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Abstract: Distributed consensus in the Wasserstein metric space of probability measures is
introduced for the first time in this work. It is shown that convergence of the individual agents’
measures to a common measure value is guaranteed so long as a weak network connectivity
condition is satisfied asymptotically. The common measure achieved asymptotically at each
agent is the one closest simultaneously to all initial agent measures in the sense that it minimises
a weighted sum of Wasserstein distances between it and all the initial measures. This algorithm
has applicability in the field of distributed estimation.

1. INTRODUCTION

The problem of distributed consensus concerns a group
of dynamic agents that seek to develop a distributed
agreement upon certain state variables of interest by
exchanging information across a network.

For example, the problem of average-consensus concerns
a group of agents that interact via some (possibly time-
varying) interaction network. Each agent has an initial
state value (say on the real line) and shares this value
with their local neighbours in the network. Each agent
then has an update rule for their state value that takes,
as input, their own state value at the previous iteration
and their received neighbour agent states. The goal of the
update rule is to drive each agent (say asymptotically) to
a state that corresponds to the average value of all initial
state values. The agents are then said to have reached an
average-consensus.

Typically the agents are connected via a network that
changes with time due to link failures, node failure, packet
drops etc. In distributed sensor networks the individual
nodes (or some subset of such) may be mobile etc. in
which case the interaction topology may change due to
communication constraints etc. All such variations in
topology can happen randomly and often the network is
disconnected for some time. Studies on the convergence of
consensus algorithms are often motivated by such complex
time-varying network communication constraints.

1.1 Background

The consensus problem has a long history [Berger (1981);
Borkar and Varaiya (1982); DeGroot (1974); Tsitsiklis and
Athans (1984); Tsitsiklis et al. (1986)] which is too broad
to cover here. We highlight Jadbabaie et al. (2003); Moreau
(2005); Olfati-Saber et al. (2007); Olfati-Saber and Murray
(2004); Ren and Beard (2005); Tsitsiklis et al. (1986) for
further history, background and novel extensions.
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Consensus algorithms as studied in Cao et al. (2008);
Olfati-Saber and Murray (2004); Ren and Beard (2005);
Tsitsiklis et al. (1986) focus on linear update rules (at
each agent) and typically concern average-consensus or
consensus about some linear function of all the agent’s ini-
tial state values in Euclidean space. The average-consensus
problem has a natural relationship with distributed linear
least squares or distributed (linear) maximum likelihood
estimation [Xiao et al. (2005)] and distributed Kalman
filtering [Carli et al. (2008); Cattivelli and Sayed (2010);
Olfati-Saber (2007); Spanos and Murray (2005)].

Consensus via nonlinear update rules is studied in Ajorlou
et al. (2011); Hui and Haddad (2008); Moreau (2005); Yu
et al. (2011). Here consensus to general functions (e.g. the
maximum or minimum etc.) of all initial agent states may
be sought as in Cortés (2008); Wang and Hong (2010) and
even finite-time convergence may be achievable [Cortés
(2006); Wang and Hong (2010)]. One may also want to
achieve consensus to some time-varying reference signal
(e.g. at some leader etc.) as in Hong et al. (2006); Zhu and
Mart́ınez (2010).

We note here that much of the existing literature on
consensus concerns agreement in Euclidean space; e.g.
the seminal papers of Moreau (2005); Olfati-Saber et al.
(2007); Olfati-Saber and Murray (2004); Ren and Beard
(2005) etc. all restrict themselves to Euclidean spaces.

The problem of synchronisation is closely related to con-
sensus but typically deals with the problem of driving a
network of oscillators to a common frequency/phase etc.
This work typically concerns nonlinear manifolds such as
the circle etc. A survey on synchronisation is given in
Strogatz (2000) while consensus and synchronisation are
related in Li et al. (2010). Some other notable exceptions
of consensus in spaces other than Euclidean are Grohs
(2012); Matei and Baras (2010); Sarlette and Sepulchre
(2009); Sepulchre (2011). In particular, Sarlette and Sepul-
chre (2009); Sepulchre (2011) consider general nonlinear
consensus on manifolds by embedding such manifolds in
a suitably high-dimensional Euclidean space. In Sarlette
and Sepulchre (2009); Sepulchre (2011) consensus on the
special orthogonal group and on Grassmann manifolds are
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explored using this embedding approach. Separate work
in Matei and Baras (2010) considers consensus in convex
metric spaces while Grohs (2012) develops an analogue of
Wolfowtiz’s theorem [Wolfowitz (1963)] for a special class
of metric spaces with non-positive curvature which leads
to a notion of consensus in such spaces.

