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Vicente Feliu Battle.

Department of Electrical, Electronic and Automatic Control
Engineering,University of Castilla-La Mancha, Ciudad Real, Spain

(e-mail: Andres.SanMillan@uclm.es, JuanCarlos.Cambera@
uclm.es,Vicente.Feliu@uclm.es).

Abstract: This paper presents a method for the on-line identification of the payload carried by
a single-link flexible manipulator whose movement is constrained to the vertical plane. The
vertical movement of the robot makes the effect of gravity not negligible, and determines
therefore, the non-linear behaviour of the analysed system. The proposed estimator is based
on the algebraic derivative approach in the frequency domain. The short period of time it takes
for the algorithm to make an estimate, and its low computational burden make it suitable for
real-time and adaptive control applications. The proposed estimator is experimentally tested in
several situations carefully chosen to reproduce routine operations of the flexible manipulator.

Keywords: Flexible Robot, Estimation Parameters, Algebraic Estimator, On-line Algorithm.

1. INTRODUCTION

In the last decades, flexible link manipulators have drawn
great attention because of its promising advantages over
rigid manipulators. Building this type of robots do not
only lead to potential building cost reductions but also
has a positive impact on power consumption, maneuver-
ability, weight, operational speed, operational security,
among others(Dwivedy and Eberhard, 2006). All these
advantages are achieved at the expense of the introduction
of undesired vibrations, that reduce the robot accuracy. To
overcome this disadvantage, great efforts have been carried
out on the sensor development, kinematic and dynamics
modelling, and control strategies, but many issues are still
open(Benosman and Le Vey, 2004; Dwivedy and Eberhard,
2006).

The flexible link robots were born in the seventies through
a NASA research program. The goal was reducing the
launching cost of spacecrafts into orbit by creating lighter
and more compact manipulators (W.J.Book, 1974). Since
those studies, numerous earth applications have been de-
veloped based on these robots. In search and rescue appli-
cations, for instance, these robots are especially attractive
as they reduce the power consumption and the overall
weight of the platform, two desirable characteristics in a
mobile robot. The Gryphon robot is a good example of
these type of application. It consists on a four wheeled
vehicle with a very long and lightweight arm used for dem-
ining tasks (Freese et al., 2007). In industry, the accurate
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positioning of the payload is usually a time consuming and
sometimes risky task due to the highly flexible nature of
bridge and gantry cranes. Applying the same control algo-
rithm used to suppress vibrations on flexible robots, the
operational effectiveness of cranes has been significantly
improved (see an example on Sorensen et al. 2007).

When a flexible link robot performs pick and place tasks,
the vibration frequencies of the robot are modified by
changes in the payload, these changes of frequency, repre-
sent a serious problem which avoids the proper operation
of the control scheme. Control algorithm parameters are
tuned considering a fixed and known payload. When these
parameters mismatch with the real payload, the algorithm
reduces its accuracy, becomes less effective in suppressing
vibration and, in some cases, may become unstable. Im-
plementing an adaptive control law, to quickly adjust the
control parameters, mitigates the aforementioned prob-
lems. However, it requires an on-line fast estimation of
the payload.

Computational efficiency and fast convergence are usual
requirements for on-line estimation, therefore the proposed
estimator is based on the algebraic framework originally
proposed in Fliess and Sira-Ramı́rez (2003). This algebraic
method has been already used for fast identification of
constant parameter in linear systems ranging from dc
motors and servomotors to flexible manipulators.

The algebraic method has already been used for the es-
timation of parameters of DC motors by Mamani et al.
(2008) and for servomotors by Garrido and Concha (2013),
and for the estimation of the parameters of flexible ma-
nipulators by Pereira et al. (2011) and by Becedas et al.
(2007). But we should mention that, in all the aforemen-
tioned works the identified systems were linear.
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Fig. 1. Robotic system scheme

The estimator proposed in this work does not only provide
estimates of the payload of the robot in a short period of
time, but also the estimates are computed on-line due to
the low computational burden of the developed algorithm.
We should note that unlike previous works, where only
linear systems are studied, the proposed estimator is
specifically designed to work with our non-linear platform,
which is a flexible robot whose movement is constrained
to the vertical plane and where the effects of gravity are
not negligible. This works complements the previous one
of Becedas et al. (2007), where only a horizontal movement
is considered.

