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Abstract: This article developed a new result on the eigenvalue distribution for a certain class
of time delay systems based on the extension of the Hermite-Biehler Theorem. Such result is
applied to proportional-integral (PI) controller parameter design for a first-order plant with
time delay via eigenvalue assignment. Using the method provided in this paper, one can assign
the rightmost eigenvalues of the closed-loop system to desired positions in the complex plane.
Further, on the basis of the previous result, this paper also extended the PI control to the

proportional-integral-derivative (PID) case.
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1. INTRODUCTION

Time delay widely exists in lots of process control systems
(see Sipahi et al. (2011) and Richard (2003)). It is known
that the existence of time delay gives rise to characteristic
equations of closed-loop systems with an infinite number
of roots (Gu et al. (2003)). Pontryagin studied a class of
linear time invariant delay systems several decades ago.
Based on Pontryagin’s results, a suitable extension of the
Hermite-Biehler Theorem can be developed to analyze
that if the characteristic equations of these delay systems
are Hurwitz, i.e., these equations possess only roots in the
open left hand of complex plane (Bellman et al. (1963)).
This result has played an important role in stability
analysis and controller design of delay systems (Silva et al.
(2005)). However, if a given characteristic equation is not
Hurwitz, then this result does not provide any information
about its root distribution. Though Silva et al. (2005) also
revealed the stability-instability boundaries of controller
gains based on this result, the pole distribution on the
imaginary axis is not exactly depicted. In this paper, on
the basis of the extension of the Hermite-Biehler Theorem,
we produced a new result applicable to the characteristic
equation with only a pair of nonzero imaginary axis roots
(IARs) and left hand plane roots (LHPRs). It is worth
noting that such result is very significant and can be used
to controller design for some plants with time delay. Also,
it is one of the staring points of our research.

In industry, proportional-integral-derivative (PID) con-
trollers are most widely used because of simplicity in struc-
ture and capability in control (Wang et al. (1997)). An
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important problem in PID control of time delay systems
is to compute the set of all PID parameters which pro-
vide internal stability and also some desired performance
specifications for the closed-loop system (Bozorg et al.
(2011)). In the last years there has been an interest in
developing a theoretical analysis in order to determine the
set of stabilizing P/PI/PID parameters for a given delay
plant using different methods, see. e.g., Silva et al. (2002),
Wang (2007), Ou et al. (2009), Oliveira et al. (2009),
Hohenbichler (2009), Bozorg et al. (2011), and Padula et
al. (2012). Moreover, excepting stabilization of systems,
some researchers also consider to guarantee a performance
specification, see Bozorg et al. (2011).

As is known that many properties of a closed-loop sys-
tem depend on the locations of its poles, especially the
locations of the rightmost roots in the complex plane.
Hence pole placement is one of the mainstream methods in
control system design (Astrom et al. (2006)). However, for
time delay systems, pole placement is not feasible using
traditional control methods (Yi et al. (2013)). In this
article, we apply the new result produced in this work to
PI and PID control for a given first-order delay process.
Our objective is to assign the rightmost eigenvalues of
the closed-loop system to desired positions in the complex
plane. Therefore, this article has the merit of making the
rightmost eigenvalues of time delay systems exactly at
the positions which are chosen according to the desired
performance in industrial engineering.

Some basic properties on the relationship between the
poles distribution and the controller gains for delay sys-
tems are derived in Michiels et al. (2002) and Michiels et al.
(2005). Wang et al. (2009) and Michiels et al. (2010) also
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give some results on quasi-direct pole placement depending
on the degrees of freedom in the parameter space.

It has to be stressed that Yi et al. (2013) also study pole
placement for time delay systems by using the Lambert W
function (for another work with Lambert W function on
delay systems, see Yi et al. (2008)). Especially, they have
considered PI control for a first-order process with time
delay. However, the characteristic equations considered in
Yi et al. (2013) are all retarded type quasi-polynomials as
requested in the book Yi et al. (2010). When we control
a first-order delay plant using a PID controller, the char-
acteristic equation of this closed-loop system is obviously
a neutral type quasi-polynomial. This fact means that the
method proposed in Yi et al. (2013) can not be used in
this case. Thus, another contribution of this work is that
one can achieve rightmost poles placement through our
approach for a class of time delay systems whenever the
characteristic equation is retarded type or neutral type.