1.2 Contribution

The contribution of this paper is a novel algorithm and
convergence results for distributed consensus in the space
of probability measures with time-varying interaction net-
works. We introduce a well-studied metric known as the
Wasserstein distance which allows us to consider an impor-
tant set of probability measures as a metric space [Givens
and Shortt (1984)]. The introduced consensus algorithm
is based on iteratively updating each agent’s probability
measure by finding a measure that is a minimal (weighted)
Wasserstein distance from the agent’s own previous mea-
sure plus all neighbour agents’ measures. We show that
convergence of the individual agents measures to a com-
mon probability measure is guaranteed as long as a weak
network connectivity condition is satisfied. The common
measure that is achieved asymptotically at each agent is
the one that is closest simultaneously to all initial agent
measure values in the sense of the Wasserstein distance.

This work has wide applicability in the field of distributed
estimation [Doucet et al. (2001)] and distributed infor-
mation fusion [Liggins et al. (1997); Mahler (2007)]. For
example, suppose each agent starts with a probability
measure conditioned on some common underlying event of
interest. Then one would like to combine all these measures
(which amount to each agents estimate and/or belief of the
underlying event) into a common probability measure that
captures all the agents beliefs. The proposed consensus
algorithm can do this in a very general distributed setting.
Related work in Olfati-Saber et al. (2005) considers the
application of consensus to the problem of distributed
Bayesian information fusion. Unlike Olfati-Saber et al.
(2005), the proposed method can deal with singular prob-
ability measures and the connectivity condition proposed
here is more relaxed than in Olfati-Saber et al. (2005).

1.3 Paper Organization

The paper is organised as follows. In the next section we
provide the general problem setup and a short background
on linear consensus via a study on the convergence of
infinite matrix products. In Section 3 we introduce a
notion of consensus in Euclidean space under a broad
class of metrics in order to gently introduce the idea
of consensus in general metric spaces. In Section 4 we
introduce the main contribution of this paper which is
an algorithm and convergence analysis for consensus in
the Wasserstein metric space of probability measures.
Concluding remarks are given in 5.

2. SETUP AND A QUICK BACKGROUND ON
CONSENSUS IN R

2.1 Common Setup

Consider a group of agents indexed in V = {1, . . . , n} and
a set of possible time-varying undirected links E(t) ⊂ V×V
defining a network graph G(t)(V, E(t)). The neighbor set

at agent i is denoted by Ni(t) = {j ∈ V : (i, j) ∈ E(t)}
and j ∈ Ni(t)⇔ i ∈ Nj(t) for undirected topologies.

The graph adjacency matrix A(t) ∈ Rn×n obeys A =
A> = [aij(t)] where aij(t) = 1 ⇔ {i, j} ∈ E(t)
and aij(t) = 0 otherwise. A weighted adjacency matrix
is denoted by W(t) = [wij(t)] ∈ Rn×n. Throughout,
we will restrict wij(t) ∈ (0, 1) and require (wii(t) +∑
j∈Ni(t)

wij(t)) = 1 (although we allow without further

reference wii(t) = 1 in which case we require wij(t) = 0
for all j 6= i). Time is indexed in N and 0 ∈ N.

Consider the sequence of graphs G(tk),G(tk1), . . . ,G(tk+1)
on the same vertex set V. The union of this sequence
of graphs is the graph G(tk, tk+1)(V,∪t∈[tk,tk+1)E(t)). The
sequence is said to be jointly connected if G is connected.

2.2 A Quick Background on Consensus in R

A matrix with nonnegative elements is denoted by P � 0
or by P � 0 when all elements are strictly positive. Similar
notation is also used for nonnegative and positive vectors.
See Bremaud (1999); Seneta (1973) for a definition of
stochastic, irreducible and primitive matrices.

Theorem 1 (Perron; see Bremaud (1999); Seneta (1973)).
Let P ∈ Rn×n be nonnegative and primitive. Then

lim
k→∞

[
P

max(|λ(P)|)

]k
= vu>

where Pv = max(|λ(P)|)v, u>P = max(|λ(P)|)u> and
v � 0, u � 0 and v>u = 1.

If P ∈ Rn×n is also row-stochastic then P1 = 1 and thus
limk→∞Pk = 1u>. If P ∈ Rn×n is doubly stochastic then
also 1>P = 1> and thus limk→∞Pk = 1

n11
>.

A generalisation of the above theorem due to Wolfowitz
can be stated as follows.

Theorem 2 (Wolfowitz (1963)). Consider a finite set P =
{P1, . . . ,Pm}, m ≥ 1, of non-negative, row-stochastic,
primitive matrices P ∈ Rn×n with the property that for
any sequence sn, n ≥ 1 the product Psk · · ·Ps2Ps1 is also
primitive for any k > 1. Then

lim
k→∞

Psk · · ·Ps2Ps1 = 1u>

where u is dependent on the particular sequence.

