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Abstract: Multivariate data analysis (MDA) is a well-established technique for abnormal situation 

management and early event detection (EED). This paper presents the development and on-line 

deployment of a Principle Component Analysis (PCA) model based EED system for an industrial-scale 

slurry stripper processing a solid state particle suspension. The developed solution was designed to detect 

plugging or blockage of the stripping column trays earlier than it is possible using traditional monitoring 

techniques and to avoid process disruption and production losses. The paper describes the project steps 

from data selection and preparation to the online implementation and utilization by operators and plant 

personnel. It was developed within a close collaboration between university and industry. 



1. INTRODUCTION 

Due to an Abnormal Situation Management Consortium 

(www.asmconsortium.com) study, the cost of lost production 

due to abnormal situations is at least $10 billion annually in 

the U.S. petrochemical industry. While 40% of it is related to 

equipment failures such as sensor, actuator or rotating 

machinery faults, and another 40% is due to people and work 

context factors, about 20% of the losses can be explained by 

process factors (Nimmo,1995). Real-time performance 

monitoring and early event detection can prevent undesirable 

operation and help to operate plants at full capacity while 

meeting product quality specs. 

There is a huge amount of literature on fault detection and 

diagnosis ranging from analytical, rigorous model-based to 

artificial intelligence approaches and historical data-based 

methods (Venkatasubramanian et al., 2003). In last two 

decades, the application of multivariate statistical methods 

(and in particular Principal Components Analysis (PCA) and 

Partial Least Squares (PLS)) has been demonstrated to be a 

powerful approach for the detection and isolation of 

abnormal conditions in an industrial environment. These 

methods are able to cope with large amounts of multivariate, 

collinear, noisy and incomplete historical data which are 

routinely collected in automation systems and stored in 

historians. In comparison with other approaches based on 

systems theory and rigorous process models, PCA/PLS 

methods are in many cases easier to apply in an industrial 

environment.  

The first applications of MDA methods for abnormal 

situation detection and diagnosis have been reported in the 

early 1990s (e.g. Kresta, MacGregor and Marlin, 1991; 

Kourti and MacGregor, 1995). Since then, these methods 

have been extended and enhanced rapidly. Examples are 

extensions to monitor batch processes and grade transitions, 

to deal with multiple process modes, to include process 

dynamics and nonlinearities, or multivariate image analysis. 

A number of recently published surveys and books provide 

an excellent overview of the state of the art and ongoing 

developments (Kourti, 2002; Qin 2003 and 2012; Miletic et 

al., 2004; Ge, Song and Gao, 2013, Kruger and Xie, 2012). 

AlGhazzawi and Lennox (2008) mentioned that although 

many papers on MDA refer to industrial applications, there is 

only a limited number of documented cases of real-time 

applications with results interpreted by operators rather than 

advanced control or multivariate statistics experts. This 

coincides with the statement of the NAMUR organization 

(www.namur.de) that there is a remarkable gap between 

available MDA methods  and the small number of appli-

cations in the NAMUR member companies (NAMUR, 2002).  

Successful industrial-scale on-line applications include the 

detection of abnormal conditions in the fuel gas system of a 

condensate fractionation process in a Saudi Aramco refinery 

(AlGhazzawi and Lennox, 2008), breakout prevention in a 

continuous steel-casting process at Dofasco (Zhang and 

Dudzic, 2006), the supervision of batch sulfite pulp digester 

at Tembec (Miletic et al. 2004), early detection of anode 

faults in aluminium smelter at Aluminium Delfzijl (Majid et 

al. 2011), and furnace caking detection in a Hydrofluoric 

Acid Plant at Honeywell Geismar (Yoon et al., 2003). 

The objective of this paper is to describe the development of 

a real-time early event detection system based on PCA for a 

slurry stripper in one of the plants at Sasol Germany 
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Brunsbüttel. The abnormal situation to be detected is 

plugging or blockage of the stripping column trays by solid 

state particles leading to process disruption and consequent 

production losses.  

The paper is organized as follows. Section 2 provides a brief 

introduction into the MDA concepts used and the commercial 

tool selected for the development. Section 3 presents a 

process description. In Section 4, the development and 

validation steps for the off-line PCA model are described. 

Section 5 presents the architecture of the real-time appli-

cation including the integration with the existing IT 

infrastructure and the human-machine interface. Finally, 

Section 6 gives experiences and conclusions. 

2. METHODOLOGY AND TOOLS 

PCA is a data-based multivariate statistical method that is 

widely used in science and engineering. For process 

monitoring, the usual approach is to build a PCA model for 

the “normal-case” operation using normal process data which 

span the operating region. When new data become available, 

this model is used to detect faults that deviate from the 

normal case. At the same time PCA is used as a data 

reduction method. High dimensional data are projected onto a 

lower dimensional model which is easier to visualize and 

analyse. Often, a few so-called latent variables are able to 

uncover hidden information in the original multivariate data 

set. 

