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Abstract: Optimal robust MPC for constrained linear systems that are subject to additive
uncertainty requires a closed loop optimization with computation that rises exponentially with
the prediction horizon, N . This was overcome by parameterized tube MPC (PTMPC) that
used a triangular separable prediction strategy in which predictions are decomposed into a
nominal and N − 1 partial prediction sequences, each concerned with the compensation of a
particular future disturbance. Beyond the first N steps, the PTMPC control law can be taken
to be a static state feedback. Use of N − 1 partial prediction sequences causes the number
of free variables and constraints to rise quadratically with N . To reduce this to linear, this
paper proposes a modification of PTMPC that uses a single partial prediction sequence that is
used in connection with all particular future disturbances but allows the compensatory effect
of the partial prediction sequences to extend beyond the first N predictions. The prediction
structure is of a triangular striped nature and extends over an infinite horizon. As illustrated by
a simulation example, the resulting scheme can outperform PTMPC in terms of the size of the
domain of attraction and affords a reduction in computation which allows for the use of longer
horizon (for the same computational demand).
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1. INTRODUCTION

Robust model predictive control (RMPC) of linear sys-
tems subject to additive uncertainty is an imporant area
of research. Optimal RMPC depends on the solution of
dynamic programming [Bersekas, 1995] or minimax prob-
lems [Scokaert and Mayne, 1998] and is computationally
intractable. Thus it is sensible to look for compromises
between sub-optimality and complexity. Early RMPC con-
sidered open-loop solutions, where a single sequence of
inputs is determined for all distubance realizations. This
is conservative because it does not acknowledge the fact
that future information of the states and uncertainties will
be known to, and available for use by the controller and
can thus result in poor performances and unfeasibility.
Quasi-closed loop formulations on the other hand use a
pre-stabilizing law, and optimize perturbations on this law
[Lee and Kouvaritakis, 1999], [Langson et al., 2004]. They
provide an improvement, but are still conservative because
the pre-stabilizing controller is designed offline.

Optimality can be improved through the use of affine-in-
the-disturbance MPC (ADMPC) policies [Lofberg, 2003],
[Goulart et al., 2006] where, in the near horizon, the
predicted control law consists of feedforward plus linear
disturbance compensation with a triangular structure. In
the far horizon a fixed linear controller is considered.
ADMPC has been superseded by parameterized tube MPC
(PTMPC) [Raković et al., 2012], which is based on a
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separable prediction strategy that considers a triangular
prediction structure of partial tubes, the first of which
describes the nominal dynamics and the rest describe those
associated with future disturbances. These are unknown
and thus are dealt with in terms of the vertices of the
disturbance set. Hence PTMPC deploys a piecewise-affine-
in-the-disturbance policy and leads to larger domains
of attraction. The number of variables and constraints
grows quadratically with the prediction horizon N in both
ADMPC and PTMPC which therefore are better suited to
low-dimensional systems with short prediction horizons.

Unlike earlier work, this paper presents an RMPC formula-
tion where the degrees of freedom on the predicted control
law that are associated with the disturbances (disturbance
compensation) affect directly the inputs over the entire
prediction horizon. This idea has been explored before
but in the context of constructing of parameterized robust
control invariant sets [Rakovic and Baric, 2010] or in
Stochastic MPC [Kouvaritakis et al., 2013], where an
affine-in-the-disturbances control law is used with distur-
bance compensation extending over the infinite far pre-
diction horizon but with parameters which are designed
offline. Here the disturbance compensation going into the
far horizon is found online, and leads to a terminal control,
more general than linear feedback. This is achieved by
a separable prediction scheme [Raković et al., 2012],
according to which the predicted states and inputs are
separated into the nominal sequence and a single sequence
of sets associated with each future disturbance. This gives
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rise to a striped disturbance compensation scheme which
is allowed to extend over an infinite prediction horizon and
leads to a number of variables and constraints which grows
linearly withN (rather than quadratically as for PTMPC).
Additionally, allowing for disturbance compensation into
the far horizon implies a constraint relaxation. We achieve
this at the cost of a weaker stability notion, that of input-
to-state stability. Simulations show that this strategy can,
for a comparable number of degrees of freedom and con-
straints, lead to larger domains of attraction.

Section II gives the system description together with a
brief review of the separable prediction scheme of [Raković
et al., 2012]. Our strategy is presented in Sections III
and IV, with the first of these concerning itself with
constraint handling and the second analysing the control
theoretic properties of our strategy. Section V presents an
illustration by simulation of the benefits of the proposed
strategy and conclusions are drawn in Section VI.