2. PRELIMINARIES

Consider a delay system whose characteristic function is

5(s) =d(s) +ni(s)e ™+ ...+ np(s)e " (1)
where d(s) and n;(s) for j = 1,2,...,m are polynomials
with real coefficients. For this function, we make the
following assumptions.

(A)0<r<wm<...
(B) degld(s)] = M and deg[n;(s)]<M.
Multiplying (1) by e”™*, we get the quasi-polynomial as
h(s) = d(s)e’™ +ny(s)e ™ 4 fnp(s).  (2)
Since the term e”™° vanishes nowhere in C, then d(s)
and h(s) have the same set of roots. Here, we first
present a extension of Hermite-Biehler Theorem based on
Pontryagin’s results. This result can be applied to judge if
a given quasi-polynomial as (2) is Hurwitz.
Let h(jw) = h.(w) + jhi(w) by substituting s = jw,
w € R, into h(s) in (2). hl(w) and hj(w) denote the
first derivatives with respect to w of h.(w) and h;(w),

respectively. The following theorem presents the necessary
and sufficient conditions for h(s) in (2) being Hurwitz.

Theorem 1: (Bellman et al. (1963), Silva et al. (2005)) The
quasi-polynomial h(s) in (2) is Hurwitz if and only if

< Upm = N,

(i) hy(w) and h;(w) have only real roots and these interlace;
(if) 7 (wo)hr (wo) —

This result has played an important role in studying the
stabilization problem of a given plant with time delay.
From this theorem, it is clear that to ensure that h,(w) and
h;(w) possess only real zeros is a key step. This property
can be ensured by another result of Pontryagin as follows.

Theorem 2: (Bellman et al. (1963)) Under Assumption (A)
and (B) for h(s) in (2), let n be a constant such that the
coefficients of terms of highest degree in h,(w) and h;(w)
do not vanish at w = 7. Then, the necessary and sufficient
condition under which h,(w) or h;(w) has only real roots
is that, in the interval —2ir +n < w < 2l + 7, h.(w)
or h;(w) has exactly 4IN 4+ M real roots for a sufficiently
large integer [.

hi(we)h!.(w,) > 0, for some w, € R.

3. A NEW RESULT ON THE LOCATION OF ZEROS

In this section, we present a result for the quasi-polynomial
(2) possessing only LHPRs and a pair of nonzero IARs
based on the extension of Hermite-Biehler Theorem. It is
worth mentioned that this result plays a fundamental role
in solving the problem of ascertaining the parameter set of
some low-order controllers via eigenvalue assignment for a
system with time delay.

Theorem 3: For a quasi-polynomial h(s) in (2), all but a
pair of roots s = +jw*, w* € RT, are in the open left hand
plane if and only if

(i) hi(w*) = hr(w*) = 0;

(ii) hi(w) and h,.(w) has only real roots denoted as w; and
w, respectively and, excepting the root w; = w* and the
root w, = w*, all the other nonnegative roots interlace;

(iil) A} (wo)hr(wo) —

Proof:  Sufficiency. From Condition (i), it is easily seen
that s = jw* is a root of h(s) in (2). By the property of
complex conjugates, s = —jw™ is also a root of this quasi-
polynomial. Since h(s) is analytic in the entire complex
plane, then it can be expanded as a Taylor series about
the point s = jw* as the form

h(s) = (s — jw")h(s) (3)

hi(wo)h!(we) > 0 for some w, € R.

where

a(s) = W () + 1 Got) 2D
From (3) we can ascertain that s = —jw* must be a root
of hy(s) as it is a root of h(s). Moreover, it is found that
hi(s) is also analytic in the complex plane. Then we have

+...

h(s) = (s — jo")(s + jo")h(s) (4)
where
(s) = By (o) + B O )

