINARY RESULTS

The polytopic state-space domain 2~ will play an important
role on deriving numerically tractable solutions to the regional
stabilization problem for both the Razumikhin and Lyapunov-
Krasovskii approaches. In this paper, it is assumed that 2" is a
given symmetric polytope (with respect to the origin). Depend-
ing on the convenience, the polytope 2~ will be represented
either in terms of the convex hull of its k vertices

<%/':CO{V17V27“'3VK}7 (5)

or alternatively in terms of its faces

%z{xeR”:\cﬁx\gl, izl,...,nf}, 6)
with ¢; € R",i=1,...,ny defining the faces of 2.

In order to obtain an LMI formulation for the regional stabi-
lization methods to be developed in the next two sections, the
closed-loop system of (1) with the control law in (4) is written
in the following form:

i =A(x)x+Aq(x)%, @)

where B
A(x) = A(x) + (Bo + T1(x)'By)K (x), ®)
Be=[B -+ B, M) =[xk xh]. 9

xnln] .

We end this section by recalling four results that are instru-
mental to derive LMI based conditions for regional stabilization
of the nonlinear quadratic state-delayed system in (1)-(3). The
first result is a version of Finsler’s lemma to handle constrained
inequalities; see, for instance, de Oliveira and Skelton [2001].
The second one is a well-known inequality for completing the
squares; see, for instance, Li and de Souza [1997]. The other
two results are respectively the Razumikhin and Lyapunov-
Krasovskii stability theorems for retarded functional differen-
tial equations; see, for instance, Hale and Lunel [1993].

Lemma I. Given matrix functions N(v) € R¥™ S(v)=S(v)' €
R™™ and n(v) € R™, with ve VC R”, then

new)Ysen() <0, VveV:Nw)n(v) =0, n(v)#0
if there exists a matrix L € R"™** such that
S(v)+He(LN(v)) <0, VveV. O
Lemma 2. For any vectors w, y € R" and any symmetric posi-
tive definite matrix 7 € R™*", the following holds:
2wy <w Tw+y T ly. 0
For the next two results, consider the following functional
differential equation of retarded type:
i=f(x), xe ZCR", x€%y],
{X(S) =¢(s), Vse[-d,0], ¢€C,

where f: €/ — R" is continuous and f(0)=0, and it is assumed
that for any ¢ € %7}, (10) possesses a unique solution.

(10)

Lemma 3. Letu,v:RT — R be continuous, positive definite
functions, u non-decreasing, and v strictly increasing. Suppose
p:RT — R" is a continuous non-decreasing function satis-
fying p(s) > s for s > 0. Suppose there exists a continuously
differentiable function Vi : 2~ — R such that

@ u(llx]) < Va(x) < v(llxl), Ve 2

(b) the time-derivative Vg(x(t)) of Vg(x(t)) along the solution
of (10) satisfies

Vr(x(t)) <0, if Ve(x(t+s5)) < p(Vr(x(r))),
Vse[-d,0], t >0, Vx(r) e Z, x(t) #0.
Let Zr(c) = {9 € €} : ¢(s) € Br(c), V s € [-d,0]} and
PBr(c) := {x € R" : Vg(x) < ¢}, where ¢ > 0 is such that
PBr(c) C Z. Then, the solution x = 0 of (10) is locally

asymptotically stable in .2". Moreover, x, € Zg(c), Vt > 0 and
lim;_.x(¢) = 0 for any ¢ € Zg(c). O

Lemma 4. Letu, v, w: RT — RT be continuous, positive def-
inite functions, u, w non-decreasing, and v strictly increasing.
Suppose there exists a continuously differentiable functional
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Vk : €} — R such that
@ (@) < Vi (e) <v(llxlla), Vx(2) € 27
(b) the time-derivative Vg (x;) of Vk(x;) along the solution of
(10) satisfies

Vi (1) < =w(|lx(@)[]), Vx(r) € 2.
Let Zk(y) == {¢ € €} : Vg(¢) < y} with ¥ > 0 such that
Bi(y) :={¢(s) € R*, s€[—d,0]:¢ € Zx(y)} C Z . Then,
the solution x = 0 of (10) is locally asymptotically stable in

Z . Moreover, x; € Zk(y),Vt > 0,and lim,_, x(¢) = 0 for any
initial function ¢ € Zx (7).