Notation and Basic Definitions : The sets of non-negative
integers, positive integers and positive reals are denoted
by N, N+ and R+. N[a,b] denotes the set {a, a + 1, ..., b}.
Given two sets X ⊂ R

n, Y ⊂ R
n X ⊕ Y = {x +

y : x ∈ X, y ∈ Y } denotes the Minkowski addition.
conv(X) denotes the convex hull of the set X ⊂ R

n.
The image of a set X ⊂ R

n under matrix M ∈ R
m×n

is denoted by MX = {Mx : x ∈ X}. Given a convex set
X ⊂ R

n and two matrices A,B ∈ R
m×n, (A,B)X denotes

the set conv ({(Ax,Bx) : x ∈ X}). Given two sets X =
conv({x1, ..., xn}), Y = conv({y1, ..., yn}), then (X,Y )
denotes the set conv({(x1, y1), ..., (xn, yn)}). A polytope is
a closed and bounded polyhedron. A continuous function
φ : R+ → R+ is said to be a K-function if it is continuous,
strictly increasing and φ(0) = 0, and it is a K∞-function if
it is a K-function and φ(s) → ∞ as s → ∞. A continuous
function φ : R+ × R+ → R+ is a KL-function if for all
t ∈ R+, φ(·, t) is a K-function and for all s ∈ R+, and
φ(s, ·) is decreasing with φ(s, t) → 0 as t → ∞.

2. SYSTEM DESCRIPTION AND SEPARABLE
PREDICTION SCHEME

Consider the linear, discrete-time system and constraints

x+ = Ax+Bu+ w, (1)

Fx+Gu ≤ 1, (2)
where x ∈ R

nx , u ∈ R
nu , w ∈ W ⊂ R

nx , and F ∈ R
nc×nx ,

G ∈ R
nc×nu . W = conv

(

{w̃i : i ∈ N[1,q]}
)

is a polytopic
set that contains the origin. Y = {(x, u) : Flx + Glu ≤ 1,
l ∈ N[1,nc]} is a polytopic set that contains the origin in

its interior; the subscript l denotes the lth row.

Assumption 1. (i) The system (A,B) is stabilizable. (ii)
The matrix K is such that A + BK is strictly stable and
the minimal robust invariant set of system (1) under the
control law u = Kx, Ω∞

K , satisfies (I,K)Ω∞
K ∈ interior(Y).

Assume a separable prediction scheme [Raković et al.,
2012] where xxx(0,:) = {x(0,k)}k∈N+

and u(0,:) = {u(0,k)}k∈N+

are the 0th partial state and control sequences, which
account for the nominal dynamics (w ≡ 0)

x(0,k+1) = Ax(0,k) +Bu(0,k), with x(0,0) = x, (3)

and xxx(j,:) =
{

x(j,k)

}

k∈N[j,∞]
, u(j,:) =

{

u(j,k)

}

k∈N[j,∞]
, for

j ∈ N+, are the jth partial state and control sequences

describing the dynamical contribution of the disturbance
acting at the (j − 1)th prediction time, wj−1. The full
predictions are given by, ∀k ∈ N

xk =
∑k

j=0
x(j,k), uk =

∑k

j=0
u(j,k), with (4a)

x(j,k) ∈ X(j,k) = conv
({

x(i,j,k) : i ∈ N[1,q]

})

,

u(j,k) ∈ U(j,k) = conv
({

u(i,j,k) : i ∈ N[1,q]

})

,
(4b)

thus defining a triangular prediction structure. From (4b),
the jth partial state and control sequences are defined
by the jth partial extreme state and control sequences,
xxx(i,j,:) =

{

x(i,j,k)

}

k∈N[j,∞]
and u(i,j,:) =

{

u(i,j,k)

}

k∈N[j,∞]
,

respectively. The dynamics of the jth partial extreme state
and control sequences are, for i ∈ N[1,q], j ∈ N+,

x(i,j,j) = w̃i, (5a)

x(i,j,k+1) = Ax(i,j,k) +Bu(i,j,k), k ∈ N[j,∞]. (5b)

In [Raković et al., 2012], xxx(i,j,:), u(i,j,:) are chosen freely
for different j, j ∈ N[1,N ] (while the rest are determined by
the state feedback u = Kx), but here a striped structure
is invoked: for j ∈ N+, k ∈ R[j,∞], i ∈ R[1,q]

u(i,j,k) := u(i,1,k−j+1), x(i,j,k) = x(i,1,k−j+1), (6)

which implies that X(j,k) = X(1,k−j+1) and U(j,k) =

U(1,k−j+1). Thus all the jth partial sequences are fully
defined by the 1st partial extreme sequences xxx(i,1,:)
and u(i,1,:). From (6), the k-step-ahead predictions are
bounded by sets given by the Minkowski sum of the nom-
inal k-step-ahead predictions and all the X(1,j) or U(1,j)

for j ∈ N[1,k]. Then, ∀k ∈ N

xk ∈ x(0,k) ⊕
k

⊕

j=1

X(1,j), uk ∈ u(0,k) ⊕
k

⊕

j=1

U(1,j), (7)

where X(1,j) ∈ conv
({

x(i,1,j) : i ∈ N[1,q]