Thus, excepting s = +jw®*, the other roots of h(s) can
be determined by h(s) = 0. By substituting s = jw and
denoting h,.(w) and h;(w) as the real and imaginary part
of h(jw), we get that

hp(w) = (—w +w* )b (W), (6)

hi(w) = (= + W )hi(w). (7)
Excepting w = tw*, the other zeros of h;(w) and h,(w) can
be ascertained by the equations h;(w) = 0 and h,(w) =0
respectively. It is noted that h,;(w) is an odd function and
hy(w) is an even function. Therefore, h;(w) is also an odd
function and h,(w) is also an even function. All the real
zeros of h;(w), h.(w), h;(w) and h,.(w) are symmetrical
about the origin, respectively. Then, from Condition (ii),
we can judge that h;(w) and h,(w) have only real zeros
with w € R and these zeros interlace. By means of
Condition (iii), for some w, € R, we have

hi(wo)hr (wo) — hi(wo)hy (wo)
=(—w; + )R (Wo) R (wo) — hi(wo)l (we)] > 0 (8)

which means that A (we)h,(we) — hi(we)h(w,) > 0. Ac-
cording to Theorem 1, we can conclude that all the zeros
of h(s) in (5) are in the open left hand complex plane.

Necessity. When h(s) in (2) has a pair roots s = £jw*, we
have the expressions (4), (6) and (7). Then the conditions
(i)-(iil) can be easily verified. |
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4. PI CONTROL OF FIRST-ORDER DELAY
SYSTEMS

%T—eﬁ C(s) }—”4 G(s) HH

Fig. 1. Unit feedback control system

Consider a unit feedback control system shown in Fig. 1,
where G(s) is a first-order delay plant described as

K —0s
G(s) = Ts it 9)
and C(s) is a PI controller whose transfer function is
ks
C(s) =k, + < (10)

In G(s), K € RT is the steady-state gain, § € RT is the
time delay and T" € R is the time constant.

In this section, by using Theorem 2 and Theorem 3, we
present a method to design PI controllers for a first-
order delay system so that the rightmost poles of the
closed-loop system can be located at the desired positions
s = —o*+jw*, where o*,w* € RT.
The closed-loop characteristic equation of the system is
5(s) :=s(Ts+ 1) + K(kps + kj)e " =0.  (11)

Taking s = A — o* into (11), we get that

S(\) == (TN + 1)(ToA + 1) — K (kA + E)e™ = 0. (12)

where T} = —1/0*, l_cp = kp, and k; = k; —0*ky. Moreover,
Ty and K are given by
_ T _ Kefo
Ty=— RK=—  foro*T #1;
T 10T o*(1 —o*T)’ or T #1; (13)
B B Ke@a* .
TA+1=T\ K=——, for o*T = 1.
o
Multiplying §()\) by €%, we have
H(\) = (To\ + 1)(Tod + 1)e? — K (kA + ki) = 0. (14)
Then substituting A = jz/6 into (14), it yields
_ .z _ -
A(2) = Hy(z) + Hi() (15)
where
1,(2) = £(2) cos[z + ¢(2)] — Kki, (16)
H(2) = £(2) sinfz + (2)] — gfa‘c . (17)
Here
72,2 2.2
£(z) = \/( 12 + 1)( 2% + 1), for o*T # 1;
92 92 (18)
T T? 2
£(z) = 72 ( éj 1), for o*T = 1,
le [ *
©(z) = arctan(—) + arctan(—— ) for o*T # 1;
o(z) = arctan(%) + g, for o*T = 1.

Definition 1: Consider the equation [#¢(z)/z] = 0. The
value of its positive real root is denoted by p. If it has no
positive real roots, let p = 0. Then define I*, Z*, and @ as
follows.

(i) I* € Z* is a number which satisfies that

p+o(p) <20* — V)7 +7/2. (20)

(i) for a fixed [* satisfying (20), we define Z* € RT
ascertained by the following equation:

ZF+p(ZF)y=2"r + /2.

(111) O0=20<2z1 < ...
in the interval [0, Z*).

