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Abstract: Information relaxation and duality in Markov decision processes have been studied
recently to derive upper bounds on the maximal expected reward (or lower bounds on the
minimal expected cost). The idea is to relax the non-anticipativity constraint on the controls
and impose a penalty to punish such a violation. In this paper we generalize this dual approach
to controlled Markov diffusions. We develop the weak duality and strong duality results, and
explore the structure of the optimal penalty. We demonstrate the use of this dual formulation by
computing upper bounds on the optimal expected utility in a dynamic portfolio choice problem.

1. INTRODUCTION

Markov decision processes (MDPs) play a central role in
modeling discrete-time sequential decision making prob-
lems under uncertainty. MDPs can be solved, in principle,
via dynamic programming; however, the exact computa-
tion of dynamic programming suffers from the “curse of
dimensionality”, i.e., the size of the state space increases
exponentially with the number of the state variables. To
overcome this difficulty, approximate dynamic program-
ming techniques have been developed including Chang
et al. [2007], Bertsekas [2007], Powell [2011], de Farias and
van Roy [2003]. These methods often generate sub-optimal
policies, which lead to lower bounds on the optimal ex-
pected reward by simulating the dynamic system under
the aforementioned policies. However, the accuracy of the
sub-optimal policies is generally unknown. Motivated by
the lack of performance guarantee on sub-optimal policies,
a dual representation of MDPs was recently developed by
Rogers [2007], Brown et al. [2010] to provide an upper
bound on the optimal expected reward. If the difference
between the lower and upper bounds is small, it may
be concluded that the quality of the existing policy is
acceptable. The main idea of this dual approach is to
allow the decision maker to foresee the future uncertainty
but impose a penalty on getting access to the information
in advance; particularly, the dual bound can recover the
optimal reward by applying proper penalties. Therefore,
various approximation methods based on different types
of optimal penalties have been proposed in order to derive
tight dual bounds, such as Brown et al. [2010], Brown and
Smith [2011], Desai et al. [2011], Ye and Zhou [2012].

The goal of this paper is to extend the information
relaxation-based dual representation of MDPs to con-
trolled Markov diffusions, which are typical sequential
decision making problems in continuous-time setting. The
Hamlton-Jacobi-Bellman (HJB) equation, a standard ap-
proach solving controlled Markov diffusions, rarely allows
a closed-form solution, especially when the state space is
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of high dimension or there are constraints imposed on the
control space. There are many numerical methods based
on different approximation schemes: Kushner and Dupuis
[2001] considered the Markov chain approximation method
by discretizing the HJB equation; Han and van Roy [2011]
extended the approximate linear programming method to
controlled Markov diffusions. Another numerical approach
is to discretize the time space, which reduces the original
continuous-time problems to MDPs and the technique of
approximate dynamic programming can be applied.

In this paper we intend to answer the following questions.
First, is there a dual formulation of controlled Markov dif-
fusions based on information relaxation as that of MDPs?
If yes, what is the form of the optimal penalty? Second,
is there any practical use of this dual formulation? To
answer the first question, we establish the weak duality
and strong duality results that parallel those in the dual
formulation of MDPs; moreover, we investigate a class
of optimal penalties, the so-called “value function-based
penalty”, which can be written compactly as an Ito s-
tochastic integral under the natural filtration generated by
the Brownian motion. We then consider the application of
this dual formulation in a dynamic portfolio choice prob-
lem: based on the aforementioned value function-based
penalty we propose an effective class of penalties, which
are easy to evaluate and can be used to derive tight dual
bounds on the optimal expected value.