4. RAZUMIKHIN APPROACH

Letting x(¢) be the trajectory of the closed-loop system in (7)
with an initial function ¢(-) € €7}, it holds for 7 > d that:

0
x(t—1) = x(1) — / i+ o)da.
—T
Then, from (7) we get

i(t) = (A(x) +Ad(x))x—Ad(x)/0 [A(x(t4a))x(t+a)

-7

— Ad(x(t+a))x(t+(x—r)]da. (11)
Note that (11) with the following initial function:
x(t)=wy(t), Vie[-2d,0] (12)

is a nonlinear quadratic system with distributed time-delay
which has the property that the trajectories of (7) are also
trajectories of (11)-(12); see, e.g. Hale and Lunel [1993].
Hence, the local asymptotic stability of (11)-(12) will ensure
the local asymptotic stability of (7). In this section, we will
derive conditions for local asymptotic stability of the system
(11)-(12) via the Razumikhin stability theorem in order to solve
the problem of regional stabilization of the system (1). To this
end, consider the following quadratic Lyapunov-Razumikhin
function candidate:

Vr(x)=x'Px, P>0 (13)

with P € R"™" to be determined. In addition, the stability region
we will consider is defined in terms of the following normalized
level set of Vg(x):

Hr={¢€C):¢(s) € Br, Vsc|-d,0]}, (4
PBr = {xER" X' Px < 1}.

Before presenting the regional stabilization result we introduce
the following notation, where m = (n— 1)n:

_ 0}12><n H(x) _In2
Fib) = {omxn Omen N (2) } ’ 1
II(x) —1,
‘Pz(x) - |:Om><n /V(X) :| ’ (16)
len —xlln On s On
On X3In —XQI,, s On
N (x)= a7
drz 0 Xnly _x(n;l)ln

Theorem 1. Consider the system defined in (1)-(3) and let 2~
be a given polytopic region defined by either (5) or (6). Suppose

there exist real matrices Fy, Fi, ..., F,, L1, Ly, P;, P>, and Q
with appropriate dimensions and satisfying the following LMIs:

D (vi)+He(Li1'P1(v;)) >0, i=1,...,K, (18)
Dy(v;) >0, i=1,...,K, (19)
%(Q,F(V,‘),d)JrHe(Lz‘Pz(vi)) day P
d P —d P ’
i=1,....,k, (20
1—-clQe; >0, i=1,....np, 1)
where
(0] * ok
Q) (x)= | AX)Q+BoF(x) P x|, (22)
B\F(x) 0 0
@()—[ Q *} F()—F+Zn: F 23)
Zx - Ad(.x)Q P2 b X)= 0 i:1xl Ly
He (A (x) + BoF (x) +
(0 F).p) = | e ‘(X)B F(zx)(x) pQ) 0*2 . 4
Aj(x) = A(x) +Aa(x), (25)
%:[Ad Ad]7 P =diag{P, P,}. (26)

Then, the control law u = F(x)Q~'x ensures that the equi-
librium solution x =0 of the controlled system is locally
asymptotically stable in 2. In addition, x, € Zg, V>0, and
lim; .. x(f) = 0, for any initial function ¢ € Zx, where Xy is
asin (14) with P=0 . O

A proof of Theorem 1 is presented in Appendix A.

