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Abstract: A method to control the transient vibrations in cantilever beam structures with
variable weight is presented. The proposed adaptive approach is based on the hybrid extended
Kalman filter (EKF) for the joint estimation of dynamic states and the weight parameter, in
combination with dual-mode infinite horizon model predictive control (MPC). This adaptive
predictive method is compared to nominal linear quadratic (LQ) control and positive position
feedback (PPF) in experiment. Experiments are performed on an active cantilever beam with
piezoelectric actuation, subjected to transient vibration effects and weight variations. The
results presented in this article suggest that the proposed algorithm outperforms its traditional
counterparts, while requiring less inputs to the actuated structure.

1. INTRODUCTION

Vibrations are omnipresent in engineering disciplines, as
movement—and mechanical action in general—is often
accompanied by the phenomenon of oscillations. Since in
the majority of cases these vibrations are undesired and
decrease the performance and even the safety of systems
and structures, a great effort is invested in their minimiza-
tion. The once passive-only approaches are today com-
plemented by more effective, but also more complicated
semi-active and active vibration control (AVC) methods
[Inman, 2006].

Although simple in nature, the dynamic behavior of fixed–
free cantilever beams may represent a class of real-life
structures such as aircraft wings and helicopter rotors.
The temporal vibration response of fixed–free beams is
of special interest, as according to Richelot et al. [2004]
it emulates the transient behavior typical for aerospace
constructions. In addition to standard passive measures,
active vibration control methods such as positive position
feedback (PPF) and linear quadratic (LQ) control com-
bined with some kind of actuation have emerged from
academic deliberations into real-world applications [Unger
et al., 2013]. This article deals with the active transient vi-
bration control of mechanical structures subject to weight
changes, which is often the case with aircraft wing surfaces
(amount of fuel and payload changes).

The method proposed here for the adaptive control of tran-
sient vibrations in cantilevers lies in the joint estimation
of dynamic states and the equivalent weight as an un-
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known parameter using the extended Kalman filter (EKF)
[Simon, 2006], combined with dual-mode model predic-
tive control (MPC) with the ability to handle process
constraints imposed on actuator inputs [Rossiter, 2003].
Even though both of these methods have been around for
decades, their combination into an adaptive control scheme
is not common in literature. The novelty of this article
therefore does not lie in a theoretical contribution, rather
in applying the combination of two well-established meth-
ods to create a new algorithm for a particular application
area and contrasting its merits with traditional methods
in experiment.

The traditional approach to handle operating point change
in any controlled plant is robust and adaptive control,
with all the established advantages and disadvantages of
these methods. This is also valid for the active control of
vibrations, where robust PPF [Song et al., 2002], LQ [Hu
and Ng, 2005] and other approaches are widespread. On
the other side, adaptive control designs in vibration control
feature self-tuning minimum variance control [Zhang et al.,
2013], model reference adaptive control (MRAC) [Trajkov
et al., 2008] and others. Literature research reveals that
the use of EKF for vibration control is centered mainly
on parameter or disturbance force identification [Lourens
et al., 2012] and structural diagnostics [Mu et al., 2013],
however, in the work of Szabat and Orlowska-Kowalska
[2008] the role of EKF shifts from the background to serve
as the means of online identification for adaptive control.

In this article, the simplified dynamic model of a cantilever
beam considered in the hybrid EKF formulation is aug-
mented by the unknown equivalent mass parameter and
a shaping filter, rendering the otherwise linear dynamic
model to a nonlinear estimation problem. The estimated
mass is pre-filtered, then passed into the adaptive dual-
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Fig. 1. Photograph of the experimental system

mode infinite horizon MPC formulation. The resulting
adaptive EKF-MPC is tested experimentally on an ac-
tive cantilever with piezoceramic actuation, subjected to
repeated transient vibration events initiated by an im-
pact mechanism emulating release tests. The experiment
consists of an initial open-loop identification stage with
different EKF configuration, which is followed by a control
stage with the original beam and the beam with its weight
modified while in operation. The adaptive EKF-MPC al-
gorithm is compared to the positive position feedback and
linear quadratic control methods that are widely accepted
for the active control of transient vibrations. It is ensured
that the tuning of the PPF and LQ controllers is analogous
to the investigated EKF-MPC algorithm for the nominal
beam configuration. The superimposed output and input
responses for all tested controllers is complemented by a
performance analysis.

