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Abstract: This paper studies congestion control in local wireless networks supporting transmission control 
protocol (TCP) under random early detection (RED). In general, congestion delays may cause instability of 
the routers running active queue management (AQM) protocols such as RED. Moreover, its management 
efficiency could be reduced by serious queue oscillation. To improve these two drawbacks, we propose a 
robust congestion controller focusing on the queue oscillation suppression and time-delay compensation 
based on an idea of nonlinear extended network disturbance (NEND). The time-delay compensation is 
further performed via the NEND rejection. Furthermore, the proposed strategy has been validated on NS2 
showing their applicability. 



1. INTRODUCTION 

In recent years, active queue management (AQM) protocols 
are proposed based on control techniques under a fluid-flow 
model (Misra et al., 2000), capturing the dynamics of local 
wired networks with transmission control protocol (TCP) 
under random early detection (RED). For example, a PID 
congestion controller (Hollot et al., 2002) was constructed for 
the local wired network, a feedback congestion controller 
(Wang et al., 2002) was developed for the network running 
TCP combined with UDP under RED, an AQM methodology 
(Ariba et al., 2012) using a time-delay observer was 
established, and a self-tuning AQM mechanism (Hong et al., 
2007) focusing on the change of TCP traffic was proposed. 
However, the fluid-flow system (Hollot et al., 2002) is only 
suitable for the wired case. Its extension to the wireless 
network running TCP with RED was addressed in the work 
(Zheng et al., 2007), in which a probability for failing data 
transmission was included in the model development. A 
robust congestion controller (Zheng et al., 2007) was 
constructed under the extended model. 
Similar to the work (Zheng et al., 2007), some papers (Quet 
et al., 2004; Quet et al., 2004; Zhang et al., 2007; Yin et al., 
2006) designed the robust congestion controllers 
corresponding to the uncertain network parameters or 
capacities. Furthermore, bifurcation for the congestion 
control strategy was studied (Raina et al., 2005). In the 
research (Zhang et al., 2008), locally and globally 
asymptotical stabilities have been discussed for a number of 
congestion controllers. Several kinds of system stability 
ensured by the congestion control have been analyzed (Peet 
et al., 2007). Globally asymptotical stability and semi-
globally asymptotical stability in the congestion control were 
studied (Deb et al., 2003). 
Most published works (Misra et al., 2000; Zheng et al., 2007) 
treated the time-delay effect as the control design constraints. 
Instead of this treatment, control strategies (Hsu et al., 2012a, 

b) focused on time-delay compensation by implementing 
either extended network disturbance (END) or nonlinear 
extended network disturbance (NEND). However, the 
controllers—consisting of the averaging queue length and 
window size—in previous mentioned works were all realized 
by taking the real parameter values as the expected ones. This 
inevitably causes the queue oscillation.  
Motivated by the above drawback, we propose the congestion 
controller in terms of the queue length and window size with 
the objective of the time-delay compensation by performing 
the NEND rejection. Robust asymptotic stability of the 
network system adopting the proposed mechanism is 
discussed from the viewpoint of the real dynamics instead of 
its averaging behavior considered in most works (Hollot et al., 
2002; Zheng et al., 2007). This gives rise to the lunching 
point of this paper: first network stability analysis form its 
real behaviour. 

2. SYSTEM DEVELOPMENT AND PROBLEM 
DEFINITION 

2.1  System Development 
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Fig. 1. Wireless local network system 

The local wireless network in Fig. 1 is considered here; it 
includes the fixed sender sending data packets to the fixed 
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router and fixed receiver sequentially. Acknowledgement 
packets are transmitted back to the sender after the receiver 
receives the data packets. Nevertheless, it might happen that 
some packets lost under a fixed losing probability during the 
data transmission within the channel. Moreover, there is only 
one connection between senders, routers, and receivers 
successes at the same instant. Given multiple 
senders/receivers, above characteristics are further 
formulated by the fluid-flow system (Zheng et al., 2007) 
except for the characteristic of the single connection. Setting 

1ul dlP P     in this system yields 

             
      
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1f p
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  




 (1) 

where the averaging round-trip time   pR t a q C  , a  is 

the propagation delay, the dropping probability 0 1p  , 

q / w  denotes the averaging queue length/window size, fn  is 

the number of TCP flows, and pC  is the capacity. Given 

   , ,yq ywd d q q w w    with q / w  being the real queue 

length/window size, (1) is rewritten as 

   
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  
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



 (2) 

where  ,yw yqd d  is bounded due to the TCP definition and 

hardware restriction. Invariant  R t  may destabilize (2); 

therefore, (2) desires the time-delay compensation scheme.  