})

and U(1,j) ∈

conv
({

u(i,1,j) : i ∈ N[1,q]

})

as per (4b). It is clear here that
all the predicted inputs uk for k ∈ N+ depend on the
1st partial extreme sequences u(i,1,:); more precisely, the
predicted uk depends on the elements u(i,1,j), j ∈ N[1,k].
Of these, the elements u(i,1,j), j ∈ N[1,N−1] as will be seen
next, will be degrees of freedom, which implies that the
disturbance compensation moves over the infinite horizon.
This setting is different than just reducing the number of
decision variables by forcing a striped structured on the
parameterization of [Raković et al., 2012], since it only
allows compensation for k ∈ N[0,N−1].

3. THE RMPC STRATEGY: PREDICTIONS AND
CONSTRAINTS

3.1 Prediction strategy

Let the first N prediction steps, with N ∈ N+, be referred
to as Mode 1 and the remainder as Mode 2, in which it
is usual to deploy a fixed stabilizing terminal control law.
Our strategy assumes no fixed terminal control law, but
instead limits the degrees of freedom (dof) as follows: (i)
the first N inputs of the nominal partial control sequence
are free (i.e. dof) and afterwards they are defined by
u = Kx; and (ii) the first N − 1 inputs of the jth partial
extreme control sequences are dof, and afterwards they
are defined by the same static feedback u = Kx. Thus,
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the dynamics for the nominal and uncertain portions are
described by

x(0,0) = x, (8a)

x(0,k+1) = Ax(0,k) +Bu(0,k), k ∈ N[0,N−1], (8b)

x(0,k+1) = Φx(0,k), k ∈ N[N,∞], (8c)

where Φ = A+BK, and x represents the current state

x(i,1,1) = w̃i, (9a)

x(i,1,k+1) = Ax(i,1,k) +Bu(i,1,k), k ∈ N[1,N−1], (9b)

x(i,1,k+1) = Φx(i,1,k), k ∈ N[N,∞]. (9c)

The nominal and partial extreme sequences u(0,N−1) =
{u(0,k)}k∈N[0,N−1]

and u(i,1,N−1) = {u(i,1,k)}k∈N[1,N−1]
de-

fine the dof of the predicted control law, and their number
grows linearly with N . The separable scheme of (7),(8),(9)
defines the overall mixed state and control tube Y =
{Yk}k∈N

Yk = Y(0,k) ⊕ Y(1,1) ⊕ ...⊕ Y(1,k), (10)

where the mixed state/control Y(0,k) and Y(1,k) are

Y(0,k) = (x(0,k), u(0,k)), k ∈ N[0,N−1], (11a)

Y(0,k) = (x(0,k),Kx(0,k)), k ∈ N[N,∞], (11b)

Y(1,k) = conv({(x(i,1,k), u(i,1,k)) : i ∈ N[1,q]}), k ∈ N[1,N−1]

(12a)

Y(1,k) = conv({(x(i,1,k),Kx(i,1,k)) : i ∈ N[1,q]}), k ∈ N[N,∞]

(12b)

such that (xk, uk) ∈ Yk. Eq. (10) can be rewritten as

Yk = Y(0,k) ⊕
k
⊕

j=1

Y(1,j), k ∈ N[0,N−1], (13a)

Yk = (I,K) Φk−NX(0,N) ⊕
N−1
⊕

j=1

Y(1,j)⊕

k
⊕

j=N

(I,K) Φj−NX(1,N), k ∈ N[N,∞],

(13b)

where X(1,N) = conv
(

{x(i,1,N) : i = 1, .., q}
)

, and I is the
identity; note that Y(1,j) = (I,K)X(1,j) for j ∈ N[N,∞].
This form of writing (10) is more convenient in the sense
that it only depends on the dof u(0,N−1) and u(i,1,N−1),
and the sequences xxx(0,N) = {x(0,k)}k∈N[0,N]

, xxx(i,1,N) =

{x(i,1,k)}k∈N[i,1,N]
, which will form the online variables

of the online optimization (along with the tightening
parameters, which will be introduced below).

3.2 Constraints

The condition for constraint satisfaction is that

Yk ⊆ Y, ∀k ∈ N (14)

which implies an infinite number of constraints. Instead,
constraints will be enforced explicitly for k ∈ N[0,N+N2−1],
with N2 ∈ N, whereas for k ∈ N[N+N2,∞] use will be
made of terminal constraints on the nominal and uncertain
sequences at the (N +N2)

th prediction instant.