2. EXPERIMENTAL HARDWARE

An aluminum blade measuring 550×40×3 mm is fixed in
a cantilever beam configuration, with one fixed and one
free end (Fig. 1). The beam is equipped by MIDÉ QP16n
piezoceramic actuators that are placed close to the fixed
end in order to maximize the bending moment in the first
resonant mode. The actuators are driven through a MIDÉ
EL-1225 capacitive operational amplifier with a 20× gain.
The position of the beam is measured at the free end using
a Keyence LK-G 82 laser triangulation system, connected
to a Keyence LK-G3001V processing and filtering unit.
The measured output and the supplied input are analog
voltage signals processed by a National Instruments PCI-
6030E laboratory measurement card.

The disturbance force is delivered to the beam using a
stinger mechanism driven by a linear motor. Upon receiv-
ing a digital signal, the mechanism delivers a shock-like
impact to the end of the beam then returns to its starting
position, leaving the beam to vibrate freely afterwards.
The impacts generated by the stinger mechanism emu-
late the transient vibration effects common in aerospace
constructions [Richelot et al., 2004] that are routinely
simulated by release tests in laboratory settings [Vasques
and Rodrigues, 2006, Choi et al., 1998]. In this work, the
stinger mechanism is employed for the repeatable repro-
duction of release tests in order to enable the comparison
of the proposed control strategy with nominal LQ and PPF
controllers.
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Fig. 2. Connection schematics of the experimental system

The control algorithms were developed in the Matlab–
Simulink software environment. Offline portions of the
code were initialized using the m-file scripting language.
The online implementation of the algorithm combines
built-in blocks with customized blocks first coded in the
m-file language, then re-compiled into a C language Real-
Time Workshop target code using the Embedded Matlab
Editor. The Simulink control schemes were then loaded
onto a personal computer containing the measurement
card and running the xPC Target control system prototyp-
ing software. The connection scheme of the experimental
hardware and the xPC Target and Host computers is
shown in Fig. 2.

3. CONTROLLER DESIGN

3.1 System modeling

Since the first vibration mode dominates the response of
the physical system, let us assume that the dynamics of
the blade can be modeled using a single degree of freedom
(DOF) mass-spring-damper system, which is subject to an
unknown external force disturbance

mq̈(t) + bq̇(t) + kq(t) = cu(t) + Fe(t), (1)

where q(t) is the scalar variable representing the position
of the beam measured at the end, u(t) is the voltage
input supplied to the piezoceramic actuators and Fe(t)
is the external disturbance force that will be later treated
as nonwhite Gaussian process noise. The equivalent mass
of the beam is m (kg), the equivalent viscous damping
coefficient is b (Ns/m), the spring constant is k (N/m) and
the scalar force conversion constant c (N/V) represents the
amount of force supplied to the blade by the actuators per
unit voltage input.

Choosing the position and velocity as state variables
results in the continuous linear state-space model

ẋ(t) =Φx(t) + Γu(t) (2)

y(t) =Cx(t), (3)

where Φ is the R
2×2 state transition matrix, Γ is the R

2×1

input matrix that for the cantilever dynamics is assumed:

Φ =

[

0 1

− k

m
− b

m

]

Γ =

[

0
c

m

]

. (4)
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The measured output is position only, therefore the output
matrix is C = [1 0]. All the physical parameters will be
treated as unknown during the initial identification phase
(marked with the subscript “I”), while parameters b, k
and c will be fixed throughout the adaptive control part
(marked with the subscript “C”) and only the equivalent
mass m(t) will be treated as variable, resulting in con-
tinuously updated ΦC(t) and ΓC(t) matrices. In case the
formulation is valid for both modes, the subscript “θ” will
be used:

θ =

{

I if t ≤ Ti

C if t > Ti,
(5)

where Ti is the length of the initial identification phase.