2.2  Problem Statement 

Despite (1) has been asymptotically stabilized by using 

 Tp K w q     (Zheng et al., 2007) with 

   0 0 0, , , ,p w q p p w w q q        and 

   0 0 0, , , ,w q p w q p  being an equilibrium point of (1), this 

does not mean that (2) adopting  Tp K w q     

simultaneously holds asymptotic stability. To illustrate, 
consider Case (i) (Zheng et al., 2007), in which 

   0 0 00.0032 0.000015982p w w q q p      and 

   0 0 0, , 9.2593 packets,500 packets,0.0216w q p  . Fig. 3 

(Zheng et al., 2007) illustrates that the network system 
implementing this controller still suffers queue oscillation. To 
improve this disadvantage, we must allow  p t  to be more 

sensitive to the queue variation as t  . This brings a 
possibility to solve the considered problem that how to 
ensure robust asymptotic stability of (2) with respect to 

 ,yw yqd d  by redesigning  p t  on the basis of NEND. 

3. MAIN RESULTS 

Under an assumption that the ergodic hypothesis holds, the 

expected value of a random matrix    
1 2

mij m m
M t v t


     is 

defined as        
0

1 2

0

t

m mijt m m

M t E M t v d t t 


        . 

Moreover, 
2

   represents the induced matrix 2-norm or the 

2-norm of a vector and O / 0  denotes a zero matrix/vector.  

3.1  Idea of NEND 

The definition of NEND is framed by regarding the time-
delay nature of (1) as induced by injecting NEND into a 
model without any delay. This re-describes (1) as 

        
    

 

21 1 2 ,

1 ,

nd

f p

T

w R t w t p d R t

q n w t R t C

y w q





   

  





  (3) 

where y  is the system output and ndd  denotes NEND. 

Equalizing w  in (3) and w  in (1) yields  

         ndd p w t R p t R R t R t R w t        (4) 

The value  ndd t  represents the seriousness of time-delay 

effect of (3). Since the TCP window size in (3) changes upon 
the ACK receiving rate—delayed by the data congestion, ndd  

physically represents the effects of the data congestion on 

this rate. Furthermore, substituting    , ,yq ywq w q d w d    

into (3) gives 

   
   

 

11 0 12 0 0

0 0

, ,

,

nd yw

a i i p a yw est yq

T

w f R f w R p d d

q f R w C f R d d d

y w q

   

    



 
  (5) 

where  

     0est a ad f R f R w t     (6) 

       11 11 0 12 12 0 0, ,nd ndd f R f R f w R f w R p d      
  (7) 

0 0 pR a q C  ,    11 1f t R t , 

         12 1 2f t w t w t R R t R        , 

   1a ff R n R  , and     12 ,nd ndd f w t R t d


. 

From which one has 

       
 

0 11 0 0 12 0 0

0

,a a

a nd est yq

q f R f R f R f w R p

f R d d d

 

  


    (8) 

which is restated as 

       
 

1 2

2 0 11 0 0 12 0 0

0

,

,a a

a nd est yq

x x

x f R f R f R f w R p

f R d d d



 

  




  

 (9) 

with 1x q  and 2x q  .  

Remark 1: In the network applications,   max1 w t w   and 

  max1 q t q  ; therefore, 

       2, , , , ,est nd ndd w q d w q d w q U   based on (4) and (6)

-(7) with 0 1p   where the continuous functions  12f  , 
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 af   and  11f   have finite values and 

        2 0 02
: :  over ,U T M t M t t T  . Moreover, 

 ,yq ywd d  must be bounded by the TCP and hardware 

restriction. 

Remark 2: Given    2M t U T , 

       0m mM t M t M t t t      such that 

   0 02
lim lim 2 0mt t

M t t t
 

   , showing that  lim mt
M t


 

remains invariant.  

Given      2,M t d t U   with the random vector 

  2md t  ,    lim
t

E M t d t


    is constant from Remark 2 

since      2M t d t U  . This implies 

        0lim lim m mt t
E M t d t M t d t 

 
     where 

   md t E d t     and 0  is the constant vector. In other 

words,         0m mE M t d t M t d t      is proportional to 

 mM t  and  md t ; consequently, 

               1 2 0m m m mE M t d t M t d t M t t t d t      


 for any  ,M d  where    1,2 2t U    are both 

differentiable at  0 ,t t    with appropriate dimensions. 