Suppose the state of agent i at time t = 0 is given by a
point xi(0) ∈ R. Then suppose that agent i updates its
state iteratively according to

xi(t+ 1) = wii(t)xi(t) +
∑

j∈Ni(t)

wij(t)xj(t) (1)

where we assume (wii(t) +
∑
j∈Ni(t)

wij)(t) = 1. The

evolution of the group can be written in vector form as

x(t+ 1) = W(t)x(t)

where W(t) ∈ Rn×n is a non-negative row-stochastic
matrix and x(t) ∈ Rn.

Theorem 3 (Jadbabaie et al. (2003)). Consider a group
of agents V and network G(t)(V, E(t)). Suppose the state
of each agent is xi(t) ∈ R and that each agent applies
(1) where W(t) ∈ Rn×n is a non-negative, row-stochastic,
primitive matrix for each t ≥ 0. If there exists an infinite
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sequence of contiguous, nonempty, bounded, time-intervals
[tk, tk+1), starting at t = 0, with the property that across
each such interval the graph union G(tk, tk+1) is connected
and

∏
t∈[tk,tk+1) W(t) is primitive, then

lim
t→∞

x(t) = (u>x(0))1

for some constant u � 0 with u>1 = 1.

The proof of this theorem is a simple application of
Wolfowitz’s theorem. In practice, for a particular class
of matrices W(t) being row-stochastic and primitive one
must establish

∏
t∈[tk,tk+1) W(t) is also primitive in order

to make use of the theorem. For example if wii(t) > 0 for
all i and t then

∏
t∈[tk,tk+1) W(t) is primitive [Jadbabaie

et al. (2003)]. If W(t) is constant in t and doubly stochastic
then each agent converges to 1

n

∑
i∈V xi(0).

3. A DIFFERENT VIEW OF CONSENSUS IN R AND
IN ARBITRARY METRIC SPACES (R, d)

The motivation for this section is just to introduce the
idea of consensus in metric spaces in the simplest fashion.
Suppose we consider an arbitrary metric d : R×R→ [0,∞)
on R and define an update by

xi(t+ 1) = argmin
z

∑
j∈Ni(t)∪{i}

wij(t)d(z, xj(t))
2

Let x(t) = [x1(t) . . . xn(t)]>. Then we can define

xi(t+ 1) =W ?
i (t)x(t)

= argmin
z

∑
j∈Ni(t)∪{i}

wij(t)d(z, xj(t))
2 (2)

and the dynamics of the entire group of agents by

x(t+ 1) = W?(t)x(t) = [W ?
1 (t)x>(t) . . . W ?

n(t)x>(t)]>

where in this case W?(t) (and each W ?
i (t)) represents a

nonlinear operator with parameters wij . Clearly this is a
generalisation of the consensus problem considered in the
previous section (where (1) is actually a special case of (2)
with d given by the usual Euclidean metric).

Note we derive the results here for the space (R, d) for com-
parison with, and inline with, the results of the previous
section. However, the results presented in this section can
straightforwardly be extended to (Rm, d) with 1 ≤ m <∞.

All metrics are continuous (in the topology induced by the
metric) and, for metrics defined on R, we say d is strictly
increasing if d(x, y) ≤ c · d(x, z) for all x < y < z in R
and some c > 0 that may depend on all x, y, z. Similarly,
a metric d defined on R is said to have uniform growth if
d(x, x+ c) = d(y, y + c) for all x, y, c ∈ R.

Lemma 1. Define a closed set including those states xj(t)
for all j ∈ {Ni(t)∪ {i}} by the line segment in R given by
{x ∈ R : minj [xj(t)] ≤ x ≤ maxj [xj(t)]}. Then, for any
strictly increasing metric d : R×R→ [0,∞) with uniform
growth, the result

xi(t+1) = W ?
i (t)x(t) = argmin

z

∑
j∈Ni(t)∪{i}

wij(t)d(z, xj(t))
2

is strictly within this closed set of states whenever the
cardinality of {Ni(t)∪{i}} is greater than two and at least
two of the state values are distinct.

Proof. Let xmax = maxj [xj(t)] and q denote the index
j of the maximum element maxj [xj(t)]. Suppose that
W ?
i (t)x(t) is strictly greater than xmax. Then clearly one

must find (by the triangle inequality)

argmin
z

∑
j∈{Ni(t)∪{i}}\{q}

wij(t)d(z, xj(t))
2 >

∑
j∈Ni(t)∪{i}

wij(t)d(xmax, xj(t))
2

which is a contradiction. Thus, we can restrictW ?
i (t)x(t) ≤

xmax. A similar argument can be made about minj [xj(t)]
implying thatW ?

i (t)x(t) can be readily restricted to within
or on the boundary of the closed set of interest for any
metric d. Now suppose there are only two agents (the proof
to this point allows this) with states x1 < x2. For i ∈ {1, 2}
it follows that

W ?
i (t)x(t) = argmin

z
wi1(t)d(z, x1(t))2 +

(1− wi1(t))d(z, x2(t))2

= argmin
z

wi1(t)
(
d(z, x1(t))2 − d(z, x2(t))2

)
+ d(z, x2(t))2

where wi1(t)
(
d(z, x1(t))2 − d(z, x2(t))2

)
is strictly nega-

tive initially and strictly increasing as z moves from x1(t)
to x2(t) (crossing zero at some point on the interval) and
conversely d(z, x2(t))2 is strictly positive and strictly de-
creasing to zero as z moves from x1(t) to x2(t) (obtaining
zero only at z = x2(t)).