Identification mode The continuous state can be aug-
mented by the vector of unknown parameters pI(t) =

[k(t) b(t) c(t) m(t)]
T , where pI(t) expresses the param-

eters during the initial identification phase. The system
model can be expressed as

ẋ(t) = f̃c(x(t),pI(t), u(t)) + ws(t) (6)

ṗI(t) =wp(t), (7)

where quantities ws(t) and wp(t) are the system process
noise and parameter process noise. Combining Eqs. (6)–(7)
we obtain the new augmented state xI(t) = [x(t) pI(t)]

T

that can be used to describe the dynamic states supple-
mented by the unknown parameters:

ẋI(t) = fc(xI(t), u(t)) + w(t) (8)

y(t) = hc(xI(t), u(t)) + v(t), (9)

where the function fc represents the continuous augmented
dynamics, hc is the continuous measurement function and
w(t) = [ws(t) wp(t)]

T expresses the combined system
and parameter process noise. In the case of the initial
identification of the blade parameters, we expect the
process and measurement noise to have the properties
of white Gaussian noise, that is w(t) ∼ N(0,QIf ) and
v(t) ∼ N(0,RI) where the properties of the noise are
described by the covariance matrices QIf and RI .

Control mode The only unknown variable during the
adaptive control of the blade is the estimated equivalent
mass, rendering the vector of unknown parameters to
pC(t) = m(t). The rest of the parameters are fixed and
obtained from the initial identification. Similarly to the
previous case, the state will be augmented by m(t):

ẋ(t) = f̃c(x(t), pC(t), u(t)) + ηs(t) (10)

ṗC(t) =wp(t) (11)

Because of the repeating shock-like nature of the distur-
bance the use of a white Gaussian noise during the control
mode is inadequate, thus ηs(t) here represents a nonwhite
Gaussian noise. Nonwhite noise ηs(t) can be generated
using a linear shaping filter driven by a white Gaussian
noise ws(t):

ẋf (t) = ff (xf (t), ws(t)) (12)

ηs(t) = xf (t)

The system dynamics augmented by the unknown mass
can be further expanded by the dynamics of the linear
spectrum shaping filter in Eq. (12) to obtain

ẋ(t) = f̃f,c(x(t), pC(t), u(t)) + xf (t) (13)

ṗC(t) =wp(t) (14)

ẋf (t) = ff(xf (t), ws(t)) (15)

resulting in the state xC(t) = [x(t) pC(t) xf (t)]
T and the

corresponding dynamics summarized by

ẋC(t) = fc(xC(t), u(t)) + w(t) (16)

y(t) = hc(xC,a,f(t), u(t)) + v(t), (17)

where the function fc represents the continuous augmented
dynamics, hc is the continuous measurement function and
w(t) = [ws(t) wp(t)]

T expresses system and parameter
process noise. The statistical properties of the process
and measurement noise are contained in the covariance
matrices QCf and RC .

Despite the fact that the system dynamics is continuous,
measurements can be made only in discrete time intervals,
so Eqs. (8) and (16) will be propagated through numerical
integration using the Euler method, resulting in discrete-
time functions f(xθ(k), u(k)) and h(xθ(k), u(k)) in the ob-
server.

3.2 Observer formulation

The observer considered for the estimation of system
states and parameters during both the initial identification
and control operation modes is known in literature as
the continuous-discrete extended Kalman filter, and the
formulation is based on Simon [2006] and Maybeck [1979].
The EKF algorithm is launched with the initial estimate
of the state x̂

+
θ(0) = E

[

xθ(0)

]

and the initial covariance of
the state estimate error:

P+
θ(0) = E

[

(xθ(0) − x̂
+
θ(0))(xθ(0) − x̂

+
θ(0))

T
]

(18)

In order to obtain the a priori state estimates (denoted by
the − superscript), the dynamic system in Eqs. (8) and
(16) is integrated one step ahead to the next time instant:
x̂
−

θ(k) = f(x̂+
θ(k−1), u(k)).

The dynamics of the mass-spring-damper system aug-
mented by the parameters in the case of the initial identifi-
cation, assuming there are no parameter changes between
sample is

q̇(t) = ẋI1(t) = xI2(t)

q̈(t) = ẋI2(t) =−xI6(t)xI3(t)xI1(t)− xI6(t)xI4(t)xI2(t)

+xI6(t)xI5(t)u(t)

k̇(t) = ẋI3(t) = 0 (19)

ḃ(t) = ẋI4(t) = 0

ċ(t) = ẋI5(t) = 0

1

ṁ(t)
= ẋI6(t) = 0.