We note that Davis and Burstein [1992, 1991] have pio-
neered a series of related work for controlled Markov dif-
fusions under the name “anticipative stochastic control”.
They also adopted the recipe of relaxing the future infor-
mation and then penalizing, prior to the dual framework
of MDPs. The main difference of their work from ours
is that we propose a more general framework that may
incorporate their approach as a special case; in addition,
their proposed Lagrangian approach for penalization dif-
fers from our value function-based penalty. A discussion of
the connection between their work and our work together
with Rogers [2007], Brown et al. [2010], Brown and Smith
[2011] is described in the Appendix of Ye and Zhou [2013].
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The rest of the paper is organized as follows. In section 2,
we review the dual formulation of MDPs and develop the
dual formulation of controlled Markov diffusions. We then
illustrate the dual approach in a dynamic portfolio choice
problem in Section 3. Finally, we conclude in Section 4.

2. CONTROLLED MARKOV DIFFUSIONS AND ITS
DUAL FORMULATION

2.1 Review of Duality in Markov Decision Processes

Consider a finite-horizon MDPs on the probability space
(Ω,G,P). Time is indexed by K = {0, 1, · · · ,K}. Suppose
X is the state space and A is the control space. The state
{xk} follows the equation

xk+1 = f(xk, ak, vk+1), k = 0, 1, · · · ,K − 1, (1)

where ak ∈ A is the control whose value is decided
at time k, and vk is a random variable taking values
in the set V with a known distribution. The evolution
of the information is described by the filtration G =
{G0, · · · ,GK} with G = GK . In particular, each vk is Gk-
adapted.

Denote by A the set of all control strategies a ,
(a1, · · · , aK−1), i.e., ak ∈ A for every k ∈ K. Let AG be the
set of control strategies that are adapted to the filtration
G, i.e., ak is Gk-adapted for every k. We also call a ∈ AG a
non-anticipative policy. The objective is to maximize the
expected sum of intermediate rewards {gk}K−1

k=0 and final
reward Λ by selecting a non-anticipative policy a ∈ AG:

V0(x0) = sup
a∈AG

J0(x0;a),

where J0(x0;a) , E

[
K−1∑
k=0

gk(xk, ak) + Λ(xK)

∣∣∣∣x0

]
. (2)

The expectation in (2) is taken with respect to the random
sequence v = (v1, · · · , vK). The value function V0 is a
solution to the following dynamic programming recursion:

VK(xK) , Λ(xK);

Vk(xk) , sup
ak∈Ak

{gk(xk, ak) + E[Vk+1(xk+1)|xk, ak]}, k = K − 1, · · · , 0.

Next we describe the dual formulation of the value function
V0(x0). Here we only consider the perfect information re-
laxation, i.e., we have full knowledge of future uncertainty.

Define E0,x[·] , E[·|x0 = x]. Let MG(0) denote the set
of dual feasible penalties M(a,v), which do not penalize
non-anticipative policies in expectation, i.e.,

E0,x[M(a,v)] ≤ 0 for all x ∈ X and a ∈ AG.

Denote by D the set of real-valued functions on X . Then
we define an operator L :MG(0)→ D by(
LM
)
(x) = E0,x

[
sup
a∈A

{
K−1∑
k=0

gk(xk, ak) + Λ(xK)−M(a,v)

}]
.

(3)

Note that the supremum in (3) is over the set A not the
set AG. The optimization problem inside the expectation
in (3) will be referred to as the inner optimization problem.
In particular, the right hand side of (3) is well-suited to
Monte Carlo simulation: we can simulate a realization
of v = {v1, · · · , vK} and solve the inner optimization
problem, which leads to an unbiased estimator of (LM)(x).

Theorem 1 below establishes a strong duality in the sense
that for all x ∈ X0,

sup
a∈AG

J0(x;a) = inf
M∈MG(0)

(
LM

)
(x).

In particular, Theorem 1(a) suggests that LM(x0) can
be used to derive an upper bound on the value function
V0(x0) given any M ∈ MG(0); Theorem 1(b) states that
the duality gap vanishes if the dual problem is solved by
choosing M in the form of (4).

Theorem 1. (Theorem 2.1 in Brown et al. [2010]).