It is desirable to obtain a stability region as large as possible,
i.e., the largest possible size % inside 2. Note that, since
the volume of % is proportional to 4/det(Q), the maximiza-
tion of the volume of % is a nonconvex problem. However,
monotonic transformations such as log(det(Q)) can render this
problem convex (see, e.g., Boyd et al. [1994]). Hence, the
following LMI optimization problem is proposed to maximize
the size of the stability region % for a given polytopic state-
space domain £~ and an upper bound d on 7(¢):

L, ’r}%i,rQ{FO’WF’1 —logdet (Q) subject to (18)-(21) . (27)

5. LYAPUNOV-KRASOVSKII APPROACH

In the sequel an LMI method of regional stabilization is devel-
oped based on the Lyapunov-Krasovskii stability theorem. For
the sake of easier readability, the local stabilization and stability
region results are separately presented.

5.1 Local Stabilization

Consider the following Lyapunov-Krasovskii functional (LKF)
candidate for the closed-loop system in (7):

Vi () = Vi(x) + V2 () + V3 (xe), (28)
where
t
Vitr) = XPix, Va(x,) = / x(a) Pox(@)da,
t—1(1)
0 t
Vae) = [ /Hﬁx(a)’Pax(a)dadﬁ (29)
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with Py, P, and P; being symmetric positive-definite matrices.

The time-derivative of Vg (x,) along the trajectory of (7) is as
follows:

Vi (x;) = 2X' P (A(x)x+Aq(x)%) + X' Pox — (1—1)X' Pox
+d(A(x)x+Ag(0)%) Ps (A(x)x+A4(x)%)
1
- / @) Pyi{)dar. (30)
,,
Introducing the following variable transformations:
{510) = Pix(t), &) =hx(), c(a)=r1Px(a), a1
Q1 =P, 02=01P01,

it follows that Vx (x,) in (30) can be written as

Vi) = - / E(a) [E(x, 7, %) +dot (x) Pyt ()] € ()t (32)
where R .
{5(05)2 (&) &) &), (33)
o (x) = [A(x)Q1 Ag(x)Q1 0,],

and E(x, 7,1) = [E; j]i j=1,2,3 is a symmetric block matrix func-
tion whose nonzero blocks are given by:

Z11 =He(A(x)Q1) + 02, E21 = 0144(x), (34)
En=—(1-1)02, Es3=—(d/7")Q1P0:.
Note that the vector é(a) satisfies the equality constraint
t A
0178 (a)do=0, # =1, -1, —1I,]. (35)
-7
As 1/(dt)<1/7%, Q1 >0and P3 >0, it follows that
P
| serEss@das - [ s@ 222 @

Now, considering that E;1, E»1, Ep; and & (x) are independent
of a, ©<h and (32), it can be easily verified that the latter
integral inequality implies the following:

< [ é@
E(x):= E(x,d,h) and o := o/ (x).

Next, in the light of (35) and (36), by Lemma 1 it follows that
VK (x;) is negative definite if the next inequality holds:

[ &

for a free multiplier R(x) =

Rj(x) =

(x) +do/' Pyt ) E(a)da,  (36)

where

(x)+d.o/'Pyo/ +He(R(x).7) | € (at)dax < 0,
VX #0, (37)
[Ri(x)) Ra(x)" R3(x)']’, where

n
Rjo+ Y xiRji, R eR™ j=1,23.
i=1

(38)

In view of (37), in order to present the stabilization result of this
section we introduce the following block matrix functions:

A(x) = [Alj]lj 1,...65 .Q(x) = [Ql]]l 1,...4,j=1,..6

with A(x) being symmetric and where the nonzero blocks of
A(x) and Q(x) are as follows:

A1r =He(A(x)Q1 +BoY (x) + R (x)) + 02,

A1 = Ag1 = ByY (x), Az1 = Q1Aq(x) +Ra(x) — R (x)',
Az = (h—1)0 —He(Ro(x)), A41 =R3(x) =R (x)',
A3 = 7R3(x) 7R2(X)/, Agq = 7(Gd)_lQl 7He(R3(x)),