Proposition 2. Let Ω0 be an invariant set for the nominal
dynamics of (8c) and let Ω1 be an arbitrary polytopic set
that contains the origin. Then conditions

x(0,N+N2) ∈ Ω0, x(1,N+N2) ∈ Ω1, (15)

imply that ∀k ∈ N[N+N2,∞]

Yk ⊆ Ȳ∞, where, (16)

Ȳ∞ = (I,K)Ω0 ⊕
N−1
⊕

j=1

Y(1,j) ⊕
N+N2−1

⊕

j=N

(I,K)Φj−NX(1,N)

⊕(Ω∞
1 ,KΩ∞

1 ) and Ω∞
1 is the minimal invariant set for the

system with dynamics z+ = Φz + w, with w ∈ Ω1.

Proof. This follows from: (i) Y(0,k) = (x(0,k),Kx(0,k)) ⊆
(Ω0,KΩ0), k ∈ N[N+N2,∞], provided that x(0,N+N2) ∈ Ω0

and that Ω0 is invariant for the dynamics of (8c); and

(ii)
⊕k

j=N+N2
Φk−(N+N2)X(1,N+N2) ⊆ Ω∞

1 and therefore
⊕k

j=N+N2
(I,K)Φk−(N+N2)X(1,N+N2) ⊆ (Ω∞

1 ,KΩ∞
1 ).

Having a set that contains the state and input predictions
∀k ∈ N[N+N2,∞], enables the use of a finite number of
constraints to ensure constraint satisfaction.

Corollary 3. Satisfaction of (14) is guaranteed if the pre-
dicted nominal and uncertain states satisfy (15) and

Yk ⊆ Y, k ∈ N[0,N+N2−1] (17)

Ȳ∞ ⊆ Y (18)

Proof. Satisfaction of (14) for k ∈ N[0,N+N2−1] is guar-
anteed by (17), and satisfaction of (14) for k ∈ N[N+N2,∞]

is guaranteed by (18) following Proposition 2.

Eq. (17) can be written as linear constraints through the
use of slack variables that account for the worst case partial
extreme state and control sequences, as follows:

For l ∈ N[1,nc], k ∈ N[0,N−1] and i ∈ N[1,q]

Flx(0,k) +Glu(0,k) +

k
∑

j=1

f(l,1,j) ≤ 1, (19a)

f(l,1,j) ≥ Flx(i,1,j) +Glu(i,1,j), j ∈ N[1,N−1] (19b)

and for l ∈ N[1,nc], k ∈ N[N,N+N2−1] and i ∈ N[1,q],

(Fl +GlK)Φk−Nx(0,N) +

k
∑

j=1

f(l,1,j) ≤ 1, (19c)

f(l,1,j) ≥ (Fl +GlK)Φj−Nx(i,1,N), j ∈ N[N,N+N2−1].

(19d)

(18) can also be treated in the same way:

f(l,0,∞) +
∑N+N2−1

j=1
f(l,1,j) + f(l,1,∞) ≤ 1 (20)

where f(l,0,∞) = max
x∈Ω0

(Fl + GlK)x, f(l,1,∞) = max
x∈Ω∞

1

(Fl +

GlK)x. If Ω0 = {x : Hlx ≤ 1, l ∈ N[1,nf0]} and Ω1 = {x :
Llx ≤ 1, l ∈ N[1,nf1]}, then (15) can be expressed as

Hlx(0,N+N2) ≤ 1, l ∈ N[1,nf0], (21a)

Llx(i,1,N+N2) ≤ 1, l ∈ N[1,nf1], i ∈ N[1,q] (21b)

Assumption 4. Ω1 is defined by

Ω1 = ΦN+N2−1
W, (22)

and Ω0 is a robust invariant set for z
+ = Φz+w, w ∈ ΦΩ1.

Remark 5. The assumption above allows to satisfy the
conditions on Ω0 and Ω1 in Proposition 2 and allows
for recursive feasibility, which as shown in the proof of
Theorem 9, requires that Ω0 is a robust invariant set for
z+ = Φz + w, w ∈ ΦΩ1.
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Remark 6. A possible choice for Ω0 is given by

Ω0 = αΩ̄K ⊕ Ω̃∞
ΦΩ1

, (23)

where 0 < α ≤ 1 is a scalar, Ω̄K is the maximal invariant
set for x+ = Φx s.t. (2) under u = Kx, and Ω̃∞

ΦΩ1
is an

invariant approximation of the minimal robust invariant
set [Raković et al., 2005] for z+ = Φz + w, w ∈ ΦΩ1. Ω0

is clearly robustly invariant for z+ = Φz + w, w ∈ ΦΩ1.
The motivation for this construction is as follows. In the
absence of disturbances Ω0 would have to be chosen to be
Ω̄K so as to relax the LHS of (15). However, since (15)
is applied at k = N + N2, Ω0 might be too large thereby
causing (18) to be too tight. To avoid this we introduce
the scaling factor α whose size should be commensurate
with the contraction provided by ΦN2 . In the presence of
disturbances however, recursive feasibility, as indicated in
Remark 5, requires that Ω0 accounts for these disturbances
which justifies the inclusion of the second term in the LHS
of (23). This term has to be made to be as small as possible
in order to relax (18), hence it is taken to be the minimal
robust invariant set. Since the minimal robust invariant
set however may not have a finite description it has been
replaced in (23) by a robustly invariant approximation

Ω̃∞
ΦΩ1

. Similarly, to reduce computational complexity Ω̄K

can be replaced by an invariant approximation.