(21)
< zg-1 are the real roots of H;(2)

Lemma 1: The quasi-polynomial (14) possesses only real
roots if and only if the k, value ensures

2042 for0<o™T <1
|2 +3 foro*T>1lorT <0,
where ) and [* are given by Definition 1.

(22)

Proof: By Theorem 2, H;(z) has only real roots if there are
41 + 2 real roots in [2lr — w/2, 2lw 4+ 7 /2] for a sufficiently
large integer I. Since H;(z) is an odd function, i.e., all
its real roots are symmetrical about the origin, then the
condition which H;(z) has only real roots can be equivalent
to that H;(z) has only 2] + 2 real roots in [0, 2i7 + 7/2).

According to (17), the roots of H;(z) can be given by
2Kk,

95( ) = sin[z + ¢(2)]. (23)
It is clear that zp = 0 is one root of (17). From the
expression (19), one can find that for z — +o0,
(2)=0, if0<o"T <1, (24)
p(z) =—m, it ™' >1or T <O0.

By Definition 1, we can ascertain that |2Kk,|/|0&(2)] is
a strictly decreasing function with z > Z*. Therefore,
when |Z*Kk,|/|06(Z*)| < 1, the intersection points of the
plots 2Kk, /[0¢(2)] and sin[z + ¢(z)] will be 2(I — I*) for
0<o*T'<land2(—-1")—1foroc*T'>1or¢*T <0in
the interval [Z*, 2lm 4+ 7/2), respectively.

From the analysis above, it is obtained that H;(z) has 2142
real roots in the interval [0, 2w 4+ 7/2) if (22) holds. m

Lemma 2: For a fixed value of k, which can ensure that the
expression (22) holds, in order that the quasi-polynomial
(14) possesses only LHPRs and a pair of nonzero IARs,
the range of k; is given by

(i) ks # Temr;

(i) if ( max_ [p(z)] < jmin  [p(2)] then
&= { o Bl i b} (25)
where
p(z) = &(2){cos[p(2)] cos(2) — sin[ip(2)]sin(2)},  (26)
S(t) = sgn[H!(z)], and t = 0,1,...,Q — 1;

(iii) if S(t) = 0, then it requires H (z;)H/(z) > 0.

Proof: To meet the requirement of this lemma, by Theo-
rem 3 we have to satisfy the following conditions:

H,(zp) =0, for a zp» € {21}, zkx#0 (27)
H{(z)H,(21,) >0, for 272k, (28)
H! (2 )H(z3+) > 0, if H.(z+) = 0. (29)
where z = 2, k € N, are the nonnegative real roots of
H;(z) arranged in ascending order. Note that the condition
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(28) and (29) can guarantee that all the roots of H,.(z) but
z = zj» in [0, 400) are real and they interlace with those of
H,(z) excepting z = zg+. Also, the condition (28) ensures
Condition (iii) of Theorem 3 as H;(z;) = 0.

Substituting z = 2, into the equation H;(z) = 0 and the
function p(z) in (26), then we can get that

2 Kkysin[p(zr)]  €(zx) cos(zr)
2) = . 30
P = ool el
According to (23), it is found that
[ 2
() — K2k2 3%
cos|zi + p(z 31
[k + ©(zk) e (31)
From the property of trigonometric function, we have
cos(zx) = cos|zk + ¢(zk) — p(2k)]
= cos|z + @(zk)] cos|p(zk)] + sin[zi, + @(2k)] sin[p(zk)].

Substituting (23) and (31) into this function, and then
taking it into (30), we can obtain that

- s o

It is mentioned from (31) that whether the value of p(zy)
is positive or negative is demded by the value of zj, +¢(zk).
It can be judged that for a value of k, which can ensure
that (22) holds, we have the following propertles 1) when
2 > 202, sen[H}(z1)) = —sgu[H(z1)] and [p(z1)] is a
strictly increasing function with zx; 2) when z > zg_1,
sgnlp(zr)] = sgn[H](z1)]; 3) 2g-2,2-1 € (p, Z%). It is
sufficient that H](zx)H,(zr) > 0 for all 2z, € [Z*,+00) if
H/(z)H,(21) > 0 for zg_2 and zg—_1. Then, it is obtained
that the conditions (27)-(29) will be satisfied if and only
if the conditions (i)-(iii) of this lemma hold. [