In case of online control, the only unknown parameter is
weight, and the character of the process noise is different.
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Assuming for simplicity that the real disturbance can be
sufficiently modeled by a second-order Markov process
driven by white Gaussian noise [Maybeck, 1979], the mass-
spring-damper can be augmented by the unknown mass
parameter and the second order state description of the
shaping filter resulting in:

q̇(t) = ẋC1(t) = xC2(t)

q̈(t) = ẋC2(t) =−xC3(t)xC1(t)k − xC3(t)xC2(t)b+

+xC3(t)cu(t) + xC5(t)

1

ṁ(t)
= ẋC3(t) = 0 (20)

ẋC4(t) = xC4(t)

ẋC5(t) =−ω2
nxC4(t)− 2αnxC5(t),

where ωn and αn are tuning parameters of the spectral
filter and are chosen to fit the character of the real
disturbance.

The time update of the a priori covariance matrix estimate
is given by

Ṗ θ(t) = Zθ(x̂θ(t))P θ(t) + P θ(t)Z
T
θ (x̂θ(t)) +Qθf (21)

where the Jacobians of Eqs. (19) and (20) are defined as

Z(x̂θ) =
∂fc(xθ)

∂xθ

∣

∣

∣

∣

xθ=x̂θ

. (22)

The a priori covariance matrix estimate is obtained by the
numerical propagation of Eq. (21) from sample t = (k−1)
to sample t = (k):

P−

θ(k) = g
(

P+
θ(k−1),Zθ(x̂+θ(k−1))

)

. (23)

The discrete-time portion of the hybrid EKF algorithm is
started by computing the update of the Kalman gain

Kθ(k) = P−

θ(k)L
T
θ

[

LθP
−

θ(k)L
T
θ +M θRθM

T
θ

]

−1

. (24)

The state estimate augmented by the vector of unknown
parameters—and in the case of the online controller the
shaping filter—is then updated to obtain the a posteriori
state estimate (denoted by a + superscript) based on the
measurement and the gain, along with the a posteriori
error covariance:

x̂
+
θ(k) = x̂

−

θ(k) +Kθ(k)

[

y(k) − h(x̂−

θ(k), u(k))
]

(25)

P+
θ(k) =

[

I −Kθ(k)Lθ

]

P−

θ(k)

[

I −Kθ(k)Lθ

]T
+

+Kθ(k)M θRθM
T
θ K

T
θ(k), (26)

where the Jacobians of the measurement equation with
respect to the state and measurement noise are given as:

LI(k) =
∂h(xI(t))

∂xI(t)

∣

∣

∣

∣

xI(t)=x̂
−

I(t)

=















0 0 0 0 0
x6(t) 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1















(27)

LC(k) =
∂h(xC(t))

∂xC(t)

∣

∣

∣

∣

xC(t)=x̂
−

C(t)

=











0 0
0 0
0 1
1 0

ω−2αn
n 0











(28)

Mθ(k) =
∂h(xθ(t))

∂vθ(t)

∣

∣

∣

∣

xθ(t)=x̂
−

θ(t)

= 1. (29)

3.3 Updates and discretization

Updates During the control phase, the continuous sys-
tem model in Eq. (2) is updated based on windowed
median-filtered estimate of the equivalent weight of the
beam, resulting in matrices ΦC(t) and ΓC(t) at times
t = kT . The weight is varied, while the rest of the physical
parameters are assumed to remain constant and are based
on the results of the initial identification. The discrete,
linear, time-variant model including only the dynamic
states xC1 and xC2 of the cantilever used in the MPC
algorithm is:

x(k+1) =A(k)x(k) +B(k)u(k) (30)

y(k) =Cx(k), (31)

where A(k) is a R
2×2 state transition matrix, B(k) is a

R
2×1 input matrix and C = [1 0] outputs deformation.

Discretization The continuous state and input matrices
ΦC(k) and ΓC(k) updated at sample times (k) are dis-
cretized based on the widely accepted algorithm featured
in Franklin et al. [1997].

3.4 Model predictive control

The model predictive control algorithm used in this work is
based on the traditional infinite-horizon constrained dual-
mode formulation; where in order to obtain the optimal
sequence of outputs, a cost function is minimized while
constraints are enforced. The MPC formulation used here
is based on Maciejowski [2000] and Rossiter [2003].