This paper is organized as follows. Section 2 introduces
briefly the dynamic model of the flexible arm. Section 3
is devoted to the design of the Algebraic Identification
Algorithm. A description of the platform, experimental
results and results analysis are presented in Section 4.
Finally, Section 5 presents some conclusions and future
work.

2. DYNAMIC MODEL

The flexible link robot under consideration is shown in
Fig. 1. It consists mainly of an electrical rotary actuator
and a slender beam, which holds an end-point payload.
The base-end beam is clamped to the rotary hub of the
actuator, which is responsible for moving the arm in a
vertical plane. The dynamic model of the whole system
can be expressed in two coupled subsystems, the actuator
dynamics and, strictly speaking, the flexible link dynamics.
For the purpose of the identification algorithm synthesis,
only the flexible link dynamics model is relevant. It is
exposed in the succeeding paragraphs.

The flexible link dynamics model relates the actuator
position(θm) to the torque at the base of the beam (Γ) to
the tip position of the beam (θt). The following model con-
siders a massless beam with a point mass situated in its tip
(payload). All the beam movements are in a vertical plane
and, therefore, are affected by the gravitational force. It
is also assumed that the only sources of potential energy
are the bending of the beam and the gravitational force
acting on the payload. Torsion and compression effects

of the beam were not taken into account. Considering all
these hypothesis, and the Euler-Bernoulli beam theory, as
explained in ?, the following dynamic model is found

c (θm(t)− θt(t)) = ml2θ̈t(t) + νθ̇t(t) +mgl cos (θt(t))
(1)

where c is the link stiffness constant, m is the tip mass, ν is
the beam viscous damping coefficient, l is the beam length,
and g the gravitational constant. The stiffness constant
of the beam could be expressed in terms of its length,
its Young module (E) and its cross-sectional moment of
inertia as follows

c =
3EI

l
(2)

Moreover, a relation between the link deflection (θm − θt)
an the torque at the base of the link can be established as

c (θm(t)− θt(t)) = Γ(t) (3)

The measurements available in the experimental platform
are the angular position of the motor (θm) and the torque
measured at the base of the link (Γ). It is not practical to
measure the tip position (θt) because it usually requires
expensive sensors, and these sensors may fail, for example
because of occlusions. However, θt is necessary in order
to carry out our estimation algorithm. Then the angular
position of the tip of the robot is estimated using (3) in
the following way

θet (t) = θm(t)− Γ(t)/c (4)

Notice that θet , the estimation of the angular position of the
tip, is independent of the payload mass. By substituting
(3) in (1) and, using the θet as calculated above we obtain

Γ(t) = ml2θ̈et (t) + νθ̇et (t) +mgl cos (θet (t)) (5)

3. IDENTIFICATION ALGORITHM

The algebraic methodology described in Fliess and Sira-
Ramı́rez (2003) and in Becedas et al. (2007) is applied in
this section to design real-time estimations of the tip mass
m expressed in (5).

The Laplace transform of (5) is given by

Γ(s) =ml2
[
s2θet (s)− sθet (0)− θ̇et (0)

]
+

ν [sθet (s)− θet (0)] +mglχ(s) (6)

being χ(s) the Laplace transform of cos (θet (t)). If ex-
pression (6) were differentiated two times with regard to

variable s, the initial conditions θet (0) and θ̇et (0) would be
removed, yielding the expression
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d2Γ(s)

ds2
=ml2

[
2θet (s) + 4s

dθet (s)

ds
+ s2

d2θet (s)

ds2

]
+

ν

[
2
dθet (s)

ds
+ s

d2θet (s)

ds2

]
+mgl

d2χ(s)

ds2
(7)