The principal components or latent variables are the result of 

decomposing a ( )n k  normalized data matrix X  as 

follows: 

1
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Here, n  denotes the number of observations and k  the 

number of sensors, i.e. each row of  X  contains a snapshot 

of the measured process variables at a certain time instant, 

and each column represents the temporal development of a 

process variable. T  ( )n A  and  P  ( )k A  denote the 

scores and loading matrices, and E  a matrix of residuals. 

Note that the dimension A  of the latent variable space is 

usually quite small and less than the number k  of the 

original process variables. it  and ip  denote the scores and 

loadings vectors, respectively. The loading vectors which are 

orthogonal to each other provide the directions of maximum 

variability in the process. The scores represent the 

coordinates of the data in the new coordinate system defined 

by the loading vectors. The PCA model can either be 

calculated by singular value decomposition of X  or by the 

NIPALS algorithm (Wold, 1966).  

If new data become available, they are first normalized and 

then transformed into the new coordinate system: 
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Usually, univariate Hotelling’s 2T  or Squared Prediction 

Error (SPE) charts are used for the detection of abnormal 

situations. The Hotelling’s 2T  value for the i -th observation  
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It represents the average distance between the new 

measurements and their predictions based on the normal PCA 

model loading matrix and the new observation scores 

ˆT

neu newx P t . The SPE statistic is also known as Q statistic 

and similar to the DModX value (Distance to the model in the 

X  space, (Eriksson et al., 2006)). For both statistics, upper 

control limits can also be defined (Kourti and MacGregor, 

1995). 

While the Hotelling’s T² and SPE (or DModX) charts allow 

to detect the existence of a deviation from normal process 

variability and its size, contribution plots show how much 

individual process variables contribute to one of the statistical 

metrics. However, they do not directly provide information 

about the root cause of the deviation. In most cases, the root 

cause diagnosis cannot be fully automated but needs the 

involvement of process and advanced control personnel 

(Venkatasubramanian et al., 2003). 

Based on a separate evaluation study at the beginning of the 

project, a commercial MDA software (SIMCA/SIMCA 

online from Umetrics AB, Sweden (Eriksson et al., 2006)) 

was selected for several reasons including the number of 

available interfaces to automation systems, the possible 

application to continuous as well as batch process data, and 

available references in the process industries. Due to limited 

resources, the in-house development of an application-

specific software was not further considered. 

3. PROCESS DESCRIPTION 

Sasol Germany Brunsbüttel is a manufacturer of fatty 

alcohols and pure alumina (Al2O3) powder which is further 

processed in different branches of industry. In particular 

sections of the plant, slurry must be stripped to remove 

organic side products. This is done in stripping columns (see 

Fig. 1) where the slurry is fed in the top section, and the 

stripping medium in the bottom section of the tower. The 

stripping medium together with the highly volatile organic 

compounds is removed as overhead product, and the purified 

slurry is the bottoms product sent to the downstream 

processing stages of the process.  
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Fig. 1: Simplified P&I diagram of the slurry stripper 

 

Due to the solids contained in the slurry, the column trays 

may be plugged or even blocked which leads to a disruption 

of the process. In the past, those process faults occurred twice 

a year per column in average. It can take hours to remove the 

blockage by either adding water to the top section (flushing), 

by executing a boiling up process, or – in extreme cases – by 

opening the tower and remove the solids mechanically.  

 

The instrumentation includes sensors for the raw/cleaned 

slurry and stripping medium flow rates F01 to F03, the 

temperatures in the stripper bottoms and overhead section 

T01/T02 as well as at the slurry inlet T03, and stripper 

bottoms pressure P01. The stripping medium to feed rate 

ratio is controlled. F02_Y denotes the output of the stripping 

medium flow controller. Traditionally, operators try to 

identify plugging by observing the individual trends of those 

variables. Fig. 2 shows the trend of the bottoms pressure as 

one of the most indicative variables before and during a 

process upset. Note that the pressure moves within the 

normal operating range just until the plugging occurs. The 

individual trends of other variables show a similar 

characteristic making it impossible for the operators to 

recognise the disturbance early enough and to initiate 

counteraction. The time scale selected for Fig. 2 and the 

subsequent trends is two months, since operational 

experience and the PCA models indicate that there is a 

(relatively long) time span of one to two months from the 

start of plugging to a complete blockage of the stripper.  

 

 
 

Fig. 2: Bottoms pressure before and during a process upset 

 

4. DEVELOPMENT OF THE EED SYSTEM 

As mentioned in Section 2, the PCA model is developed with 

historical process data in “normal” operation mode. The data 

is obtained from a process information and management 

system (PIMS). Archiving parameters of the system ensure 

that the recorded data is almost kept free from noise and only 

contains changes due to process variability. The PIMS also 

allows to extract interpolated data in selectable time intervals. 