Asi =A(x)01 +BoY (x), As3=A4(x)Q1, Ass=—(0/d)Q1,
Qi = Q35 =II(x), Qo =Q3=—1p,
Q= Que= N (x),

where o is a given positive scalar, .4 (x) is as in (17) and
n
Y(x) =Yo+ Y xY;, Y;eR"™*".
i=1
Theorem 2. Consider the system in (1)-(3) and let 2" be a
given polytopic region defined by either (5) or (6). Suppose that
for a given scalar o > 0 there exist real matrices Q1 >0, Q> >0,
Y;, Ryj, Ryj and R3; for j=0,1,...,n, and M, satisfying the
following LMIs:
A(vi)+He(MQ(v;)) <0, i=1,...,x (40)

Then, the control law u =Y (x)Q; 'x, with Y (x) as defined
in (39), ensures that the equilibrium solution x =0 of the
controlled system is locally asymptotically stable in 2 .

(39)

Proof. Firstly, it follows that Vi (x;) in (28) satisfies
elllx(t)[* < Ve(x) < &2llxl[3
for some positive scalars €/ and &. Secondly, by convexity, (40)
holds for all x€ 27, and thus consider (40) with v;=x,Vx € 2.
Post- and pre-multiplying this inequality by respectively Y (x)=
. < / 77/
diag{Y(x),1,,1,,Y(x) } and Y(x)’, where Y(x)=[1, TI(x)']",

and considering that Q(x)Y(x)=0and Y (x) =K (x) Q). leads to
Z(x)+He(R(x).#) o (x)
<0, Vxe 2, @)
o (x) —(o/d)0
where % (x) is equal to Z(x) with P;=P; /G.

Applying Schur’s complement, (41) is equivalent to
Z(x)+dd (x) (P1)o)d (x) +He(R(x)J) <0, Vxe Z,

which in light of (37) implies that Vi (x;) is negative definite.
Thus, by Lemma 4 the controlled system is locally asymptoti-
cally stable in 2. \AAY%

Observe that in Theorem 2 the matrix P; in (29) is constrained
to be equal to P /o in order to obtain a set of state-dependent
LMIs in (40), where o is a positive scalar to be chosen. This
relaxation may be conservative for stability analysis, but the
extra degree of freedom introduced by the control design may
overcome this problem. In addition, for reasons to be clarified
in the next subsection, the parametrization P; = P /o shows to
be advantageous for maximizing the stability region.

5.2 Stability Region

Assuming that the conditions in Theorem 2 hold and consid-
ering Lemma 4, then the set Zx(y) = {¢ € €} : Vk(¢) < v}
with ¥ > 0 such that Bg(y) = {¢(s) € R", s€ [-d,0]: ¢ €
Zx(y)} C 2 and Vg(x) as in (28) is a contractive positively
invariant set. However, verifying the condition Bg(y) C 2" is
numerically hard. To overcome this difficulty, a bounding set
P () of Bk(y) is introduced such that the condition % (y) C
A can be verified in terms of LMISs, and for that we consider

Bi(y):={xeR":Vi(x) <7} (42)

with V;(x) as defined in (29). Note that V; (x(r)) < Vg(x;) for
all x; € € and thus Bg(y) € Z#1(7) holds if Vk(x;) < 7. To
this end, we introduce a matrix W to be determined and the
constraints as follow:
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FYPx<XWx<1, i(a)Pui(a)=xia)(c0;) k(o) <1.