Taking this equation in 

             0dE M t d t dt M t d t E M t d t t t            

yields 

   

           

       

2 1

0 0

lim

lim lim

t

m m mt t

m m m

dE M t d t dt

t t
M t d t M t d t

t t t t

M d M d



 

  

    
          
     

 

 

 (10) 

where       0m md t d t t t d t    and 

      0m mM t M t t t M t   . 

Remark 3: Given the constant    
1 2

lim m mij m mt
M t v


     

with norm-bounded  0M t , 

        0m mij mij
m n

M t v t v t t t O


     
  indicates that 

   mij mijv v      or     0mij mijv v     where 

 mijv t  is the averaging  mijv t . This implies  mijv     

such that      2mij m n
M t v t U


      under  0 2

M t   .  

Remark 4: Given        2
i i i

mij m n
M t d v t dt U


     , 

             1
0 0lim lim 0i i i

t t
E M t M t M t t t

 
          , 

which shows      1
2

iM t U    from Remark 3. After we 

repeats this derivation from 0i   to 1i j   with j , it 

can be concluded that      2
jM t U   is available for any 

j  under    2M t U  . 

3.2  Observer Design 

Owing to that 2x  cannot be measured from y , we need to 

develop a robust observer of (9) with respect to the unknown 

 ,yw yqd d . To simplify the design task, the observer is 

constructed under (5), which is rewritten as 
,T T T T T T T T Tx A x B u d y C x     (11) 

where 
T

T nd estx w q d d   
 , 

   11 0 12 0 0,
T

T pu f R f w R p C     , 

 0

T

T yw a yw yq nd estd d f R d d d d     
    , 0 2

T

M I
A

O O

 
  
 

, 

 0
0

0 0

0a

M
f R

 
  
  

,  2

T

TB I O , and  2TC I O . 

   2Td t U   since          2, , ,yw yq nd estd t d t d t d t U      

based on Remarks 1 and 4. The corresponding observer is 
proposed as 

  ˆ ˆ ˆ
T T T T T T T T Tx A x B u L t C x C x     (12) 

where ˆTx  represents the estimation of Tx  and  L t  is the 

observer gain. Given ˆx T Te x x  , it follows 

 x e x Te A t e d   (13) 

where      
4 4e T T aijA t A L t C v t


      . Without loss of 

generality, the solution of (13) can be denoted by x m xe e r   

where    m xe t E e t     and   0xE r t     for all t . Robust 

asymptotic stability of (13) is guaranteed by letting 

 lim 0mt
e t


  and  lim 0xt

r t


 . The former can be ensured 

by the result below. 

Theorem 1: Consider the system (13). Suppose 1 0  , 

     
0

0
4 4

t

em aijt
A t v d t t 



     , 

     T
em e

O I
A t

A t A t

 
  
 


 , and 

       1 1 2 2
T TQ t Q t Q t Q t    for all  0 ,t t  . 

 lim 0mt
e t


  if there are  L  ,  aA  ,  bA  , and 

   1 1= >0TP P   guaranteeing 

      -T a bA L t A t A t    (14) 

         1 1 1
T
a aA t P t P t A t Q t     (15) 

             2
1 1 1 1 1 2

T
b bP t A t P t P t A t P t Q t      (16) 

for all  0 ,t t   and  TA   is full rank. 

Proof: Expanding 
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       x e x TE e t E A t e t d t         (17) 

at  0xe t  gives 

           0

0 0

m x
m e x T

e t e t
e t E A t e t E d t

t t t t
           

  (18) 

where          0 0x m m xE e t e t e t e t t t            and 

 TE d t    becomes constant as t   from Remark 2 

because of    2Td t U  . Performing differentiation of (18) 

corresponding to time derives 

         
 2

0 0

lim lim m m
m e xt t

e t e t
e t dE A t e t dt

t t t t 

           


  (19) 

where    e xdE A t e t dt    in (19) is expended as (10) where 

         , ,e xM t d t A t e t . Substituting this expansion 

into (19) yields      ˆlim limm T m
t t

x t A t x t
 

   where 

 
       

 2

0 0

ˆ
T T

em e

O I
A t A t

A t I t t A t I t t

 
  

     


  as 

t  , and       TT T
m m mx t e t e t     . This shows that (17) 

approaches a limit system (Lee et al., 2001) 

     m T mx t A t x t    (20) 

which possesses an equilibrium point 0mx   because 

 TA   has full rank. 