The future progress of states −→x (k) may be predicted up
to a horizon of n steps. The current state x0(k) = x̂

+
0(k)

and the vector of future inputs −→u (k) are recursively sub-
stituted to the state-space model in Eq. (30) to obtain the
state prediction equation −→x (k) = M (k)x0(k) +N (k)

−→u (k).
In this context the estimated state x̂

+
0(k) refers only to

the dynamic portion of the augmented state, excluding
parameters and shaping filter states. The state prediction
matrices M (k) and N (k) for step (k) are

M (k) =
[

A0
(k) A1

(k) . . . An−2
(k) An−1

(k) An
(k)

]T

(32)

N (k) =















0 0 . . . 0

B(k) 0 . . . 0

A(k)B(k) B(k) . . . 0

...
...

. . .
...

An−1
(k) B(k) An−2

(k) B(k) . . . B(k)















. (33)
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A linear quadratic cost function formulated on the basis of
the dual-mode paradigm takes the weighted contribution
of states and inputs into account, assuming the use of
free control moves up to the end of the horizon and fixed
feedback afterwards [Scokaert and Rawlings, 1996]:

J(k) =

n−1
∑

i=0

(

xT
(k+i)Qx(k+i) + uT

(k+i)Ru(k+i)

)

+ (34)

+xT
(k+n)P f(k)x(k+n),

is expressing the quality of the control at each sample
(k). Algorithm behavior may be tuned by the choice of
state penalization Q = QT ≥ 0 and input penalization
R = RT ≥ 0. Terminal weight P f(k) is the solution
of the unconstrained, infinite-horizon quadratic regulation
problem at sample (k) which can be recomputed online as
the solution of the discrete-time algebraic Ricatti equation
(DARE):

AT
(k)P f(k)A(k) − P f(k) −AT

(k)P f(k)B(k) · (35)

·(R+BT
(k)P f(k)B(k))

−1B(k)P f(k)A(k) +Q = 0

For the online numerical solution of the DARE, we con-
sider an eigenvalue decomposition method based on the
work of Pappas et al. [1980]. First, let us define the variable
G(k) = B(k)R

−1BT
(k) and consider the generalized eigen-

value problem in the form Y (k)V (k) = U (k)X(k)V (k),
where U (k) is a diagonal matrix containing generalized
eigenvalues and the full matrix V (k) corresponds to the
generalized principal vectors. Furthermore, let us define
matrices X(k) and Y (k) as

X(k) =

[

I G(k)

0 AT
(k)

]

Y (k) =

[

A(k) 0

−Q I

]

. (36)

The solution of the generalized eigenproblem leads to the
diagonal matrix U (k), which can be used to identify the
stable eigenvalues. Eigenvectors of V (k) corresponding to
these stable eigenvalues are then extracted to matrix W (k)

that will be used as the basis of the stable eigenspace.
Partitioning W (k) into two sub-matrices yields W (k) =
[

W 1(k) W 2(k)

]T
, which is then utilized to compute the

solution of the DARE as P f(k) = W 2(k)W
−1
1(k) at each

sample time.

The core of the MPC algorithm is performing the min-
imization of the cost defined by Eq. (34), yielding a se-
quence of optimal inputs at each sample time. This mini-
mization procedure is subject to the following constraints:

u ≤ u(k+i) ≤ u, i = 0, . . . , n− 1 (37)

x0(k) = x(k) (38)

x(k+1+i) = A(k)x(k+i) +B(k)u(k+i), i ≥ 0 (39)

y(k+i) = Cx(k+i), i ≥ 0 (40)

u(k+i) = K(k)x(k+i), i ≥ n (41)

where Eq. (37) defines constraints on the voltage input,
Eq. (38) is the observed dynamic state, Eq. (39)–(40) is
the discrete state-space model updated by the estimated
weight, and finally Eq. (41) is the constraint that defines
the terminal cost. The cost function in (34) is transformed
to

J(k) =
−→u T

(k)H(k)
−→u (k) + 2xT

0(k)G
T
(k)

−→u (k) + xT
0(k)F (k)x0(k)

(42)

For the variable model structure considered in this paper,
H(k) and G(k) is evaluated online at each step (k) by

H(k) =
n−1
∑

i=0

NT
i(k)QN i(k) +NT

n(k)P f(k)Nn(k) +R (43)

G(k) =
n−1
∑

i=0

NT
i(k)QM i(k) +NT

n(k)P f(k)Mn(k), (44)

where i is the i-th and n is the last block row of N (k) and
M (k), and R is a block matrix with the input penalty R
on its main diagonal.