Based on several dialogues with the plant personnel, seven 

process variables shown in Fig, 1 were initially chosen to 

create a first (prototype) PCA model An imminent blockage 

is indicated by 

 a bottom pressure increase due to a higher pressure loss 

in the trays if they are increasingly clogged by solids, 

 a bottom temperature increase together with a top 

temperature decrease, because less stripping medium 

arrives at the top section, 

 an increased valve opening necessary to achieve the 

required stripping medium flow rate caused by the higher 

bottoms pressure. 

To select a data set for building the PCA model, the plant’s 

operation journals were carefully reviewed to ensure that the 

process unit was running under normal conditions. The 

chosen time span included 75 days of data recorded in five 

minute time intervals on the plant historian, resulting in 

~21,000 observations. The sampling time for data collection 

is the same as planned for the online application. Although a 

larger sampling time might be sufficient due to the slow 

development of the fault, a value of 5 minutes was selected 

for two reasons: a) the operators should see the effect of 

flushing immediately in the DModX trend, and b) the much 

higher number of observations provided for model building. 

The data pre-processing included the rejection of univariate 

outliers by visual inspection, mean centering and scaling to 

unit variance (normalization). 

Figures 3 to 5 show some of the modelling results. Four 

principle components (PC) explain 98% of variable 

variances. The number of PCs was chosen by cross validation 

(CV) shown in grey bars in Fig. 3 and by the model’s 

capability to detect the abnormal situation as soon as 

possible.  
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Fig. 3: Cumulated explained variance and cross validation 

result 

Fig. 4 shows the principle components’ loadings. PC1 is 

highly influenced by all throughput related process variables, 

like flow rates and the stripping medium valve opening. The 

bottom temperature also affects the first component. It’s 

mainly the top temperature which affects the second PC, and 

the third component is primarily dependent on the bottom 

pressure. The last component is affected by several process 

variables, describing variance which has not been captured by 

the first three components. Note that the cross validation 

result is significantly affected by the fourth PC (see Fig. 3). 

 

 

Fig. 4: Loadings of the PCA model 

The impact of different column feed rates on the PCA model 

scores are visible in Fig. 5. The scores move from lower feed 

rates at the top left corner of the scores plot to higher feed 

rates at the bottom right corner.  

In the data set selected for building the PCA model, the ratio 

between the maximum and minimum feed flow rates was 

approximately 3:1. Since the Hotelling’s T² chart is obtained 

by calculating the distance from the model center, and the 

feed rate variation only causes a certain distance from the 

center without any relation to an imminent blockage, the 

DModX chart was chosen to detect the process upset. 

 

Fig. 5: Scores of the PCA model 

Monitoring the model residuals of observations using the 

DModX provides a test whether the correlations between the 

variables remain the same for observations before an upset as 

compared to normal operation. This enables a more reliable 

approach to detect the column tray blockage.  

The ability to detect an imminent blockage is demonstrated in 

the DModX trend shown in Fig. 6. Upper control limits for 

DModX were set after the refinement of the model which is 

the subsequent step described in the next paragraphs. 

 

 

Fig. 6: DModX chart before a stripper column blockage 

(initial prototype model) 

Two additional steps substantially increased the model’s 

sensitivity for early event detection. First, the model data set 

was reviewed for possible multivariate outliers. These 

outliers were captured using the DModX trend. Each 

deviation in the trend could be assigned to events such as 

stripper flushing recorded in the operation journal; and all 

those deviations were excluded from the model data set. 

Second, the model data set was extended by some 

intermediate variables. As mentioned in the enumeration at 

the beginning of this section, there are three possible 

indications for an upcoming blockage. According to the 

second and third of them, the data set was extended by the 

temperature difference across the column (denoted as 

TempDiff) and the ratio between the control loop 

manipulated variable and the steam input flow rate (denoted 

as F02_Y_F). The feed temperature (T03) was added too. In 

Fig. 7, the DModX trends based on the prototype and 

extended models are compared with each other. 
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Fig. 7: DModX trend: prototype vs. optimized model  

Due to the different feed rates processed in normal operation, 

it was impossible to select data for modelling which were 

approximately normally distributed. Hence, the statistical 

control limits for DModX calculated by SIMCA had to be 

checked for adequacy in order to detect faults reliably and, at 

the same time, avoid false alarms. Therefore, data sets from 

three previous blockages between 10/2010 and 01/2012 were 

used to analyze the DModX charts. It was found that the 

statistical control limits calculated by SIMCA (based on the 

normal distribution assumption) were too low which would 

have caused false alarms. Thus new limits were set which 

allowed an optimal detection of those historical blockages. 