Given        1
T

m m mV t x t P t x t   , 

               1 1 1
T T

m m T T mV t x t A t P t P t A t P t x t    
     (21) 

From (14)-(16) one has 

         
     

1 2

2
1 1 0

T
m m m

T
m m

V t x t Q t Q t x t

x t P t x t

    
 

  

 
 (22) 

at  0 ,t t    where    1 2Q t Q t  over  0 ,t  . 

Consequently, (17) converges to (20), which is robustly 
asymptotically stable. This accomplishes the proof.             ▇ 

Next, let us identify  lim xt
r t


 by using the following theorem. 

Theorem 2: Consider (13) featuring  lim 0mt
e t


  with the 

determined  L t . Suppose 2 0  , 

       r
e em e

O I
A t

A t A t A t

 
   


   with  rA   being full 

rank,    2eA t U  ,    2emA t U  , and 

     1 1 2 2
T T

r r r rQ t Q t Q Q t    for all  0 ,t t  . This system 

is robustly asymptotically stable if there are  1rA   and 

   2 2 0TP P     guaranteeing 

             1 2 2 1 1

T

r r r r rA t A t P t P t A t A t Q t          
     (23) 

             2
2 1 2 2 1 2 2 2

T
r r rP t A t P t P t A t P t Q t      (24) 

for all  0 ,t t  . 

Proof: Substituting x m xe e r   into (13) gives 

               
             0

x e x e m x e x m

e x e m m m

r t A t r t A t e t e t A e t e t

A t r t A t e t e t t t e t

    

      

  

  
 (25) 

where       0m x me t e t e t t t    and 

      02x m me t e t e t t t     . That is, 

          
    

          

0

0

lim lim

lim

x e x e mt t

m m

e x e em mt

r t A t r t A t e t t t

e t t t e t

A t r t A t A t e t

 



  

   

    

 

   (26) 

where          m em m e me A e A e         based on (20), 

  0me   , and        0em e emA t A t A t t t    
 . 

Furthermore, 

           
         

           

lim lim

lim

x e x e x et t

em m e em m

e x e x em xt

r t A t r t A t r t A t

A t e t A t A t e t

A t r t A t r t A t r t

 



   

    

    

  

 

 

 (27) 

with      0m xe t r t t t   and       0e em mA A e      
   

since   0me    and      2,e emA t A t U   . This gives rise 

to the limit system      r r rx t A t x t  , having an 

equilibrium point 0rx   where       TT T
r x xx t r t r t   

 
since  rA   has full rank.  

Given        2
T

r r rV t x t P t x t  where  2 0P t   at 

 0 ,t t   ,  

         
     

1 2

2
2 2 0

T
r r r r r

T
r r

V t x t Q t Q t x t

x t P t x t

    
 


 (28) 

from (23)-(24) and  1 2r rQ t Q  at  0 ,t t   . The 

dynamics (13) therefore admits   0me    and   0xr   , 

revealing robust asymptotic stability.                                   ▇ 

The observer design is completed by determining  L t  in 

(13) to hold Theorems 1-2. 

3.3  Control Design 

The controller is aimed at ensuring 

      1 2 0lim , ,0
t

x t x t q


  in (9); it is defined as 

 
   

 
   

 01 2

0 12 0 0 0 12 0 0, , ˆa a

q qk t k t
p

f R f w R f R f w R q

     
    
     

  (29) 

where  1,2 0k t   for  0 ,t t   . The development of (29) 

in terms of  ˆ,q q  releases the assumption    , ,w q w q  

(Hollot et al., 2002; Zheng et al., 2007) in the control 
realization. Substituting (29) into (9) gives  
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   2 00
T

e xe A t e d k t F e        (30) 

where  1 2

T
e e e , 1 0e q q  , 2e q  , 

     0 11 0 00
T

e a a nd est yqd f R f R f R d d d     
   , 

     1 2

0 1
A t

k t k t

 
    

, and  0 0 1 0 0F  . 