3.5 The Resulting Vibration Control Strategy

The on-line portion of the adaptive predictive control
strategy used in this work can be summarized by the
following algorithm:
Algorithm: At each sampling instant (k):

(1) To obtain the a priori estimates propagate the state
and covariance matrix in simulation.

(2) Sample the deflection y(k) filtered by a low-pass and
running mean filter.

(3) Compute the Kalman gain KC(k).
(4) Use the measurement and Kalman gain to get a pos-

teriori state estimates x̂
+
C(k), then update covariance

matrix P+
C(k).

(5) Based on the median filtered weight estimate m̂(k),
re-assemble the continuous model ΦC(k) and ΓC(k).

(6) Discretize the system matrices A(k) and B(k).
(7) Use the discretized model to compute the state pre-

diction matrices M (k) and N (k).
(8) Solve the discrete-time algebraic Ricatti equation

through the generalized eigenvalue method to obtain
terminal weighting P f(k).

(9) Use the state prediction matrices to compute the cost
prediction matrices H(k), G(k).

(10) Minimize the cost J(k) subject to input constraints.
(11) Apply the first element of the vector of optimal

control moves −→u (k) to the controlled system.

4. EXPERIMENTS

The performance of the proposed adaptive EKF-MPC
vibration control strategy is compared to nominal LQ
control, nominal PPF control and the open-loop response
resulting in four different experimental settings. Each
experiment lasting 80 s was divided into 20 s intervals:
an initial identification without control and disturbances,
control of the nominal system, control of the system
with a small weight change and a return to the nominal
system. The impacts emulating transient vibration were
delivered in 4 s intervals. To simulate the change of
physical properties, a small weight of mw = 54 g was added
to the beam manually before the 40 s mark. The weight
was left in place for 5 release tests and removed just before
the 60 s mark to return the blade to its nominal state (see
Fig. 3).
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Fig. 3. The entire experimental run showing the initial identification procedure (0–20 s), nominal cantilever beam with
disturbances (0–40 s and 60–80 s) and the cantilever subjected to a weight change (40–60 s).

4.1 Experiment design and parameters

During the first stage, the system is started up in an initial
identification mode with the aim to identify the parame-
ters k,b and c. The actuators are driven by white Gaussian
noise and external disturbances are not supplied from the
stinger mechanism. At the end of the initial identification
phase, the parameters k,b and c are fixed to the latest
available value, and the system is switched into control
mode with a different EKF setting. The identification
EKF was initiated with the initial state estimate x̂

+
I(0) =

[

0 0 450 0.1 5× 10−4 2
]T

and the initial error covariance

P+
I(0) = diag

[

1× 10−5 1 1× 104 1× 10−2 1× 10−6 0.1
]

.
With the standard deviation of the position measure-
ment noise of the precision laser system estimated at
1% of 10−3 m, the measurement variance was set to
RI = 1 × 10−10, while the process noise covariance was
Q̃If = diag

[

1× 10−4 10 1× 10−5 1× 10−11 1× 10−2
]

with Qθf = Q̃θf/T . All variance values and settings are
representative and are estimated based on the physical
properties of the controlled system.

The remaining 3 experimental phases (Ti ≥ 20 s) as-
sumed changes only in the weight of the blade and
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the stinger mechanism is engaged to simulate tran-
sient vibrations in different closed-loop and an open-
loop tests. A different EKF formulation was used (see
Sect. 3.1.2), which is initialized with a state estimate
x̂
+
C0 = [0 0 2 0 0]

T and initial error covariance P+
C(0) =

diag
[

1× 10−5 1 1× 10−4 0 0
]

. Compared to the identi-
fication phase, measurement noise variance was increased
to RC = 1 × 10−6, and the process noise covariance was
Q̃Cf = diag

[

2αn(0.63Fe)
2 1× 102

]

, where Fe = 4 (N) is
an estimate of the disturbance force. Tuning parameters
of the spectral filter ωn = 2πTe and αn = 25 were set
empirically to fit the real disturbance, where Te = 0.1 is
the estimated duration of the disturbance force. Both the
identification and the control EKF used a dtI = dtC =
T/500 s simulation step for the continuous part of the
filter.