K2k2

3% (32

Lemma 3: The quasi-polynomial (14) has a pair of roots
A = +jw*, w* € Z*, if and only if k, and k; satisfy

(i) cos(w*f) = Re [—

S\ o *0\ _ (jw*—c")(jTw* +1-Tc™)
(ii) sin(w*f) = Im [ Rel™ (oo oy 1) }

(jw™ —U*)(JTw +1-To* ):|
KeP7™ (jw*kp+k;) )

Proof: As is known from the property of complex con-
jugates that if A\ = jw™* is a root of the quasi-polynomial
(14), say, so is A = —jw™*. Then substituting A = jw* into
H(X) =0, we can get the conditions of this lemma. [

Now we will present the main result of this section.

Theorem 4: For a PI control of a given plant with transfer
function G(s) as in (9), in order to assign the rightmost
eigenvalues of the closed-loop systems to the desired posi-
tions s = —o* & jw*, where o*,w* € RT, in the complex
plane, the values of k, and k; are given by

k, = l;:;,, ki = k! + a*l_cz',, (33)
where

(k;, _;) C {@1 N @2} (34)
Here ©; is the set of (kp,k: ) obtained by Lemma 1 and
Lemma 2; O, is the set of (k,, k;) gotten by Lemma 3.
Proof: According to (11) and (12), it is found that for
a given set of (k,,k;) values, in the complex plane the

positions of the roots of (11) in s are equivalent to the
positions that all the roots of (12) with respect to A
renovate a left shift ¢* in the horizontal direction. It is
known that (12) and (14) have the same roots. Then by
Lemma 1 and Lemma 2, the set of (k,, k; ) values in ©; can
ensure that a pair nonzero imaginary axis roots of (12) in
A are at the rightmost. By Lemma 3, the set of (kjp,k;)
values in ©y can guarantee that (1 ) has a pair roots
A = tjw*. Therefore the rlghtmost eigenvalues of (12)
will be A = £jw* if the set of (kp, k;) values is in ©1 N BOa.
Moreover, it is clear that k; =k, and ki =ki—o *kp. From
the discussion above, we get the result of this theorem. H

Ezample 1: Consider an open-loop stable plant provided
by Yi et al. (2013):
6—0.23

0.5s+1

Choose a PI controller to let the rightmost eigenvalues of
the closed-loop system be at s = —1.25 + 2.1651:.

G(s) = (35)

20 5
15
4
10 _ 5} \
the range of k, \\
5 M 3 \
<& 53 y
T L A ¥ 2 /
s /
/
1 /
-10
% 2 4 6 8 10 % 1 = 2 3
z kyp
(a) (b)
3 25
2 <
CH)
1
0

Fig. 2. The parameters k, and k; for Example 1.

Substituting s = A — 1.25 into the characteristic equation
of the closed-loop system, we have

S(A) =(—0.8X 4+ 1)(1.3333) + 1)
—2.7393(kp\ + k;)e 2 = 0. (36)

By the form of the expression (12), it is seen that K =
2.7393, Ty = —0.8 sec, To = 1.3333 sec, and 6 = 0.2 sec.
From (17), we have the expression H;(z) in which

£(z) = /(1622 + 1)(44.444422 + 1), (37)

p(z) = — arctan(4z) + arctan(6.6667z). (38)