Then for any wi1 ∈ (0, 1) and because d is continuous it
follows that there exists some ε > 0 such that

wi1(t)
(
d(z, x1(t))2 − d(z, x2(t))2

)
< 0

|wi1(t)
(
d(z, x1(t))2 − d(z, x2(t))2

)
|< d(z, x2(t))2

on z ∈ [x1(t), x1(t)+ε]. Consequently, W ?
i (t)x(t) is strictly

decreasing on z ∈ [x1(t), x1(t) + ε] for some ε > 0. Hence
for any wi1 ∈ (0, 1) the point x1(t) cannot be a minimum.
The same argument can be applied for the point x2(t)
by readily swapping wi1 and 1 − wi1 for 1 − wi2 and wi2
respectively.

Note that uniform growth is not necessary for W ?
i (t)x(t)

to be within the strict interior of the desired closed set and
nor is the requirement that d be strictly increasing.

Theorem 4. Consider a group of agents V and network
G(t)(V, E(t)). Suppose the state of each agent is xi(t) ∈ R
and that each agent applies (2) where d : R × R → [0,∞)
is a strictly increasing metric with uniform growth. If for
all t0 ∈ N the graph union G(t0,∞) is connected then

lim
t→∞

d(xi(t), xj(t))
2 = 0

for all i, j ∈ V and xi(t) converges to some constant in
{x ∈ R : minj [xj(0)] ≤ x ≤ maxj [xj(0)]} as t→∞.

Proof. Proof of this result follows from Lemma 1 and the
main result of Moreau (2005).

Note that the requirement on the connectivity property of
the network over time is actually less restrictive than the
requirement given in Theorem 3.
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4. CONSENSUS IN THE SPACE OF PROBABILITY
MEASURES (THE WASSERSTEIN METRIC SPACE)

The main contribution of this work is given in this section
where we introduce a consensus protocol in the Wasser-
stein metric space of probability measures.

Consider the same setup as before but suppose the state of
agent i is given by a Radon probability measure µi defined
on the Borel sets of (Rm, d) with 0 < m <∞ where in this
section we restrict d : Rm × Rm → [0,∞) to be the usual
Euclidean distance.

Define the space of all such measures on (Rm, d) by U(Rm)
and the subset of all such measures with bounded, finite,
pth moment by Up(Rm) for some suitably small 1 ≤ p <∞.
That is, Up is the collection of probability measures on the
Borel sets of (Rm, d) such that∫

Rm

d(x,x0)p dµi(x) <∞

for all bounded x ∈ Rm and a given x0 ∈ Rm. We typically
won’t note the dependence on Rm unless it is a special case.

One can associate the so-called Wasserstein metric `p :
Up × Up → [0,∞) with Up. This metric is defined by

`p(µi, µj) =

(
inf

γ∈Γ(µi,µj)

∫
Rm×Rm

d(xi,xj)
p dγ(xi,xj)

)1/p

where Γ(µi, µj) denotes the collection of all measures on
Rm×Rm with marginals µi and µj on the first and second
factors; see Ambrosio et al. (2005); Villani (2003).

Lets collect some facts about the Wasserstein metric space
(Up, `p) with p ≥ 2 from Ambrosio et al. (2005); Bertrand
and Kloeckner (2012); Kloeckner (2010); Villani (2003).

(1) (Up, `p) is a complete and separable metric space.
(2) Convergence limk→∞ `p(µk, µ) = 0 is equivalent to

weak convergence and convergence in the first p
moments.

(3) Considering two measures µi, µj ∈ Up then `p(µi, µj) =
`p(µi, µ) + `p(µj , µ) for some µ ∈ Up.

(4) More generally, there exists a continuously param-
eterised constant speed path µs ∈ Up, s ∈ [0, 1]
such that for µi, µj ∈ Up we have µs=0 = µi and
µs=1 = µj and `p(µi, µj) = `p(µi, µs) + `p(µj , µs)
for all s ∈ [0, 1]. The measure µs is known as the
interpolant measure; see McCann (1997).

(5) The interpolant measure defines a geodesic and con-
sequently (Up, `p) is geodesic.