(a) (Weak Duality) For all M ∈ MG(0) and all x ∈
X , V0(x) ≤

(
LM

)
(x).

(b) (Strong Duality) For all x ∈ X , V0(x) =
(
LM∗

)
(x),

where

M∗(a,v) =

K−1∑
k=0

(
Vk+1(xk+1)−E[Vk+1(xk+1)|xk, ak]

)
.

(4)

Remark 1.

(1) Note that the right hand side of (4) is a function of
(a,v), since {xk} depends on (a,v) through the state
equation (1).

(2) Since E0,x[M∗(a,v)] = 0 for all x ∈ X and a ∈ AG, we
know M∗ ∈MG(0). The penalty M∗ will be refereed
to as the value function-based penalty for the Markov
decision problem (1)-(2), as M∗ depends on the value
functions {Vk}Kk=1.

The optimal penalty (4) that achieves the strong duality
involves the value functions {Vk}Kk=1, and hence is in-
tractable in practical problems. In order to obtain tight d-
ual bounds, a natural idea is to derive sub-optimal penalty
functions based on approximate value functions {V̂k}Kk=1.
However, this heuristic approach suffers at least two d-
ifficulties. The first difficulty is that E[V̂k+1(xk+1)|xk, ak]
usually cannot be written as an analytic function of xk and
ak; second, even if E[V̂k+1(xk+1)|xk, ak] can be computed
analytically, the inner optimization problem may still be
difficult to solve since no convex structure can be guaran-
teed (even assuming that all the rewards {g1, · · · , gK−1,Λ}
are concave functions).

2.2 Controlled Markov Diffusions and HJB Equation

This subsection is concerned with the control of Markov
diffusions. Consider an Rn-valued controlled Markov dif-
fusion process (xt)0≤t≤T governed by the stochastic differ-
ential equation (SDE) on a probability space (Ω,F ,P):

dxt = b(t, xt, ut)dt+ σ(t, xt)dwt, 0 ≤ t ≤ T, (5)

where ut ∈ U ⊂ Rdu is the control applied at time
t, b and σ are functions b : [0, T ] × Rn × U → Rn
and σ : [0, T ] × Rn → Rn×m, and (wt)0≤t≤T is an
m-dimensional Brownian motion. The natural filtration
generated by (wt)0≤t≤T is denoted by F = {Ft, 0 ≤ t ≤ T}
with F = FT . In the following ‖ · ‖ denotes the Euclidean
norm.

Definition 1. A control strategy u = (us)s∈[t,T ] is called
an admissable strategy at time t if

(1) u = (us)s∈[t,T ] is an F-progressively measurable
process taking value in U (i.e., u is a non-anticipative

policy), and satisfying E[
∫ T
t
||us||2ds] <∞;
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(2) Et,x[sups∈[t,T ] ||xs||2] < ∞, where Et,x[·] , E[·|xt =

x].

The set of admissible strategies at time t is denoted by
UF(t).

With the following standard assumptions imposed on b
and σ, SDE (5) admits a unique pathwise solution when
u ∈ UF(0), i.e., (xt)t∈[0,T ] is F-progressively measurable
and has continuous sample paths almost surely.

Assumption 1. b and σ are continuous on their domains,
respectively, and for some constants C1, C2, and Cσ > 0,

(1) ‖ b(t, x, u) ‖ + ‖ σ(t, x, u) ‖≤ C1(1+ ‖ x ‖ + ‖ u ‖)
for all (t, x, u) ∈ Q̄× U ;

(2) ‖ b(t, x, u) − b(s, y, u) ‖ + ‖ σ(t, x, u) − σ(s, y, u) ‖≤
C2(|t− s|+ ‖ x− y ‖) for all (t, x), (s, y) ∈ Q̄.

(3) ξ>(σσ>)(t, x)ξ ≥ Cσ ‖ ξ ‖2 for all (t, x) ∈ [0, T ] × Q
and ξ ∈ Rn.