Hence, taking into account (28) and (29), it follows that

Vi (x:) < x(t)' Q7 "x(t) +d +0.5d°. (43)
Thus, the condition B (y) C % (Yy) is guaranteed if
KO 'x+d+05d* <y, VxeR": X Wx<1. (44)
By the .’-procedure, (44) holds if
y—d—05d*~1>0, W—-0;'>0. (45)

On the other hand, as V; (x) =x'Pyx, the inclusion %;(y) C 2
is equivalent to (see, e.g., Boyd et al. [1994]):

1—ci(y01)ci >0, i=1,...,ny. (46)

In light of the previous arguments, we define the stability region
for the Lyapunov-Krasovskii approach as follows:

Ex={90€C): ¢(s)€ Bk, Vse [-1,0], §€ Ik},
B ={xeR" : XWx<1},
Ik ={0c%]  |loli<r}, =0k,

with A; being the smallest eigenvalue of Q;, and subject to (45),
(46) and W — P, > 0. Indeed, it is easy to verify that x, € Zx,
V>0, and lim ;. x(¢) = O for any initial function ¢ € Zx.

(47)

Defining G=0Q1WQ; and p = y~!, and considering that Q) =
01201, the following optimization problem is proposed to
approximately jointly maximize the sets %k and Zk:

min trace(G) — logdet(Q;) : s.t. (40),
p,G,01,0:,M.Yy,...,Y,
Rii,RoiRy;i=1,...,n

0, >0, i:1,2, p—c{QlciZO, i:l,...,nf,
1—p(d+0.5d*)—p >0, G—0Q; >0, i=1,2.

(48)

The achieved stability region is as in (47) with W =0, 'GQ .

Remark 1. We have considered the LKF in (28) in order to
achieve a numerically tractable local stabilization method with
a guaranteed stability region. It is not clear if the use of a
more complex LKF will allow for deriving a less conservative
numerically tractable stabilization method.

Remark 2. Notice that the optimization problem (48) is not
jointly convex in ¢ and Q. However, for a given ¢ the matrix
inequalities in (40) become LMIs. Thus, a direct LMI-based
approach to solve (48) is to perform a line search on ¢ > 0.

Remark 3. Tt turns out that the stability region in (47) depends
not only on the delay upper bound d, but also on ||¢|3. Notice
from the optimization problem in (48) that we approximately
maximize the smallest eigenvalue of Q; and minimize trace(G).
Since W = QflGQfl, we approximately maximize the size
of Bk. In addition, Pk is also being maximized, which is a
desirable feature.

6. AN EXAMPLE

Consider an open-loop unstable quadratic time-delay system as
in (1) with the following matrices:

C[02¢q 0 o
A(x)—{ 0 1+0.2x2]’ B(x) =B = {1}
(49)
| =140.2x; —1
Ad(x)—[ 0  —094020|

and 7(¢) being a time-varying delay satisfying 0 < 7(r) < d and
t(t) <h,Vt>0.

In this example, the objective is to design a quadratic control
law as in (4) which guarantees the local asymptotic stability of
the closed-loop system while maximizing the stability region
of the equilibrium point x=0. It should be emphasized that the
pair (A(0),B) is not stabilizable and thus the results proposed
in de Souza and Coutinho [2012] cannot be applied.

In the following, we apply the Razumikhin and the Lyapunov-
Krasovskii approaches of Theorems 1 and 2, respectively, to
derive a stabilizing quadratic state feedback controller for the
system (1) with (49) and

d=03, h=1, 2 ={xeR*:|x|<1,i=1,2}.

Fig. 1 shows the sets % and Hx of the stability regions
PFr and X, respectively, given in (14) and (47), obtained by
Theorems 1 and 2 for the above setup, where ¢ in Theorem 2
has been chosen to enlarge the size of the set Zk as defined
in (47). In particular, we have obtained Zx = {¢ € ‘5&3 :

19I5 < 1.5}

Fig. 1. Sets % and Pk of stability regions Z and .