According to Definition 1, we can calculate that {* = 1
and Z* = 7.8412. By Lemma 1, the necessary condition
for values of k, is that they can ensure that the function
H;(2) has 4 real roots in the interval [0, 7.8412). Seeing the
intersection points of the plot k, and the plot £(2)sin[z +
©(2)]/(Kz) in Fig. 2(a), one can calculate that such a
condition holds within the interval 0.2677<k,<3.4933. By
Lemma 1 and Lemma 2, we can get the set of (k,, k;) values
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denoted as ©; in Fig. 2(b), to ensure that the function
d(N) in (36) has only LHPRs and a pair of nonzero IARs.
Moreover, by Lemma 3 we can obtain the set of (k,,k;)
values shown in Fig. 2(c) and denoted as Oy such that
the function §(A\) has a pair of IARs at A = £2.1651i.
It is sufficient that the set of (k,,k;) values in ©1 N O
is (0.6013,1.8114), see Fig. 2(d). This set of (k,,k;) can
make the equation (36) only possessing LHPRs and a pair
of TARs A = £2.1651i. By Theorem 4 one can get that
kp, = 0.6013 and k; = 2.5630 for the PI controller which
can assign the rightmost roots of the closed-loop system at
s = —1.25+2.16511, see Fig. 3(a). The root distribution is
obtained by using the bifurcation analysis package DDE-
BIFTOOL in Matlab (Engelborghs et al. (2002)).

150, 100,

100|

~1.25+2.1651i 20| -1.25+2.1651i

)
————————————————————— - |- E O

Im(s)

A a2
~1.25-2.{651i 20 ~1.25-24651i

Fig. 3. The characteristic root distribution of the closed-
loop system: (a) for Example 1; (b) for Example 2.

5. EXTENSION TO PID CONTROL

Along the same lines of the previous section, the method
for PI control can be extended to PID control. In PID
control, the characteristic equation is given by

v(s) = 8(Ts + 1) + K(kps + ki + kaqs?)e ™. (39)
Taking s = X\ — o* into (39), we get that
FA) :=(TiA+ 1)(TeA + 1)
— K(kpA + ki + kgA2)e =0, (40)

where k, =k, — 20°ka, ki = ki — 0%k, + 0*%kq, ka = ka,
and K, Ty, Ty are the same as those in (12). Multiplying
F(A) by e, we have

H(\) :=(Ti\ + 1) (ToA + 1)

— K (kpX + ki + kaA?) = 0. (41)
Then substituting A = jz/6 into (41), it yields
ﬁ(jg) — H,(2) +jH(2). (42)
where
Fiy(2) = €(:) cosle + ()] — Kk~ k). (43)
Hi(2) = €(=) sinlz + ()] - S K. (44)

Here £(z) and ¢(z) are given by (18) and (19).

Remark 1: Tt is easily found that the form of H;(z) in (44)
is the same as that of H;(z) in (17). Thus, a necessary

condition for the admissible range of k,, can be ascertained
by (22). The only difference is that here @ is the number

of the real roots of H;(z) in the interval [0, Z*).

Lemma 4: The quasi-polynomial (41) h~as a pair of roots
A = tjw*, w* € Z*1, if and only if k, = a and k; —
w*?ky = 3, where a and 8 satisfy

. * jw*—o*)(jTw*+1-To*

(i) cos(w*f) = Re {—(] Kegﬂfﬂ(jm;ﬁ) )};

AN 0\ _ (jw*—o*)(jTw* +1-Tc™*)
(ii) sin(w*@) = Im [ Rt oot h) }

Proof: This proof is similar to Lemma 3. [ |

Lemma 5: For k, = «, when the value of « is in the
admissible range of k, given by Remark 1, the quasi-
polynomial (14) only has LHPRs and a pair of nonzero
TARs A = +jw* if and only if
(i) for vt =0,1,...,Q -1,
_Tr
3 Igeea*

ki —w?ka = B,

Klki — A(z)kqg + B(z)] - S(t) < 0, z # 6w*;
(i) if S(t) = 0, then it requires H!(z;)H"(z;) > 0.
Here, A(2:) = 22/0%, B(z) = —&(z¢) cos|ze + o(20)]/ K,
S(t) =sgn[H/(z)]. 0= 20 < z1 < ... < zg/_1 are the real
roots of H;(z). The value of @’ satisfies

Q-1 = maX{ZQ—17 ZQl—l}a (46)

where zg_1 is the largest root of H;(2) in [0, Z*) and 2, 1
is its second smallest root in the interval (w*, +00).

|];d| <|

)

(45)

Proof: This lemma is the extension of Lemma 2. One can
obtain it alone the same lines as the proof of Lemma 2. ®

Theorem 5: For a PID control of a given plant (9), in
order to assign the rightmost eigenvalues of the closed-
loop system to the desired positions s = —o* £+ jw*,
o*,w* € R, the values of k,, k;, and kg are given by

kp =k, + 207 kly, ki = K} + 0"k, + 0"k}, kg =kl (47)
where

(kp, ki, kg) € Q (48)

Here Q denotes the set of (k,, k;, k4) given by Lemma 5.