(6) (Up(R), `p) has vanishing curvature in the sense of
Alexandrov (a subset of CAT(0)) when µi ∈ Up is
defined on the Borel sets of (R, d) with d the usual
Euclidean metric on R; see Kloeckner (2010).

(7) (Up(R), `p) is simply connected; see Bertrand and
Kloeckner (2012); Kloeckner (2010).

(8) (Up(Rm), `p) with 1 < m <∞ has positive curvature
in the sense of Alexandrov; see Ambrosio et al. (2005).

All metrics are continuous and a constant speed geodesic
in (Up, `p) is a curve µs : I → Up parameterised on some
interval s ∈ I ⊂ R that satisfies `p(µsi , µsj ) = v|si − sj |
for some constant v > 0 and for all si, sj ∈ I.

Suppose the measure at agent i is updated by

µi(t+ 1) = inf
z∈Up

∑
j∈Ni(t)∪{i}

wij(t)`p(z, µj(t))
p (3)

for all i ∈ V where as before we restrict wij(t) ∈ (0, 1) and
require (wii(t) +

∑
j∈Ni(t)

wij(t)) = 1 (again allowing the

special case wii(t) = 1 and wij(t) = 0 for all j 6= i).

Application of (3) at each agent i ∈ V corresponds to the
proposed nonlinear (distributed) consensus algorithm in
the Wasserstein metric space of probability measures.

Proposition 1. Consider a group of agents V and net-
work G(t)(V, E(t)). Suppose µi(t) ∈ Up and that each agent
applies (3) where `p is the Wasserstein metric. If for all
t0 ∈ N the graph union G(t0,∞) is connected then

lim
t→∞

`p(µi, µj)
p = 0

for all i, j ∈ V and limt→∞ µi(t) = some constant in Up.

Corollary 1. Consider a group of agents V and network
G(t)(V, E(t)). Suppose the state of each agent is µi(t) ∈
Up(R) and that each agent applies (3) where `p is the
Wasserstein metric. If for all t0 ∈ N the graph union
G(t0,∞) is connected then

lim
t→∞

`p(µi, µj)
p = 0

∀i, j ∈ V and limt→∞ µi(t) = some constant in Up(R).

Here we will concentrate on proof of the stated corollary.

A subset X ⊂ Up(R) is convex if every geodesic segment
whose endpoints are in X lies entirely in X. The (closed)
convex hull co(Y) of a subset Y ⊂ Up is the intersection
of all (closed) convex subsets of Up that contain Y.

Lemma 2. Suppose µi(t) ∈ Up is defined on the Borel
sets of (R, d) and thus (Up(R), `p) is CAT(0) in addition
to being uniquely geodesic, complete and separable. Then
the operation (3) at each agent is well-defined in the sense
that it has a solution and this solution is unique.

This lemma follows from the fact that (Up(R), `p) is
Hadamard and Fréchet averages such as defined by op-
erations of the form (3) are well defined in such spaces;
see Burago et al. (2001).

Lemma 3. Consider a collection {µi}, i ∈ Ṽ ⊆ V of
distinct points in (Up(R), `p). The convex hull of {µi} is
co({µi}) ⊂ Up(R) and is isometric to a l-sided convex
polygon in R2 with 2 ≤ l ≤ |{µi}|.
Before proceeding with the proof we point to Bridson and
Haefliger (1999) for background on comparison triangles
and Alexandrov curvature of metric spaces. We also note
that in a general geodesic CAT(0) space, i.e. some ar-
bitrary geodesic space with non-positive curvature, the
preceding lemma is not true and the convex hull of a
‘geodesic triangle’ [Bridson and Haefliger (1999)] defined
by three points in such spaces may be of dimension greater
than two [Bridson and Haefliger (1999)]. Thus, our Eu-
clidean intuition is generally incorrect when it suggests the
existence of a two-dimensional convex hull for a triangle
defined by three points and the geodesics connecting them
(albeit this is hard to visualise of course).
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Proof. Lemma 3 is really just a straightforward conse-
quence of the vanishing curvature property of (Up(R), `p).
We elaborate for completeness.

(Up(R), `p) has vanishing curvature in the sense of Alexan-
drov [Kloeckner (2010)] which formally means that for any
triangle of points {µi}, i ∈ {i1, i2, i3} and any point on
the geodesic µs ∈ Up(R), s ∈ [0, 1] such that, for example,
µs=0 = µi1 and µs=1 = µi2 then the `p distance between
µi3 and µs, s ∈ [0, 1] is the same as the corresponding
distance d : R2 × R2 → [0,∞) in a comparison triangle
in R2. Consider also any pair of points µj and µk with
µj on the geodesic connecting µi1 and µi2 and µk on the
geodesic connecting µi1 and µi3 with {µj , µk} ∩ {µi} = ∅,
i ∈ {i1, i2, i3}. Then vanishing curvature also implies
∠µi1

(µj , µk) is equal to the usual interior Euclidean angle
at the corresponding vertex in the comparison triangle in
R2. Here the angle ∠µi1

(µj , µk) is the Alexandrov angle in

arbitrary metric spaces; see Bridson and Haefliger (1999).
It now follows that the convex hull of any triangle of points
{µi} in (Up(R), `p) is isometric to a triangle in R2; e.g.
see Proposition 2.9 (Flat Triangle Lemma) in Bridson and
Haefliger (1999).