If expression (7) is multiplied by the factor s2 (which
represents two iterated integrations in the time domain),
then an expression free of terms containing positive powers
of the complex variable s can be obtained (positive powers
of s must be avoided because they represent undesired
repeated time differentiations of the signals involved). An
expression involving only time convolutions of the signals
Γ(t), θet (t), and cos (θet (t)) is therefore yielded

s−2 d
2Γ(s)

ds2
=ml2

[
2s−2θet (s) + 4s−1 dθ

e
t (s)

ds
+
d2θet (s)

ds2

]
+

ν

[
2s−2 dθ

e
t (s)

ds
+ s−1 d

2θet (s)

ds2

]
+

mgls−2 d
2χ(s))

ds2
(8)

Let us L denote the usual operational calculus transform
acting on exponentially bounded signals with bounded
left support. Recall that L−1s(·) = d/dt(·), L−11/s(·) =∫ t

0
(·)(σ)dσ, and L−1dv/dsv(·) = (−1)vtv(·). Expression

(8) can thus be written in the time domain as follows 1

∫ (2)

t2Γ(t) =ml2

[
2

∫ (2)

θet (t)− 4

∫
tθet (t) + t2θet (t)

]

ν

[
−2

∫ (2)

tθet (t) +

∫
t2θet (t)

]
+

mgl

∫ (2)

t2 cos (θet (t)) (9)

Expression (9) can be written in a compact form as

q(t) = m
[
l2β(t) + glξ(t)

]
+ νη(t) (10)

where q(t), β(t), ξ(t), and η(t) can be calculated in real
time because they are the outputs of the following time-
varying linear, unstable, Brunovsky filters

q(t) = z1 ξ(t) = z5
ż1 = z2 ż5 = z6

ż2 = t2Γ(t) ż6 = t2 cos (θet (t))

β(t) = z3 + t2θet (t) η(t) = z7

ż3 = z4 − 4tθet (t) ż7 = z8 + t2θet (t)

ż4 = 2θet (t) ż8 = −2tθet (t) (11)

whose initial states are set to zero.

1 We denote by (
∫ (j)

φ(t)) the integral expression∫ t
0

∫ σ1
0

. . .
∫ σj−1

0
φ(σj)dσj . . . dσ1 with the definition of (

∫
φ(t)) as

(
∫ (1)

0
φ(t)) =

∫ t
0
φ(σ1)dσ1

The linear equation (10) has two unknowns, m and ν,
which can be obtained from a least squares error fitting
in the time interval [ti, tf ] between the first and the last
available sample. Upon defining a cost:

ε =

∫ tf

ti

{[
l2β(τ) + glξ(t) |η(τ)

]
·
[
m
ν

]
− q(τ)

}2

dτ,

(12)

its minimization leads to

[
m
ν

]
=

[∫ tf

ti

[
l2β(τ) + glξ(τ)

η(τ)

]
·[

l2β(τ) + glξ(τ)
η(τ)

]T
dτ

]−1

·
∫ tf

ti

[
l2β(τ) + glξ(τ)

η(τ)

]
q(τ)dτ

(13)

Here, only the positive solutions for m and ν have physical
sense, and for the purposes of this work, only the value of
m is relevant.

Before finishing this section, it is important to mention
that, because of the unstable nature of the Brunovsky
filters, this identification procedure requires periodically
resets to avoid reaching the numerical limits in the com-
puter. Faster reset actions should be considered to detect
sudden payload changes, as long as this algorithm is only
capable of perform an unique payload estimation. This last
remark becomes evident from the equation (11). In this
equation, the functions q(t), β(t), ξ(t) are calculated by
the integration of the sensor measurements, and they have,
as therefore, memory. Considerations about resetting this
type of identification algorithm has been already discussed
in San-Millan and Feliu (2014), and will not be covered in
this paper.

4. EXPERIMENTS

This section presents the experiments carried out to verify
the estimation algorithm developed.