4. THE RMPC STRATEGY AND ITS PROPERTIES

Let θ be the vector of all the decision variables in the
formulation which will be used in the online optimization:
x(0,N), x(i,1,N), u(0,N−1), u(i,1,N−1), and f(l,1,N+N2−1) =
{f(l,1,k)}k∈N[1,N+N2−1]

. The set of admissible variables is

Θ(x) = {θ : (8a),(8b),(9a),(9b),(19),(20),(21)} , (24)

and the domain of attraction is

X = {x : Θ(x) 6= ∅} (25)

Assumption 7. N , N2 and Ω0 are such that X 6= ∅ and X
contains the origin in its interior.

Remark 8. This assumption can always be satisfied pro-
vided that Assumption 1 is satisfied. Set all the predicted
inputs to be given by u = Kx, then Ȳ∞ = (I,K)Ω0 ⊕
⊕N+N2−1

j=1 (I,K)Φj−1
W ⊕ (Ω∞

1 ,KΩ∞
1 ) = (I,K)Ω0 ⊕

⊕∞

j=0(I,K)Φj
W, and Ȳ∞ = (I,K)Ω∞

K if Ω0 = {0}.

But (I,K)Ω∞
K ∈ interior(Y), therefore there will always

exist an N̄ such that for all N + N2 ≥ N̄ , Ω1 =
ΦN+N2−1

W is small enough so that Ω0 can be chosen to be

small enough such that (I,K)Ω0

⊕N+N2−1
j=1 (I,K)Φj−1

W⊕

(Ω∞
1 ,KΩ∞

1 ) ⊂ Y. This guarantees that for any x ∈ Ω0 and
N,N2 such that N +N2 ≥ N̄2, the solution generated by
setting u = Kx over the entire prediction will be feasible,
which guarantees that Ω0 ⊆ X . Ω0 contains the origin in
its interior since it is an invariant set for a contractive
system, which implies that X contains the origin in its
interior, and then Assumption 7 is satisfied.

Let J(θ) be the predicted cost which only considers nom-
inal state and input sequences:

J(θ) =

N−1
∑

k=0

xT
(0,k)Qx(0,k) + uT

(0,k)Ru(0,k) + xT
(0,N)Px(0,N)

(26)
where Q,P � 0, R ≻ 0, satisfy the Lyapunov condition
ΦTPΦ− P ≤ −(Q+KTRK).

The optimal control problem P(x) is defined by

V ∗(x) = min
θ

J(θ), s.t. θ ∈ Θ(x). (27a)

θ∗(x) = argmin
θ

J(θ), s.t. θ ∈ Θ(x). (27b)

where, V ∗(x) is the value function and θ∗(x) is the optimal
arguments function. The control law is then given by

κ∗(x) = u∗

(0,0)(x) (28)

Theorem 9. For system (1) under the control law of (28)
the optimal control problem of (27) is recursively feasible
and guarantees satisfaction of (2). X is invariant for
system (1) under the control law of (28).

Proof. The extension (the ”tail”) of optimal solutions at
the current time (indicated by ( )∗) to the next time, where
the state is x+ = Ax+Bκ∗(x) + w, is

x̃(0,k) = x∗

(0,k+1)(x) + x(1,k+1), k ∈ N[0,N−1],

x̃(0,N) = Φx̃(0,N−1),
(29a)

ũ(0,k) = u∗

(0,k+1)(x) + u(1,k+1), k ∈ N[0,N−2],

ũ(0,N−1) = Kx̃(0,N−1),
(29b)

x̃(i,1,k) = x∗

(i,1,k)(x), k ∈ N[1,N ], i ∈ N[1,q], (29c)

ũ(i,1,k) = u∗

(i,1,k)(x), k ∈ N[1,N−1], i ∈ N[1,q], (29d)

where (x(1,k), u(1,k)) =
∑q

i=1 λ
∗

(i,1,1)(x(i,1,k)(x), u(i,1,k)(x))

such that the λ∗

(i,1,1) are the least squares (or any other

convenient selection criterion) convex interpolation pa-
rameters that satisfy w =