Let Q = [0, T ) × Rn and Q̄ = [0, T ] × Rn. We define the
functions Λ : Rn → R and g : Q̄ × U → R as the final
reward and intermediate reward, respectively. Assume the
rewards Λ and g satisfy the polynomial growth conditions.

Assumption 2. For some constants CΛ, cΛ, Cg, cg > 0,

(1) |Λ(x)| ≤ CΛ(1+ ‖ x ‖cΛ) for all x ∈ Rn;
(2) |g(s, x, u)| ≤ Cg(1+ ‖ x ‖cg + ‖ u ‖cg ) for all

(t, x) ∈ Q̄.

Then we introduce the reward functional

J(t, x;u) , Et,x

[
Λ(xT ) +

∫ T

t

g(s, xs, us)ds

]
.

Given an initial condition (t, x) ∈ Q, the objective is to
maximize J(t, x, u) over all the controls u in UF(t):

V (t, x) = sup
u∈UF(t)

J(t, x;u). (6)

Here we abuse the notations of the state x, the rewards Λ
and g, and the value function V , since they play the same
roles as those in MDPs.

Let C1,2(Q) denote the space of function L(t, x) : Q → R
that is C1 in t and C2 in x on Q. For L ∈ C1,2(Q), define
a partial differential operator Au by

AuL(t, x) , Lt(t, x)+Lx(t, x)>b(t, x, u)+
1

2
tr(Lxx(t, x)(σσ>)(t, x)),

where Lt, Lx, and Lxx denote the t-partial derivative, the
gradient and the Hessian with respect to x respectively,
and (σσ>)(t, x) , σ(t, x)σ>(t, x). Let Cp(Q̄) denote the
set of function L(t, x) : Q̄ → R that is continuous on Q̄
and satisfying a polynomial growth condition in x, i.e.,

|L(t, x)| ≤ CL(1+ ‖ x ‖cL)

for some constants CL and cL. The following verifica-
tion theorem provides a sufficient condition for the value
function and an optimal control strategy using Bellman’s
principle of dynamic programming.

Theorem 2. (Theorem 4.3.1 in Fleming and Soner [2006]).
Suppose Assumptions 1 and 2 hold, and V̄ ∈ C1,2(Q) ∩
Cp(Q̄) satisfies V̄ (T, x) = Λ(x) and

sup
u∈U
{g(t, x, u) +AuV̄ (t, x)} = 0, (t, x) ∈ Q. (7)

Then
(a) J(t, x;u) ≤ V̄ (t, x) for any u ∈ UF(t) and (t, x) ∈ Q̄.
(b) If there exists a function u∗ : Q̄→ U such that

g(t, x, u∗(t, x)) +Au
∗(t,x)V̄ (t, x) = max

u∈U
{g(t, x, u) +AuV̄ (t, x)} = 0

for all (t, x) ∈ Q and if the control strategy defined
as u∗ = (u∗(t, xt))t∈[0,T ] is admissible at time 0 (i.e.,
u∗ ∈ UF(0)), then

(1) V̄ (t, x) = supu∈UF(t) J(t, x;u) for all (t, x) ∈ Q̄.

(2) u∗ is an optimal control strategy, i.e., V (0, x) =
J(0, x;u∗).

Equation (7) is the well-known HJB equation associated
with the stochastic optimal control problem (5)-(6).

2.3 Dual Formulation of Controlled Markov Diffusions

In this subsection we present the dual formulation of con-
trolled Markov diffusions based on the perfect information
relaxation, i.e., we can foresee all the future randomness
generated by the Brownian motion so that the decision
made at any time t ∈ [0, T ] is based on the information set
F = FT . To expand the set of feasible controls, we use U(t)
to denote the set of measurable U-valued control strategies
at time t, i.e., u = (us)s∈[t,T ] ∈ U(t) if u is B([t, T ]) × F-
measurable and us takes value in U , where B([t, T ]) is
the Borel σ-algebra on [t, T ]. In particular, U(0) can be
viewed as the counterpart of A introduced in Section 2.1
for MDPs.