Proof: The proof is similar to that of Theorem 4. Due to
space limitations , we omit the details. [ ]

Ezxample 2: In this example, we also consider the de-
lay plant (35). Here we adopt PID control so that the
rightmost eigenvalues of the closed-loop system are at
s = —o* + w*i, where ¢* = 1.25 and w* = 2.1651.

Substituting s = A — 1.25 into the characteristic equation
of the closed-loop system, we have

A(A) =(—0.8X\ +1)(1.33331 + 1)
— 2.7393(kpA + ki + kaX2)e O (49)
The parameters T;, Tb, K and 6 are the same as those
in Example 1. Meanwhile, the expressions £(z) and ¢(2)
in H;(z) in (44) are also given by (37) and (38), which
brings the same values of {* and Z* as those in Example

1. By Remark 1 and Example 1, the admissible range of l::p
is [0.2677,3.4933]. According to Lemma 4, it is clear that
the function 4(\) has a pair of IARs at A = £2.16517 if

k, = 0.6013, k; — 2.1651%kq = 1.8114 (50)
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When l;;p = 0.6013, we have

Hi(2) = — 8.23562 + /(1622 4 1)(44.444422 + 1)
-gin[z — arctan(4z) + arctan(6.66672)].

In the interval [0,7.8412), H;(z) has 4 real and distinct
roots, i.e., zg = 0, z; = 0.4330, zo = 3.0060 and z3 =
6.3162. Hence, the value of @) in Lemma 5 is Q) = 4.
Additionally, it is found that w* = 21 /0, so the value of @
in Lemma 5 is Q1 = 3. Then from (46), we have Q' = 4.
By Lemma 5, for k, = 0.6013, one can obtain the region of

(s, ka) which satisfies the line &; — 2.1651%k4 = 1.8114 for
kq € (—0.3085,0.3894) shown in Fig. 4(a) (the thick black
line segment). Finally, when k4 is in (—0.3085,0.3894), on

the basis of Theorem 5 and the expression (50), we have
—0.1701 < k, < 1.5748
ki = 2.5001k, + 1.0597
kg = 0.4k, — 0.2405

Such values of (kp, ki, kq) can ensure that the rightmost
eigenvalues of the closed-loop system with plant (49) are at
s = —1.25+2.16514. It is seen that the range of (k,, k;, kq)
is depicted as a line segment in three dimensional space in
Fig. 4(b). Now, by choosing a set of (kp, ki, kq) values as
(0.6800, 2.7598, 0.0315) which is also the point on the line
shown in Fig. 4(b), the characteristic root distribution of
the closed-loop system is shown in Fig. 3(b).

(51)

e (2.7598,0.0315,0.6800)

black line segment
Joi — 2.1651%%, = 1.8114
Fa € (—0.3085,0.3894)
ki — A(zs)ka + B(z3) = 0

o o5 1 15 2 25 8 85 4
ki

(a) (b)

Fig. 4. 'I:he~paramf)ter range for Example 2: (a) the region
of (k;, kq) for k, = 0.6013; (b) the region of (kp, ki, ka).

6. CONCLUSIONS

This paper produced a new result on the root distribution
of a class of quasi-polynomial based on the extension of
the Hermite-Biehler Theorem. Such result is then used
to PI/PID controller design for a first-order plant with
time delay via pole placement. Numerical examples are
also provided to illustrate the effectiveness of the presented
conclusions. Our next-step work is to explore the possibil-
ity of extending the proposed method for high-order delay
plants. It is our belief that the results of this paper will
form a new tool for PID controller design and analysis.
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