∑q

i=1 λ
∗

(i,1,1)w̃i,
∑q

i=1 λ
∗

(i,1,1) =

1 and λ∗

(i,1,1) ≥ 0, for all i ∈ N[1,q]. This implies that

(x(1,k), u(1,k)) ∈ Y ∗

(1,k). This construction implies that

x̃(0,k), ũ(0,k), x̃(i,1,k) and ũ(i,1,k) satisfy (8a),(8b),(9a), (9b),

and that the tubes defined by the tail, Ỹk, and the tubes
defined by the current optimal solution, Y ∗

k , satisfy Ỹk ⊆
Y ∗
k+1, k ∈ N. But a feasible current solution satisfies

(17),(18), which guarantees Y ∗
k ⊆ Y, k ∈ N, so then

(17) is guaranteed for Ỹk. Since Ỹ(1,j) = Y ∗

(1,j) and Ω0 and

Ω1 are fixed, (18) and the RHS of (15) are satisfied. The
satisfaction of the LHS of (15) follows from x̃(0,N+N2) =
Φx∗

(0,N+N2)
+ Φx(1,N+N2), x(1,N+N2) ∈ Ω1 and that Ω0 is

invariant for z+ = Φz + w, where w ∈ ΦΩ1. Then if P(x)
is feasible, it will be feasible for the next, and all future
instants. Invariance of X follows directly. Satisfaction of
(2) follows trivially from the fact that Y ∗

0 ⊆ Y.

Remark 10. The treatment of recursive feasibility, as
shown above, is more involved than in usual RMPC for-
mulations, where a terminal set for xN that is robustly
invariant for the fixed terminal control law is enough. This
is because letting the disturbance compensation to extend
over an infinite horizon implies that the terminal control
law is not fixed. In this different setting separate terminal
sets for the nominal and the partial extreme predictions
are used, Ω0 and Ω1, and as shown in the proof above it
is required that Ω0 is robustly invariant for z+ = Φz +w,
with w ∈ ΦΩ1 , thus justifying Assumption 4.

In [Raković et al., 2012] the stability result is expressed in
terms of exponential convergence to the minimal invariant
set Ω∞

K and the control law u = Kx. However, here we do
not use u = Kx as the terminal control and so the stability
notions of [Raković et al., 2012] do not apply. Instead we
consider Input-to-State stability [Jiang and Wang, 1998].
Assume time-invariant nonlinear dynamics
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x+ = f(x,w) (30)

where x ∈ R
nx is the state, w is a disturbance that lies in a

compact set W ⊂ R
nw and f(·, ·) is a continuous function

such that f(0, 0) = 0.

Definition 11. For system (30), the origin is input-to-state
stable (ISS) in E ∈ R

n, which contains the origin in
its interior, if there exist a KL-function β(·, ·) and a K-
function γ(·) such that, for all x0 ∈ E and all admissible
disturbances wt ∈ W, the evolution of (30) satisfies ∀t ∈ N

|xt| ≤ β(||x0||, t) + γ sup({||wk|| : k ∈ N[0,t−1]}) (31)

Remark 12. ISS implies that: (i) the origin is asymptoti-
cally stable for x+ = f(x, 0) with domain of attraction E ;
(ii) all state trajectories are bounded for bounded wt; and
(iii) as t → ∞ all trajectories go to the origin if wt → 0.

The following results give a characterization of systems
(30) that are ISS, state relevant properties of X , V ∗(x),
κ∗(x), which allow to conclude the ISS property of system
(1) under the control law of (28). The proofs of these
results are omitted for brevity; the interested reader is
referred to [Goulart et al., 2006] where analogous ISS
results are discussed.

Lemma 13. Let E ⊆ R
n contain the origin in its interior

and be a robust invariant set for (30). Furthermore, let
there exist K∞-functions α1(·), α2(·) and α3(·) and a
function V : E → R+ that is Lipschitz continuous on E
such that for all x ∈ E ,

α1(||x||) ≤ V (x) ≤ α2(||x||) (32a)

V (f(x, 0))− V (x) ≤ −α3(||x||) (32b)

V (·) is a ISS-Lyapunov function and the origin is ISS for
system (30) with domain of attraction E if either: (i) f(·, ·)
is Lipschitz continuous on E ×W, or (ii) f(x,w) := g(w)+
w, where g : E → R

n is continuous on E .

Proposition 14. (i) κ∗(x) is a unique Lipschitz continuous
function ∀x ∈ X . (ii) V ∗(x) is strictly convex and Lipschitz
continuous ∀x ∈ X . (iii) X is a polytopic set that contains
the origin in its interior. (iv) V ∗(0) = 0 and κ∗(0) = 0.

Theorem 15. The origin is ISS for system (1) under the
control law of (28) with domain of attraction X .