A technical problem we have to face with is to define a
solution of (5) with an anticipative control u ∈ U(0).
Since it involves the concept of “anticipating stochastic
calculus”, we refer the readers to Appendix B in Ye and
Zhou [2013], where the decomposition technique is used to
define the solution of an anticipating SDE following Davis
and Burstein [1992], Ocone and Pardoux [1989].

Right now we only need to assume that given a control
strategy u ∈ U(0) there exists a unique solution (xt)t∈[0,T ]

to (5) that is B([0, T ])× F-measurable. Next we consider
the set of penalty functions in the setting of controlled
Markov diffusions. Suppose h(u,w) is a function depend-
ing on a control strategy u ∈ U(0) and a sample path

of Brownian motion w , (wt)t∈[0,T ]. We define the set
MF(0) of dual feasible penalties h that do not penalize
non-anticipative policies in expectation, i.e.,

E0,x[h(u,w)] ≤ 0 for all x ∈ Rn and u ∈ UF(0).

With an arbitrary choice of h ∈MF(0), we can determine
an upper bound on (6) at t = 0 by relaxing the non-
anticipativity constraint on control strategies.

Proposition 3. (Weak Duality). If h ∈MF(0), then for all
x ∈ Rn,

sup
u∈UF(0)

J(0, x;u)

≤E0,x

[
sup

u∈U(0)

{
Λ(xT ) +

∫ T

0

g(t, xt, ut)dt− h(u,w)

}]
.

(8)

Proof. For any ū ∈ UF(0),
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J(0, x; ū) =E0,x

[
Λ(xT ) +

∫ T

0

g(t, xt, ūt)dt

]
≤E0,x

[
Λ(xT ) +

∫ T

0

g(t, xt, ūt)dt− h(ū,w)

]
≤E0,x

[
sup

u∈U(0)

{
Λ(xT ) +

∫ T

0

g(t, xt, ut)dt− h(u,w)

}]
.

Then inequality (8) can be obtained by taking the supremum over
ū ∈ UF(0) on the left hand side of the last inequality.

The optimization problem inside the conditional expec-
tation in (8) is the inner optimization problem in the
context of controlled Markov diffusions (cf. (3)): an entire
path of w is known beforehand (i.e., perfect information
relaxation), and the objective function depends on the
trajectory of w. The expectation term on the right hand
side of (8) is a dual bound on the value function V (0, x).
An interesting case is

h∗(u,w) = Λ(xT ) +

∫ T

0

g(t, xt, ut)dt− V (0, x). (9)

Note that h∗ ∈MF(0), since for all x ∈ Rn and u ∈ UF(0),

E0,x

[
Λ(xT ) +

∫ T

0

g(s, xs, us)ds

]
≤ V (0, x),

by the definition of V (0, x). We also note that by plugging
h = h∗ in the inner optimization problem in (8), the
objective value of which is independent of u and it is
always equal to V (0, x). So the following strong duality
result is obtained.

Theorem 4. (Strong Duality). For all x ∈ Rn,

sup
u∈UF(0)

J(0, x;u)

= inf
h∈MF(0)

{
E0,x

[
sup

u∈U(0)

{
Λ(xT ) +

∫ T

0

g(t, xt, ut)dt− h(u,w)

}]}
.

(10)

The minimum of the right hand side of (10) can always be
achieved by choosing an h ∈MF(0) in the form of (9).

Due to the strong duality result, the left hand side problem
of (10) is referred to as the primal problem and the
right hand side problem of (10) is referred to as the
dual problem. Since the relaxation of the nonanticipativity
requirement on admissible strategies is compensated by a
proper function in MF(0), therefore, we call h ∈MF(0) a
dual feasible penalty. If h is a dual feasible penalty that
achieves the infimum on the right side of (10), we call it
an optimal solution to the dual problem.