7. CONCLUSION

This paper has dealt with the problem of state feedback lo-
cal stabilization of, possibly open-loop unstable, nonlinear
quadratic state-delayed systems with a time-varying delay. In
particular, we have proposed LMI methods of delay-dependent
local stabilization via static nonlinear quadratic state-feedback
based on either the Razumikhin or the Lyapunov-Krasovskii
stability theorems that provide a maximized stability region for
the closed-loop system. It turns out that the stability region ob-
tained via the Lyapunov-Krasovskii approach is dependent on
the maximal magnitude of the initial function time-derivative,
which may be restrictive in some practical applications.
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Appendix A. PROOF OF THEOREM 1

Firstly, note that the time-derivative of Vg(x) in (13) along the
solution of (11) is given by

Vr(x) = 2X'P(A(x)+Aq(x))x — 2x'PA4(x) -
/70 [A(x(t4a))x(t+a)Aql(x(t+a))x(t+a—1)]da. (A1)

Applying Lemma 2 to the two terms of the above integral, it
follows that for any n x n matrices P; > 0 and P, > 0, we get:

Vr(x) < 2x'P(A(x) +Aq(x))x

0
+ | X'PA4(x)(P+ Py)Aq(x) Pxdo

—T

+ ’ [x(t + o) A(x(t + o)) P Ax(t + o))x(t + o)

+x(t;—a— T Ag(x(t+0)) Py - Ag(x(t+a))x(t+o—1)]da
=2x'P [A (x)+A4(x)+0.57A4(x) (P +P2)Ad(x)/P]x
+ ’ [x(t+ o) A(x(t+a)) Py A(x(t + 0)x(t + )

_ +x(t+oa—1)Al(x(t+ )Pyt
Ag(xt+a))xt+a—1)]do (A2)

We will now show that the conditions in Theorem 1 imply that

A(x)P'A(x) <P, Vxe X, (A.3)
Ag(x)Ps ' Ag(x) <P, Yxe Z. (A.4)

To this end, define
{g(i) I;_ll’% +x1F + ...+ x,F =K(x)Q, AS)
where Fy, Fi,...,F, are n, X n real matrices to be found. Note

that this leads to the controller gain parameterization K(x)=
F(x)Q~!. Then, it can be verified that (A.3) is equivalent to

G106 >0,¥ 8 = [&) ¢ (M)E)] #0,
[Cl/l Cllz]l € Rzn’ VxeZ

where II(x) and ®;(x) are as defined in (9) and (22), respec-

tively. Since the vector {; is such that ¥ (x) {; =0, where ¥ (x)

is given in (15), by Lemma 1 it follows that (18) guarantees that
(A.6), or equivalently (A.3), is satisfied.

(A.6)

Next, by Schur’s complements, (A.4) is equivalent to
Dy(x) >0, Vxe &
with @;(x) as in (23), which is ensured to hold by (19).

On the other hand, in light of Lemma 3 assume that for some
real number 6 > 1,

Ve(x(s)) < SVR(x(1)), Vs € [t—2d,t]. (A7)

Considering (A.3), (A.4) and (A.7), the following can be ob-
tained from (A.2):
Vr(x) <x'[2P(A(x)+Aq(x)) +28 TP
+TPA4(x) (P + P2)Aq(x)'P]x.

Introducing the variable transformation & = Px and considering
(A.5), the latter inequality can be written as:

Vr(x) < G [% (Q,F (x),87) + 1., (x) Pay(x) | &, (A.8)

where §, = [ 1, H(x)’]lg, % (+) is given in (24), and <, (x)
and &7 are given in (26).

Since the vector &, is such that ¥, (x)§, =0, with the matrix
W (x) as defined in (16), by Lemma 1 it follows from (A.8)
that Vg(x) < O for all nonzero x € 2" if

U (Q,F(x),87)+ 1.;(x) Pty(x)' + He (L W2 (x)) <0 (A.9)
over 2 for some matrix L, of appropriate dimensions.

Considering that t(r) < d and since (20) is strict, (20) implies
that there exists a small scalar & > 1 such that (A.9) is satisfied.

Finally, (21) is equivalent to g C X2 (see, e.g. Boyd et al.
[1994]). Hence, by Lemma 3 it follows that Theorem 1 holds.
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