Now define C = {∆j} to be the collection of geodesic
triangles in (Up(R), `p) defined by every combination of

three points in {µi}, i ∈ Ṽ ⊆ V. Clearly co({µi}) =
∪j∆j . Consider also the corresponding collection C+ =
{∆+

j } of comparison triangles in R2. The Flat Triangle
Lemma implies that this collection can be arranged in
R2 such that each angle ∠µi

(µj , µk) and each distance

`p(µi, µj) for all i, j, k ∈ Ṽ in (Up(R), `p) equals exactly
the corresponding angle or distance in the comparison
configuration of points in R2. Obviously, the convex hull of
the comparison configuration is a l-sided convex polygon
in R2 with 2 ≤ l ≤ |{µi}| and equal to ∪j∆+

j .

Define the following map

f`p,d : co({µi})→ R2, i ∈ Ṽ (4)

so the restriction f`p,d(∆j) = f`p,d(co({µj1 , µj2 , µj3})) =

co({f`p,d(µj1), f`p,d(µj2), f`p,d(µj3)}) = ∆+
j , ∀j ∈ C =

{∆j} is an isometry. Then

f`p,d(co({µi})) = f`p,d(∪j∆j) = ∪jf`p,d(∆j) = ∪j∆+
j

from the Flat Triangle Lemma and the property of vanish-
ing curvature. For any two points in co({µi}) there exists
a particular ∆j ∈ C that contains them and the restriction
f`p,d(∆j) is an isometry to a convex subset of ∪j∆+

j . Thus,
f`p,d is an isometry and this completes the proof.

More precisely, the convex hull in (Up(R), `p) is defined by

co({µi}) = { inf
z∈Up

∑
i∈Ṽ

wi`p(z, µi)
p|wi ∈ [0, 1],

∑
i

wi = 1}

on the set of points {µi}, i ∈ Ṽ ⊆ V.

Lemma 4. Consider the convex hull co({µi(0)}) of all
initial agent states in (Up(R), `p). If each agent applies (3)
it follows that co({µi(t)}) ⊆ co({µi(0)}) for all t.

Actually, this is really a consequence of the following,
stronger result.

Lemma 5. Consider the convex hull co({µj(t)}), with
j ∈ Ni(t) ∪ {i} at time t. If agent i applies (3) it follows
that µi(t+ 1) is strictly within the convex hull co({µj(t)})
whenever |{µj(t)}| ≥ 2 and two agent states are distinct.

Proof. It is enough to consider two agents i, j ∈ V with
(3) then given by

µi(t+ 1) = inf
z∈Up

wii(t) (`p(z, µi(t))
p − `p(z, µj(t))p)

+ `p(z, µj(t))
p

and to note that z must lie on a geodesic µs : I → Up.
The proof relies on showing that µi(t+ 1) /∈ {µi(t), µj(t)}
when wii, wij ∈ (0, 1).

The first term

wii(t) (`p(z, µi(t))
p − `p(z, µj(t))p)

is strictly negative at z = µi(t) and strictly increasing as
z moves from µi(t) to µj(t) and conversely `p(z, µj(t))

p is
strictly positive at z = µi(t) and strictly decreasing to zero
as z moves from µi(t) to µj(t). Then for any wii ∈ (0, 1)
and because `p is continuous it follows that there exists
some µε on µs with ε > 0 such that

wii(t) (`p(z, µi(t))
p − `p(z, µj(t))p)< 0

|wii(t) (`p(z, µi(t))
p − `p(z, µj(t))p) |< `p(z, µj(t))

p

on z ∈ µs, s ∈ [0, ε]. Consequently, µi(t + 1) is strictly
decreasing on z ∈ µs, s ∈ [0, ε]. Hence for any wi1 ∈ (0, 1)
the point µi(t) cannot be a minimum. The same argument
can be applied for the point µj(t).

Lemma 6. Suppose G(V, E) is time-invariant, connected,
but not (necessarily) complete. Suppose the state of each
agent is µi(t) ∈ Up(R) and that each agent applies (3)
where `p is the Wasserstein metric. Then

lim
t→∞

`p(µi, µj)
p = 0

∀i, j ∈ V and limt→∞ µi(t) = some constant in Up(R).