We note that the optimal penalty in (9) is intractable in
practice as it requires knowing the exact value of V (0, x).
Proposition 5 below presents an optimal penalty that can
be viewed as the continuous-time analogue of M∗ in (4),
which also guides the numerical studies in Section 3. We
fully develop the relevant results in Appendix B of Ye and
Zhou [2013].

Proposition 5. (Value Function-based Penalty) Suppose
the value function V (t, x) defined in (6) satisfies all the
assumptions in Theorem 2(b). Then under the technical
conditions specified in Theorem 5 of Ye and Zhou [2013],
there is an optimal solution to the dual problem, i.e., an
optimal penalty h∗v(u,w) ∈MF(0) in the form of

h∗v(u,w) =

∫ T

0

Vx(t, xt)
>σ(t, xt)dwt for u ∈ UF(0), (11)

where xt is the solution of (5) using the control u =
(ut)t∈[0,T ] on [0, t) with the initial condition x0 = x.

Since the value functions {V (t, x), 0 ≤ t ≤ T} are
unknown in real applications, (11) implies that if an

approximate value function {V̂ (t, x), 0 ≤ t ≤ T} of
sufficient regularity is given, h∗v can be approximated

by ĥv(u,w) ,
∫ T

0
V̂x(t, xt)

>σ(t, xt)dwt at least for u ∈
UF(0). If we further assume V̂x(t, x)>σ(t, x) satisfies the

polynomial growth condition in x, then E0,x[ĥv(u,w)] =

0 for all x ∈ Rn and u ∈ UF(0). As a result, ĥv(u,w) ∈
MF(0), i.e., ĥv is a dual feasible penalty and can be used
to derive an upper bound on the value function V (0, x)
through (8). Therefore, in terms of the approximation
scheme implied by the form of the optimal penalty, h∗v
is a value function-based penalty for controlled Markov
diffusions (5)-(6).

3. DYNAMIC PORTFOLIO CHOICE PROBLEM

The purpose of this section is to illustrate how the value
function-based penalty in Proposition 5 helps to solve
a discrete-time dynamic portfolio choice problem with
predictable returns and intermediate consumptions. Since
most dynamic portfolio problems can only be solved nu-
merically with suboptimal policies (see, e.g, Cvitanic et al.
[2003], Tauchen and Hussey [1991], Brandt et al. [2005],
Han and van Roy [2011]), it is often hard to tell how far
these policies are from the optimal one. By generating
a tight upper bound on the value function, the duality
gap indicates the performance of suboptimal polices (see,
e.g., Haugh et al. [2006], Brown and Smith [2011]). Under
the dual formulation of MDPs in Section 2.1, we compute
upper bounds on the optimal expected utility using a new
class of penalties that avoid evaluating any conditional
expectation and keep the inner optimization problem easy
to solve.

3.1 The Dynamic Portfolio Choice Model

We first consider a continuous-time financial market with
finite horizon [0, T ], which is built on a probability space
(Ω,F ,P). There are one risk-free asset(cash) and n risky
assets the investor can choose among. The instantaneously
risk-free rate of return is denoted by rf . An m-dimensional
market state variable φt follows a diffusion process

dφt = µφt dt+ σφ,1t dzt + σφ,2t dz̃t, (12)

where z , (zt)0≤t≤T and z̃ , (z̃t)0≤t≤T are two inde-
pendent standard Brownian motions of dimensions n and

d, respectively; µφt , µφ(t, φt), σ
φ,1
t , σφ,1(t, φt) and

σφ,2t , σφ,2(t, φt) are deterministic functions of φt and are
of dimension m, m×n, and m×d, respectively. Denote the
filtration by F = {Ft, 0 ≤ t ≤ T}, where Ft is generated
by {(zs, z̃s), 0 ≤ s ≤ t}.