   2ed t U   since      0 2a i ndf R d t U   and 

     2,est yqd t d t U    from Remarks 1 and 4. Combining 

(30), (13), and    x e x e x Tie A t e A t e d      (derived from 

(13)) gives 

  ee A t e d      (31) 

where       TT T T
x xe e t e t e t     , 

       
TT T T

e e T Td t d t d t d t   
  , and 

       
 
   

1 2 2 0

0 1 0 0

0

0 0

0 0
e

e e

k t k t k t F
A t

A t O

A t A t

 
   
 
 
  





.    2ed t U   

because of        2, ,e T Td t d t d t U   based on Remark 4 

and    2Td t U  . Robust asymptotic stability of (31) is 

ensured by designing     1 2,k t k t  according to Theorems 

1-2 with eA  substituted by A .   

To satisfy 0 1p  , we redefine 

pp p u  (32) 

where  p t  is in the form of (29) and  

1 , if 1

0,       if 0 1

,    if 0
pi

p p

u p

p p

 
  
 

 

Without loss of generality, we assume    2p t U   so that 

       2pu t p t p t U    . Taking (32) in (9) generates 

  eTe A t e d      (33) 

where  20 0
TT

eT e ad d d U     
   with 

   0 12 0 00 ,
T

a a pd f R f w R u     due to 

         0 12 0 0 2, ,e a pd t f R f w R u t U  . The system (33) 

features robust asymptotic stability since it has guaranteed 

Theorems 1-2 with eA A  under the designed     1 2,k t k t . 

4. SIMULATION 

This section states a verification on NS2 with the topology in 
Fig. 2, in which it has a base-station BS , a wireless router 

wn , FTP source routers 1 40Src Src , 40fn  , a destination 

router Dst , a wired router wRr , the propagation delay 0.01 s, 

6 MbpspC   with the packet size 500 bytes, 0.01  , 

   0 0 0, , 150 packets, 4.1667 packets,0.1164w q p  , and the 

activating time 0 s with the terminating time 200 s for all FTP 
sources. The base station supported RED while others 
worked under DropTail. Given the environment settings, the 
observer (12) was evaluated with 

     2
2 24 4 4 8 4

T

L t t I t t I      . Moreover, based on 

Theorems 1-2, the controller (32) implemented on BS  was 

designed with       2
1 2, 0.1 ,0.1k t k t t t .  

Fig. 3 illustrates the verification results of our control 
strategies. In this figure, the data transmission starts after 20 s 
since the wireless routers could not access BS  until 20 s. The 
queue length converges to 150 packets in Fig. 3(a), in which 
the queue oscillation was induced by that the fluid-flow 
system construction (Zheng et al., 2007) did not consider that 
there is only one connection between senders, routers, and 
receivers successes at the same instant. However, this does 
destroy the feasibility of our method since the oscillation 
amplitude was less than 25 packets, which is only 
25 150 17%  of 0q . Consequently, the network system was 

stabilized via the proposed strategy. Moreover, the error 
oscillations in Figs. 3(c)- 3(d) were induced by the same 
cause as that of the queue oscillation. This does not destroy 
the feasibility of the proposed manner because the estimation 
errors possess zero means in Fig. 3. 

Dst

wRr

wn

40Src

BS



1Src

 

Fig. 2. Wireless network topology. 
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(d) Estimation error of window size in TCP3

 

 

real window size

 

Fig. 3. Verification results, (a) queue length, (b) dropping 
probability, (c) queue length estimation error, and (d) 
window size estimation error. 

5. CONCLUSION 

This paper has dealt with a problem of enhancing AQM 
efficiency for local wireless networks with the goal of 
suppressing its time-delay effect based on NEND, 
characterizing the cause of the time-delay property. A 
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NEND-based solution, consisting of real the queue length 
and window size, has been developed for the oscillation 
reduction and time-delay effect suppression. The former 
reduction is achieved by identifying the convergence of the 
state’s mean value while the latter is performed by the NEND 
rejection. Furthermore, robust asymptotic stability of the 
network system using the proposed controller is discussed in 
view of its real behavior instead of the averaging dynamics. 
Finally, a case study has been presented to address 
superiority of our method. 
Not only the network dynamics but also other industrial 
systems feature the time-delay control problem. Applying 
NEND in solving their control problem gives rise to a 
possibility that such issues can be solved via disturbance 
rejection techniques.  This reduces the complicity of the 
considered problem and further makes the control realization 
much easier. 
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