4.1 Experimental Platform

The identification algorithm exposed in this paper was
tested in a single-link flexible robot built in our laboratory,
and showed in Fig. 2.

Its mechanical structure consists of a Maxon DC motor
with a gear reduction, a duraluminium link connected to
the gear shaft, and a mass-adjustable payload structure.
A Maxon EPOS driver controls the motor position, while
a National Instruments PXI system allows us to command
the motor driver and to register the sensory signals. The
sensory system is composed of a strain-gage structure
placed at the base of the arm, and two rotary encoders
mounted to the shaft of the motor and to the output shaft
of the reduction gear. The strain-gage structure provides
an estimate of the actuator output torque (Γ). Two en-
coders were installed because of the presence of backlash in
the gear reduction. The outer encoder measures the exact
orientation of the beam base (θm). The inner encoder was
not taken into account in our experiments.
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Fig. 2. Flexible single-link robot platform

The most relevant parameters of the platform, in relation
to the experiments, are summarized in table 1.

Table 1. flexible robot parameters

Parameter Units Symbol Value

Beam length (m) l 1.045
Beam rotational
stiffness (N.m.rad−1) c 2498.2
Beam viscous
damping coefficient (N.m.s.rad−1) ν 0.2
Payload mass 1 (Kg) m1 1.150
Payload mass 2 (Kg) m2 1.690
Payload mass 3 (Kg) m3 2.930

4.2 Experimental Results

In order to validate the proposed identification algorithm,
three types of experiments were carried out for three dif-
ferent payloads (m1,m2 and m3), whose values are shown
in table 1. In these experiments, the algebraic controller
presented in Cambera et al. (2014) was considered to
control the motor position, while no controller was used
to control the tip position. In any case, it is important

to point out that the results presented in this paper do
not depends on the motor control algorithm, but only
on the motor position and the torque measurements. A
description of each type of experiment is given below.

Experiment type 1. The motor position (θm) follows a
fourth-order trajectory that goes from 90 to 45 degrees
in 2 seconds. This experiment reproduces the typical task
of picking up an object and position it on another place
following a certain trajectory. It is worth noting that even
when in practice a pick-up position of 90 degrees does not
make sense, from the experimental validation standpoint
does it. This starting position allows us to easily recreate
the situation in which the robot has no payload mass (zero
torque), and then it picks up an object which is on a
surface.

Experiment type 2. The motor position (θm) follows a
sinusoidal trajectory that goes from 90 to 45 degrees with a
period of 4 seconds, and considering a trapezoidal velocity
profile. This experiment allows us to prove that the algo-
rithm does not become unstable when a persistent input
is applied. This conclusion is not obvious considering that
the estimation algorithm is based on unstable Brunovsky
filters.

Experiment type 3. The motor is fixed to 0 degrees
(θm = 0), and then the flexible link is kindly hit with
a hammer in its tip. Through this experiment we recreate
two case-scenarios. In the first case, the robot is initially at
rest under an external disturbation. In the second one, we
suppose that the algorithm that controls the robots does
not cancel entirely the residual vibrations.

For each experiment type, we present a figure that plots
sensor measurements, and another one with the estimation
output. Due to space limitations, we only present the sen-
sor measurements for the payload mass m2. The graphics
for payload masses m1 and m3 are quite similar, and do
not add relevant information to the analysis of results.
At the end of this section, a summary table shows the
convergence rates of the estimation algorithm.

Results of experiments type 1. In Fig. 3, we present
the motor position and torque measurement for mass m2.
Then, Fig. 4 shows the identification algorithm behavior
for all the masses.

Results of experiments type 2. In Fig. 5, we present
the motor position and torque measurement for mass m2.
Then, Fig. 6 shows the identification algorithm behavior
for all the masses.

Results of experiments type 3. In Fig. 7, we present
the motor position and torque measurement for mass m2.
Then, Fig. 8 shows the identification algorithm behavior
for all the masses.