The MPC part of the adaptive EKF-MPC algorithm
uses an n = 10 steps prediction horizon with ±100 V
constraints on the inputs only. State penalty is set to Q =
CTC and input penalty to R = 1×10−10. The constrained
minimization of the quadratic cost function is solved
online using the qpOASES quadratic programming solver
optimized for MPC use [Ferreau et al., 2008]. The discrete-
time linear quadratic controller used in the experimental
comparison is computed based on the nominal model with
the typical parameters of the blade m = 0.20 (kg), b = 0.11
(Ns/m), k = 533 (N/m) and c = 8.00 × 10−4 (N/V),
which were identified using the same EKF as utilized in the
adaptive EKF-MPC algorithm. In order to ensure that the
nominal LQ algorithm is tuned analogically to the MPC
formulation, the same weights were used for the state and
input penalties (Q = CTC, R = 1× 10−10).

The positive position feedback controller considered as the
second benchmark against the proposed adaptive EKF-
MPC algorithm was formulated based on the work of
Friswell and Inman [1999], as:

q̈(t) + 2ξpωpq̇(t) + ω2
pq(t) =

√
g (45)

u(t) =

√
g

c
ω2
pq(t), (46)

where ωp is the natural frequency and ξp is the damping
ratio of the controller, while g is the gain and the rest
were defined in the previous sections. Normally, these
parameters are user tunable, however, in the interest of
preserving a fair basis of comparison with the proposed
vibration controller and nominal LQ, the PPF controller
was tuned optimally according to the procedure set forth
by Friswell and Inman [1999]. In summary, if the con-
tinuous 1 DOF model in Eq. (2) is combined with Eq.
(45), then the full output feedback can be expressed as
u(t) =

[

gω4
p −ω2

p −2ξpωp

]

yp, where yp is the output of
the state-space system augmented by the PPF controller.
This feedback gain and subsequently all the parameters
of the original PPF controller can be computed optimally,
if a continuous infinite-horizon quadratic cost function is
minimized with the PPF augmented state-space model
and weights Qp and Pp:
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Fig. 4. Detail of the position and the corresponding voltage
input for the system subjected to a weight change and
transient impact disturbance

Qp =









α 0 0

0
1

c2
β 0

0 0
1

c2
γ









Rp = Rp =
1

c2
δ. (47)

The optimization procedure above was performed with the
physical parameters identical to the ones used with the
nominal LQ controller. To ensure a maximal agreement
of PPF and LQ performance, the tuning parameters were
chosen as β = 0, γ = 0 and δ = R = 1 × 10−10, while
the only remaining parameter α = 1.7 × 108 was chosen
empirically to ensure that the difference between nominal
PPF and LQ output performance remained minimal.

All experiments were sampled by T = 0.01 s. The input
side of the measurement chain included a low-pass filter
with a pass band edge at 30 Hz and a stop band edge
at 50 Hz. The input was also filtered using a windowed
running mean filter with a 0.1 Hz fundamental frequency,
in order to remove the static deformation component of the
beam position. To remove the sudden changes in estimated
weight caused by the impacts to the beam, the weight esti-
mates were filtered using a running windowed median filter
with a 50 sample width and a 49 sample buffer overlap.
The filtered estimates were used to update the continuous
model and discretized using j = 10 approximations. The
constraints on the inputs are enforced using saturation
limits in the case of the nominal LQ and PPF controllers.
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Fig. 5. Remaining root of sum of squares performance
indicator for the nominal system

4.2 Experimental results

The results for all experimental stages and scenarios are
shown in Fig. 3, including the position (Fig. 3(a)), voltage
input (Fig. 3(b)), direct and filtered weight estimates
(Fig. 3(c)) and the parameters that are identified only
in the first stage of the experiment (Fig.3(d)–3(f)). From
these, it is clear that all closed-loop controllers provide
significantly better damping performance than the open-
loop response of the blade. The performance difference of
the investigated controllers is more subtle, except that
the PPF controller requires significantly more input to
achieve a comparable result (see Fig. 3(b)). After the
initial estimation of all physical parameters the estimated
equivalent mass reacts to the sudden changes caused by
the impacts of the stinger mechanism, then adapts to
the weight added to and subsequently removed from the
beam. Note that even though the increase in weight is
in correspondence with the real physical weight change,
this is a dynamically equivalent estimate, which depends
largely on the placement of the mass on the blade.