Proof. It almost goes without saying that `2(µi, µj)
p =

0, ∀i, j ∈ V and µi = some constant in Up(R) is an
equilibrium state of (3). Now consider a Lyapunov-like
function ν(µ) : Up → R given by

ν(µ) = sup
x,y∈{µi(t)}i∈V

`p(x, y)p (5)

and note that ν(µ) ≥ 0 with ν(µ) = 0 if and only if
µi = µj for all i, j ∈ V. By Lemma 4 it follows that ν(µ) is
non-increasing along trajectories of (3). It suffices to show
ν(µ(t+ n− 1)) < ν(µ(t)) for each t.

Firstly, pick a t0 ≥ 0 and note co({µi(t0)}) ⊆ co({µi(0)})
and thus f`p,d(co({µi(t0)})) ⊆ f`p,d(co({µi(0)})) from
Lemma 4 and where f`p,d is an isometry given by (4).
Without loss of generality, via Lemma 3, suppose that
f`p,d(co({µi(t0)})) is a l-sided polygon in R2 with 2 ≤
l ≤ |V| on the collection of vertices {xj(t0)}, j ∈ {1, . . . , l}
with xj(t0) ∈ R2. If we chose a t0 such that l = 1 then we
would be done. Define the following set-valued function
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hj(t) =
{
i ∈ V : f`p,d(µi(t)) = xj(t0)

}
, ∀j ∈ {1, . . . , l}

(6)

for each time t ≥ t0. It is immediate from Lemma 5 that
hj(t+ 1) ⊆ hj(t) for all j ∈ {1, . . . , l}; i.e. more generally,
no agent state f`p,d(µi(t)) which is not on the boundary
of the l-sided polygon at time t can ever reach this same
boundary at t+1 as a consequence of Lemma 5. Note that
|hj(t0)| ≤ n− 1 for all j ∈ {1, . . . , l} with l ≥ 2 at t0.

Recall the neighbour set at agent i is given by Ni(t).
Because the network is connected, for each k ∈ hj(t0) the
neighbour set obeys Nk(t0) 6= ∅ for each j ∈ {1, . . . , l}.
Then by Lemma 5 it follows that hj(t0 + 1) ⊂ hj(t0)
since at least one k ∈ hj(t0) must be connected to an
agent outside hj(t0) and this agent’s state must change
µk(t0) 6= µk(t0+1) as a consequence of Lemma 5 such that
f`p,d(µk(t0+1)) 6= xj (indeed f`p,d(µk(t0+1)) cannot even
lie on the same convex hull). At the next time t0+1 it holds
again that for each k ∈ hj(t0+1) (assuming hj(t0+1) 6= ∅)
the neighbour set obeys Nk(t0 + 1) 6= ∅ for each j ∈
{1, . . . , l}. Then by application of Lemma 5 it follows again
that hj(t0+2) ⊂ hj(t0+1) ⊂ hj(t0). Thus, hj(t+1) ⊂ hj(t)
is a strictly decreasing set-valued function unless hj(t) = ∅.
By at most time t0 +n−1 it follows that hj(t0 +n−1) = ∅
and the argument can reset by redefining t0. It thus follows
that f`p,d(co({µi(t0 + n − 1)})) ⊂ f`p,d(co({µi(t0)})) for
all t0 ≥ 0. Following the proof of Lemma 3 we know
co({µi(t0 + n − 1)}) ⊂ co({µi(t0)}) and thus because we
chose t0 arbitrarily ν(µ(t+n−1)) < ν(µ(t)) for each t ∈ N
unless µi(t + n − 1) = µi(t), ∀i, as desired. The strictly
decreasing Lyapunov-like function completes proof.

The preceding lemma specialises the corollary to the case
in which the network topology is connected and time-
invariant (but otherwise arbitrary). This lemma is of inter-
est on its own in many applications in which the network
topology is static or otherwise changes very slowly. Proof
of this lemma, given Lemmas 3-5, follows roughly the
analysis of Moreau (2005) on nonlinear consensus in the
usual Euclidean metric space.

Proof. (of Corollary 1) The proof here relies on extend-
ing the previous lemma to the case in which G(t)(V, E(t)) is
time-varying and for all t0 ∈ N the graph union G(t0,∞)
is connected. Recall the same Lyapunov function (5) as
used in the proof of Lemma 6 (we assume familiarity with
the proof of Lemma 6 going forward).

We note that it suffices to show that there is a countably
infinite number of finite time intervals t ∈ [tq0, t̂

q
0], q ∈ N

such that ν(µ(tq0 + t̂q0)) < ν(µ(tq0)).