Table 2 summarizes the time elapsed from the start of
the algorithm until it estimates the payload mass with an
error less than 10%, 5% and 2%.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8400



Table 2. Comparison of convergence time between different experiments and payloads

Experiment 1 Experiment 2 Experiment 3

Errors 10% 5% 2% 10% 5% 2% 10% 5% 2%

Payload m1 0.57 s 0.77 s 1.08 s 0.68 s 0.84 s 1.24 s 0.022 s 0.028 s 0.030 s
Payload m2 0.33 s 0.61 s 1.27 s 0.40 s 0.65 s 0.88 s 0.036 s 0.132 s 0.238 s
Payload m3 0.29 s 0.39 s 0.58 s 0.58 s 0.73 s 1.16 s 0.048 s 0.050 s 0.196 s
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Fig. 3. Experiment type 1: Motor position and torque
measurement for mass m2
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Fig. 4. Experiment type 1: Payload mass estimation
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Fig. 5. Experiment type 2: Motor position and torque
measurement for mass m2
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Fig. 6. Experiment type 2: Payload mass estimation
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Fig. 7. Experiment type 3: Motor position and torque
measurement for mass m2
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Fig. 8. Experiment type 3: Payload mass estimation
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4.3 Analysis of the Experimental Results

From the perspective of adaptive control, an estimation
algorithm must be able to ensure a correct and fast
estimation for the typical operation circumstances of the
system. It would be also desirable that the estimates
were carried out with a known and invariant rate of
convergence. In the following paragraphs we discuss the
Experimental Results in this context.

Considering the figures shown in the previous section,
it can be seen that the proposed algorithm fulfills the
first requirement (producing accurate and fast estimates).
According to the data in table 2, our algorithm is able
to estimate the payload mass in less than 0.85 seconds
with a error below 5%. This means that the algorithm
performs well in those situations where large trajectories
are involved (experiments type 1 and 2), and also under
quasistatic situations (experiment type 3). It is important
to mention that the algorithm stays stable under persistent
inputs (experiment type 2) despite it is based on unstable
filters. From a more general point of view, these results
indicate that once the control algorithm adjusts its pa-
rameters, it still has one half of the trajectory to improve
the tracking and to cancel any existing vibration.

In terms of the rate of convergence variance, there are
greater differences between certain experiments. In the
experiments which involve large trajectories (experiments
type 1 and 2), the estimation of the tip mass has been car-
ried out in an average time of 0.48, 0.67 and 1.03 seconds
with an error of 10%, 5% and 2%, showing a small variance
in each case . Meanwhile in the quasistatic situation (ex-
periment type 3), the algorithm has spent 0.035, 0.07 and
0.15 seconds to calculate the payload mass with 10%, 5%
and 2% errors. In other words, in the quasistatic situation
the algorithm was about 8 times faster than when large
trajectories were involved. From these observations, we
conclude that two convergence rates should be taken into
account in the control algorithm design (large trajectories
and quasistatic situations). Fortunately, these situations
are very different.

5. CONCLUSIONS

An on-line identification algorithm, based on the algebraic
method, has been designed for the quick payload mass
estimation of a flexible link arm moving under gravity.
This algorithm only requires the motor position and torque
at the base of the flexible link. In contrast to other method-
ologies, this one does not require any signal derivation, and
therefore, noise amplification in the sensor measurements
is avoided.

The experimental validation shows, that for typical trajec-
tories of a robot arm of such dimensions (45 degrees in 2
seconds), the identification algorithm is capable of making
an estimate in less of 0.85 seconds with only 5% of error.
Adjusting the parameters of a control algorithm with this
payload estimation should be enough to cancel effectively
the vibrations and to improve the tracking in the second
half of the trajectory. For quasistatic situations, when the
joint remains motionless but the link slightly vibrates, the
payload estimation can be performed about 8 times faster.

Further work will focus on designing an adaptive control
law based on the estimation algorithm here presented.
Experimental validation will be also carried out.
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