Remark 16. If Ω0 satisfies

Ω0 ⊕ Ω∞
K ⊆ ΩK , (33)

where ΩK is the maximal invariant set for (1) s.t. (2)
under u = Kx, then it can be proved that for x ∈ ΩK ,
the solution generated by setting u = Kx over the entire
prediction horizon will be feasible, and if K is the LQR
optimal gain of cost of (26) then that solution will be
the optimal. Therefore, if during the closed-loop execution
the state enters ΩK , the control law κ∗(x) will revert to
u = Kx. Since (I,K)Ω∞

K ∈ interior(Y) from Assumption
1 and following the same reasoning as in Remark 8, there
will always exist an N2 large enough such that Ω0 can be
chosen to be small enough such that (33) is met.

Finally, the dependence of the domain of attraction X on
the horizons N and N2, is studied; this dependence is now
made explicit by writing XN,N2

. Ω1 also depends on N
and N2, so the dependence is also made explicit by writing
Ω1(N,N2). The desired properties are XN,N2

⊆ XN,N2+1

and XN,N2
⊆ XN+1,N2

. The following theorem presents
an alternative way to construct Ω0 such that the desired
nestedness properties are satisfied.

Theorem 17. Let Ω0 be a robust invariant set for system
z+ = Φz + w, but with w ∈ W, where W is any outer
approximation of conv(ΦN3W ∪ ΦN3+1

W ∪ ΦN3+2
W . . .),

with N3 ∈ N+. Then the domain of attraction of system
(1) controlled by (28) satisfies the following properties for
all N,N2, such that N+N2 ≥ N3: (i) XN,N2

⊆ XN+1,N2−1;
(ii) XN,N2

⊆ XN,N2+1; and (iii) XN,N2
⊆ XN+1,N2

.

Proof. (i) Note that the optimal control problem P(x)
when using N and N2 is the same one as when using
Ñ = N + 1 and Ñ2 = N2 − 1, except that in the former
case u(0,N) and u(i,1,N) are fixed to be u(0,N) = Kx(0,N)

and u(i,1,N) = Kx(i,1,N), but in the latter these are dof.
In the latter case u(0,N) and u(i,1,N) can be chosen to be
u(0,N) = Kx(0,N) and u(i,1,N) = Kx(i,1,N), and then the

problem for Ñ , Ñ2 is feasible when it is feasible for N , N2.

(ii) If x ∈ XN,N2
, then there exists θ that includes

xxx(0,N), u(0,N−1), xxx(i,1,N), u(i,1,N−1), and f(l,1,N+N2−1) such

that (8a),(8b),(9a),(9b),(19),(20),(21) are satisfied. Then θ̃
(that is composed of the variables in θ and f(l,1,N+N2) =

maxi∈N[1,q]
{(Fl + GlK)ΦN2x(i,1,N)}, l ∈ N[1,nc]) trivially

satisfies (8a), (8b), (9a), (9b), (19) for Ñ = N and Ñ2 =
N2 +1. The definition of Ω1 implies that Ω1(N,N2 +1) =
ΦΩ1(N,N2). Then, since ΦN2x(i,1,N) ⊆ Ω1(N,N2) from

(21b) we obtain that ΦN2+1x(i,1,N) ⊆ Ω1(N,N2+1) and so
(21b) is satisfied. Ω0 is defined such that it will not change
for different values of N,N2, s.t. N + N2 ≥ N3, and that
it satisfies ΦΩ0 ⊆ Ω0. This implies that if x(0,N+N2) ∈ Ω0

then x(0,N+N2+1) = Φx(0,N+N2) ∈ Ω0, and thus (21a) is
satisfied. Finally, satisfaction of (20) forN ,N2 implies that
Ȳ∞ ∈ Y. Eq. (22) implies that Ω∞

1 (N,N2) = Ω∞
1 (N,N2 +

1) ⊕ ΦN2X(1,N), then Ỹ∞ = (I,K)Ω0 ⊕
⊕N−1

j=1 Y(1,j) ⊕
⊕N+N2

j=N (I,K)Φj−NX(1,N)⊕(I,K)Ω∞
1 (N,N2+1) = Ȳ∞ ⊆

Y, and therefore (20) is satisfied for Ñ , Ñ2. All this proves
that x ∈ XN,N2+1, which yields the desired result.

(iii) This follows directly from combining (i) and (ii).

Remark 18. The condition that Ω0 is invariant for z+ =
Φz + w, with w ∈ W, W being any outer approximation
of conv({ΦN3W∪ΦN3+1

W∪ΦN3+2
W . . .}), in addition to

ensure that Ω0 is the same for different values of N,N2,
guarantees that Ω0 satisfies Assumption 4 for all N , N2

such that N + N2 ≥ N3. Then recursive feasibility is
guaranteed by Theorem 9 whenever N +N2 ≥ N3. Thus,
N3 should be chosen small enough as dictated by practical
values of N,N2, but large enough to maintain Ω0 small.