Pick tq0 ≥ 0, q ∈ N so f`p,d(co({µi(tq0)})) is a l-sided

polygon in R2 with 2 ≤ l ≤ |V| on the collection of
vertices {xj(tq0)}, j ∈ {1, . . . , l} with xj(t

q
0) ∈ R2. Recall

(6). Then define a sequence of times {tqs(j)}, s(j) ∈ N
each greater than tq0 for each j ∈ {1, . . . , l} with l ≥ 2.
The connectivity condition implies the existence of such a
sequence for each j with the property that, if hj(t

q
s(j)) 6= ∅,

there exists a k ∈ hj(tqs(j)) that is connected to an agent

outside hj(t
q
s(j)). Then, this agent’s state must change

µk(tqs(j)) 6= µk(tqs(j) + 1) as a consequence of Lemma 5 and

f`p,d(µk(tqs(j) + 1)) 6= xj(t
q
0). Then hj(t

q
s(j) + 1) ⊂ hj(tqs(j))

for all j ∈ {1, . . . , l} unless obviously hj(t
q
s(j)) = ∅. As

in the proof of Lemma 6 it holds that s(j) ≥ n − 1

implies hj(t
q
s(j)+1) = ∅ for all j. Let t̂q0 = min{t ∈ N :

t > tq0, s(j) ≥ n − 1,∀j} and note then that the interval

t ∈ [tq0, t̂
q
0] is finite owing to the connectivity condition.

Moreover, as in the proof of Lemma 6 one can then show
that ν(µ(tq0 + t̂q0)) < ν(µ(tq0)). Restart the argument by

picking tq+1
0 to be equal or sufficiently close to t̂q0 and note

that the connectivity condition then implies the number
of such (finite) intervals t ∈ [tq0, t̂

q
0] is countably infinite

on q ∈ N. We thus have a strictly decreasing Lyapunov
function ν(µ(tq0 + t̂q0)) < ν(µ(tq0)) on the sequence of finite

intervals t ∈ [tq0, t̂
q
0], q ∈ N and this completes proof.

Finally, given Proposition 1 and Corollary 1, it is worth
noting the following result.

Proposition 2. Consider a group of agents V and net-
work G(t)(V, E(t)). Suppose the initial state of each agent
is µi(0) ∈ Up and that each agent applies (3). Suppose for
all t0 ∈ N the graph union G(t0,∞) is connected. Define
µ = limt→∞ µi(t), ∀i ∈ V. Then there exists some sym-
metric weight matrix W = [wij ] ∈ Rn×n with wij ∈ (0, 1)
and

∑
j∈V wij = 1 for all i such that

µ = inf
z∈Up

∑
j∈V

wij`p(z, µj(0))p, ∀i ∈ V

where we note that W is not the weighting matrix W(t)
associated with the network and the update (3) but it is
solely dependent on the sequence W(t), t ∈ N and the
initial measures µi(0) ∈ Up, i ∈ V.

Proof of this proposition is straightforward given the
actual convergence result is stated in Proposition 1 and
Corollary 1. This result states that the common measure
which all agent states converge to must be strictly within
the convex hull of all initial agent measures in Up.

An interesting open problem is how one can design (or at
least restrict) the evolution of W(t), t ∈ N such that for
a set of measures µi(0) ∈ Up, i ∈ V the final weighting

matrix W specifies a limit µ = limt→∞ µi(t), ∀i ∈ V that
is optimal in some desired sense (e.g. minimum variance
over all possible W given µi(0) ∈ Up, i ∈ V). Some
performance criteria may be completely independent of
the initial measures µi(0) ∈ Up, i ∈ V; i.e. some criteria
may be achievable for any arbitrary set of initial measures
by simply restricting W(t), t ∈ N. We conjecture that this
might be possible if one wants to achieve wij = 1/n, so
that µ is an equal distance in the Wasserstein metric from
all initial agent measures µi(0) ∈ Up, i ∈ V.

We have not explored the idea of designing/constraining
the evolution of W(t) so as to achieve some desired con-
sensus value. However, such work would prove valuable in
distributed information fusion, where one wants to com-
bine numerous conditional beliefs (i.e. measures) about
some underlying event into a single belief that should
somehow be ‘better’ than each individual belief. We do
not go into defining the notion of ‘better’ here but note
that one example may be a reduction in variance as one
may often want to reduce the variance of one’s belief on
some underlying event by combining multiple, additional,
sources of information concerning that event.
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5. CONCLUDING REMARKS

Distributed consensus in the Wasserstein metric space of
probability measures was introduced in this paper. It is
shown that convergence of the individual agents’ measures
to a common measure value is guaranteed if a relatively
weak network connectivity condition is satisfied. This
common measure value that is achieved asymptotically
at each agent is the one that is closest simultaneously to
all the initial agent measure values in the sense that it
will minimise some weighted sum of Wasserstein distances
between it and all initial measures.
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