Two different levels of operator notification were defined: a 

warning and an alarm level. When the warning limit is 

exceeded, operators are notified early enough to take 

corrective actions. If this is not possible for some reason, and 

the alarm limit is violated, the operators are alerted that the 

process may reach a critical state. In all historical blockage 

situations examined, this strategy would have provided 

suitable results. Based on the experience gained in the long 

term operation of the real-time EED system, these limits may 

be adjusted on-line. 

At irregular time instants, spikes may occur in the DModX 

trends (see Figs. 6 and 7). They are caused, for example, by 

regular flushing of separators next to the strippers, or by 

sporadic partial clogging of the trays. Therefore, special 

means are provided to prevent alarm chattering: the warning 

and alarm flags are not triggered until there is an enduring 

limit violation of more than a pre-specified time. In case of 

the event shown in Fig. 7, the operators would have been 

warned 41 days and alarmed 14 days before the stripping 

column gets actually blocked. Compared to the pressure trend 

in Fig. 2, the monitoring via PCA leads to a much more 

effective detection of an imminent blockage.  

In order to prevent false alarms, two exceptions were set in 

the monitoring system. Model execution is interrupted when 

the manipulated variable decreases to a value of less than 

10% which means that almost no stripping medium is 

injected. This may happen when the plant is in shut-down 

mode or running its feed in a loop. The second exception is a 

temperature difference across the column of less than 2.2K 

indicating that a lot of condensed stripping medium is inject-

ted. 

5. REAL-TIME IMPLEMENTATION 

For the online monitoring of the stripping column with the 

PCA model developed in section 4, the SIMCA project file 

has to be imported into the SIMCA-online application. 

SIMCA-online has a client-server architecture. The clients 

communicate with the server over one selectable port. That 

allows the installation of the server and the clients in different 

networks. The integration of SIMCA-online with the existing 

IT infrastructure at Sasol Brunsbüttel is shown in Fig. 8. The 

SIMCA-online server reads process variables from the PIMS 

via OPC-DA and writes back model outputs using the same 

interface. Both (PIMS and SIMCA-online) servers are 

located in an intermediate network between the office 

network and the distributed control systems (DCS). The 

PIMS forwards the outputs to the DCS. In the office network, 

additional SIMCA-online clients are available for the plant 

staff. 

 

 

Fig. 8: Integration of the real-time application 

The model calculations are executed with a sampling interval 

of five minutes. In order to define the server’s online data 

source, tag numbers in the PIMS are assigned to model 

variables in SIMCA. A watch dog signal is provided for the 

detection of communication errors between the server and the 

DCS. All parameters necessary for the online execution are 

defined in the project file mentioned above. 

Using the write-back function, warnings and alarms triggered 

by the SIMCA-online server finally show up in the DCS 

alarm and event system with clear recommendations for 

operator actions. The DModX value is also transferred to the 

DCS and can be displayed as a trend on the operator screens.  

The SIMCA-online client provides additional functions to 

analyze a recent or upcoming upset. For example, 

contribution plots shown in the SIMCA-online client are a 

powerful tool for the engineers to figure out which process 

variables contribute most to the current deviation from 

normal operation. Fig. 9 shows a typical contribution plot. 

The variables marked with an arrow (bottoms pressure and 

temperature, and temperature difference across the stripper) 

have the largest influence. As described in section 4, this 

clearly supports the diagnosis of an upcoming blockage, 
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while other possible causes of deviation from normal 

operation can be excluded. 

For a smooth long-term operation of the monitoring system, 

documentation and training for different user groups have 

been provided. 

 

 
 

Fig 9: Contribution plot showing an imminent blockage 

 

6. CONCLUSION 

The paper describes the development and real-time 

implementation of an early event detection system for an 

industrial-scale slurry stripper based on MDA methods. 

Compared to traditional single-signal based monitoring, 

operators can be alerted far earlier and avoid production 

losses due to possible unit shut downs. The system is in 

permanent operation since August 2013 and works well for a 

wide range of plant throughputs. In January 2014, the EED 

system successfully detected an upcoming blockage which 

could presumably be avoided by flushing the stripper. 

Keys to success of the project included the careful selection 

and pre-processing of process data, the use of process 

knowledge in defining the variables for building the PCA 

model and the development of an easy-to-understand 

interface for different user groups. The involvement of plant 

and DCS/IT personnel beginning with the early project 

stages, and the backup from the site’s management allowed 

to gain a good understanding of the process and increased the 

acceptance of the new monitoring system. Since the 

application has shown very promising results, Sasol Germany 

currently considers to set up similar systems for the 

monitoring of other slurry strippers as well as for other 

process units at their Brunsbüttel site. 
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