Remark 19. The construction of Remark 6 and (23) is
designed so that Ω0 satisfies Assumption 4. However,
Theorem 17 establishes a stronger condition on Ω0. A
modification of (23) in order to satisfy these new con-

ditions is given by Ω0 = αΩ̄K ⊕ Ω̃∞
W
, where Ω̃∞

W
is an

invariant approximation of the minimal invariant set for
z+ = Φz + w, w ∈ W.

Remark 20. W is defined as any outer approximation
of (instead of being equal to) conv(ΦN3W ∪ ΦN3+1

W ∪
ΦN3+2

W . . .), in order to reduce the number of vertices or
facets needed to define W and hence Ω0.
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5. ILLUSTRATIVE EXAMPLE

The benefits of the proposed strategy are illustrated
by a simulation example. Consider a system defined

by A =

[

0.787 −0.933
1.015 1.033

]

; B =

[

0.331
−1.006

]

, W =

conv ( {±[0.1, 0.1]T , ±[0.1,−0.1]T } ), Y = {(x, u) :
±[−0.044, 0.092]x ≤ 1, ±[0.009, 0.093]x ≤ 1, u ≤ 1,−u ≤
1}. Ω0 is constructed according to Remark 19 with N3 = 6,
α = 0.01 and to ensure satisfaction of (33) we set N2 = 5.
The area of the domains of attraction is computed using
SPTMPC (proposed in this paper) and PTMPC (proposed
in [Raković et al., 2012]) and the results are recorded,
respectively, under columns M1 and M2, along with the
number of variables, equality, and inequality constraints
involved in the online optimization.

Table 1: Domain of Attraction and Computational Aspects

N AN # vars. # ineqs. # eqs.

M1 M2 M1 M2 M1 M2 M1 M2

1 2.38 2.38 43 24 196 61 12 10

2 2.87 3.01 64 71 226 158 22 28

3 3.57 3.66 85 144 256 303 32 54

4 4.52 4.19 106 243 286 496 42 88

5 5.14 4.59 127 368 316 737 52 130

6 5.39 4.88 148 519 346 1026 62 180

7 5.83 5.13 169 696 376 1363 72 238

8 5.86 5.34 190 899 406 1748 82 304

9 5.95 5.48 211 1128 436 2181 92 378

10 5.95 5.59 232 1383 466 2662 102 460

Thus for the same N and N ≥ 4 SPTMPC yields larger
domains of attraction than PTMPC. The improvements
achieved by SPTMPC are due mainly to two reasons: (i)
that in SPTMPC the predicted state is not constrained
to be inside ΩK at any instant; and (ii) that disturbance
compensation is not restricted to the first N prediction
steps, but is instead allowed to enter into Mode 2, thereby
relaxing the terminal constraints. On the other hand,
PTMPC has a ”full” triangular prediction structure, which
is more general than the striped structured of the proposed
strategy and therefore, depending on the parameters of
the model, has the potential to outperform SPTMPC.
However, the price of the ”full” triangular structure is that
it implies a computational load that grows quadratically
with N , whereas the online computation of SPTMPC
grows only linearly with N . Thus with SPTMPC one
can use longer horizons, thereby enlarging the size of the
domain of attraction, at a computational cost which is still
less than that required by PTMPC. For example, while for
N = 1 SPTMPC has more variables and constraints, it can
be seen that for N ≥ 4 SPTMPC leads to larger domains
of attraction while using fewer variables and constraints.
Even more, due to the quadratic increase (in number of
variables and constraints) in PTMPC versus the linear
increase in SPTMPC, larger values of N in SPTMPC can
be used, thus obtaining even larger domains of attractions
and still using fewer variables and constraints (see for
instance SPTMPC with N = 10 and PTMPC with N =
5).

Although SPTMPC requires the solution of a quadratic
program (QP) and PTMPC a linear program (LP), the
comparison above is still valid because the computational
cost involved in LP and QP are comparable. SPTMPC
can be reformulated using a different cost function that

leads to an LP formulation which, as is the case with
PTMPC, would result in a modest increase in the number
of variables and constraints, so that the results would be
very similar to those presented here.

Table 1 does not attempt a comparison of performance be-
cause the predicted costs used by PTMPC and SPTMPC
are different (even in an LP formulation of SPTMPC,
because it considers only nominal behaviour).

6. CONCLUSIONS

By considering a predicted control law where the degrees-
of-freedom affect the inputs over the entire prediction
horizon, a RMPC strategy is proposed that has a number
of variables and constraints that grow only linearly with
the prediction horizon, and yet have the potential to
lead to domains of attraction which are larger than those
possible through the use of PTMPC. This benefits come
at the cost of a weaker notion of stability, namely ISS,
as opposed to guaranteeing convergence to the static
feedback u = Kx for any realization of the disturbances.
This aspect forms a topic for further research in order to
obtain similar benefits but retaining the stronger stability
properties of PTMPC.
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