The difference between the proposed vibration control
method, nominal LQ and nominal PPF is visually more
distinguishable in Fig. 4, showing a single 1.5 s long
transient vibration response in case the weight of the
blade is altered (Stage 3, 40–60 s). The outputs in Fig.
4(a) suggest, that the best performance is to be expected
from the adaptive EKF-MPC controller which adapts to
the change, while though nominal PPF seems to have a
little advantage over LQ, both perform worse than the
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Fig. 6. Remaining root of sum of squares performance
indicator for the system subjected to a weight change

proposed method. Even though their tuning is analogous,
this performance difference is achieved with the least
control effort from the adaptive EKF-MPC controller, with
the nominal LQ supplying considerably more inputs to the
actuators (Fig. 4(b)). While PPF provides better results
than LQ in comparison, it needs more effort to achieve
this.

To complement this visual comparison with objective in-
dicators, the performance of the individual controllers was
evaluated numerically using the root of sum of squares
(RSS) criterion for the output deviation and input de-
viation from equilibrium. Since the difference between
algorithm performance can be often masked if the system
response oscillates, the performance is also visualized here
using the remaining root of sum of square (RRSS) criterion
defined as

RRSS(k) =

√

√

√

√

Tf
∑

i=0

e2i −

√

√

√

√

k
∑

i=0

e2i (48)

where the first part of the equation on the left is RSS, Tf is
the length of the experiment in samples, ei is the error for a
given time step for both the output ei = yref−y(i) = 0−y(i)
and the input ei = 0− u(i).

The RSS criterion was computed for the nominal blade
configuration in between 20–37.5 s for all scenarios. In
case the performance of the proposed adaptive EKF-MPC
controller is taken as the basis of comparison (100%), a
larger result indicates worse output performance and more
control effort. The performance difference visible in the
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output and input is confirmed by these indicators and
their visualization by the RRSS criterion in Fig. 5. Given a
saturated LQ controller is tuned identically to constrained
MPC, there is still an slight performance loss. The tuning
of the PPF controller matches LQ within 3%, but this is
achieved by a substantially increased output activity. The
difference between closed- and open-loop control is larger
than a factor of 5.

RSS performance indicators (nominal system)
EKF-MPC LQ PPF Free

Position x1(%) 100* 110 107 567
Input u(%) 100* 104 144 —

*=Base value.

Similarly to the formerly presented nominal RSS com-
parison, the indicators were calculated again for the time
period of 40–57.5 s, that is, the case when the blade mass
was altered (see also Fig. 6). The performance difference is
now more pronounced, with the adaptive EKF-MPC con-
troller providing the highest degree of damping, followed
by the PPF and finally the LQ controller. The extent of
effort mirrored by the level of input voltages corresponds
to the earlier discussion: the LQ controller requires an
increased amount of input moves to achieve worse results
than adaptive EKF-MPC, while the increment in input
PPF activity is quite striking.

RSS performance indicators (weight change)
EKF-MPC LQ PPF Free

Position x1 (%) 100* 142 120 742
Input u (%) 100* 124 189 —

*=Base value.

5. CONCLUSION

This article proposes the use of an adaptive predictive
controller with joint state and weight parameter esti-
mation to increase the damping of transient vibrations
in structures resembling cantilever beams with variable
weight. The vibration controller set forth in this paper is a
combination of the extended Kalman filter augmented by
the unknown equivalent mass parameter and dual-mode
constrained model predictive control. The performance of
the controller is evaluated experimentally and compared
to long-established methods used for the active control
of transient vibrations. The experimental results and the
following discussion suggest that, even though all reason-
able effort is made to tune the LQ and PPF controllers
analogously to MPC, the performance of the proposed
adaptive EKF-MPC controller surpassed these traditional
methods—mainly because of its adaptive features. More-
over, this was achieved with less inputs supplied to the ac-
tuators, meaning a potential increase in the life-expectancy
of the actuators and less strain on the controlled structure.
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