Let πt , (π1
t , · · · , πnt )> denote the fraction of wealth

invested in the risky assets. The instantaneous rate of
consumption is c̃t. Then the total wealth Wt of a portfolio
that consists of n risky assets and one risk-free asset
evolves as
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dWt =Wt

[
π>t (µtdt+ σtdzt) + rf (1− π>t 1n)dt− c̃tdt

]
=Wt

(
π>t (µt − rf1n) + rf − c̃t

)
dt+Wtπ

>
t σtdzt,

(13)

where the drift µt = µ(t, φt) and the volatility σt = σ(t, φt)
of the risky assets are deterministic functions of φt and
are of dimension n and n× n, respectively; the covariance
matrix σtσ

>
t is denoted by Σt. We use 1n to denote the

n-dimensional all-ones vector. The control u , (ut)0≤t≤T
with ut , (πt, c̃t) is assumed to be an U-valued admissible
strategy (see Definition 1), where the control space U will
be specified later. We still use UF(t) to denote the set of
admissible strategies at time t.

Define U(x) , 1
1−γx

1−γ , an utility function of constant

relative risk aversion (CRRA) type with coefficient γ >
0, which is widely used in economics and finance. The
investor’s objective is to maximize the weighted sum of
the expected utility of the intermediate consumption and
the final wealth:

V (t, φt,Wt) = sup
u∈UF(t)

Et

[∫ T

t

αU(c̃sWs)ds+ (1− α)U(WT )

]
,

(14)

where α implies the relative importance of the intermedi-
ate consumption, and Et[·] , E[·|φt,Wt].

Considering that the investment and consumption can
only take place in a finite number of times in the real world,
we solve the discrete-time counterpart of the continuous-
time problem (12)-(14) by discretizing its time space.
Suppose the decision takes place at equally spaced time
{0 = t0, t1 · · · , tK} such that K = T/δ, where δ = tk+1−tk
for k = 0, 1, · · · ,K − 1. We simply denote the time grids
by {0, 1, · · · ,K} and discretize (12) and (13) as follows:

φk+1 = φk + µφ
k
δ + σφ,1

k

√
δZk+1 + σφ,2

k

√
δZ̃k+1, (15a)

log(Rk+1) = (µk −
1

2
σ2
k)δ + σk

√
δZk+1, (15b)

Wk+1 = Wk(π>k Rk+1) +Wk(1− π>k 1n)Rf −Wkck,

= Wk(Rf + (Rk+1 −Rf1n)>πk − ck), (15c)

where {(Zk, Z̃k), k = 1, · · · ,K} is a sequence of identically
and independently distributed standard Gaussian random
vectors, (15b) follows from the fact that d log(Rt) = (µt−
1
2σ

2
t )dt + σtdzt is equivalent to dRt/Rt = µtdt + σtdzt,

where σ2
t denotes the vector that consists of the diagonal

of Σt. In particular, we use Rf , 1 + rfδ and ck to
approximate erfδ and c̃kδ due to the time-discretization.

Here we abuse the notations φ,W, and π in the continuous-
time and discrete-time settings. However, the subscripts
make them easy to distinguish: the subscripts t ∈ [0, T ]
and k = 0, · · · ,K are used in the continuous-time model
and the discrete-time model, respectively.

Denote the filtration of the process (15) by G =

{G0, · · · ,GK}, where Gk is generated by {(Zj , Z̃j), j =
0, · · · , k}. In our numerical examples we assume that short
sales and borrowing are not allowed, and the consumption
cannot exceed the amount of the risky-free asset. Then the
constraint on the control ak , (πk, ck) for the discrete-time
problem can be defined as

A , {(π, c) ∈ Rn+1|π ≥ 0, c ≥ 0, c ≤ Rf (1− 1>n π)}. (16)

which corresponds to a control set U for the continuous-
time model that is defined as

U , {(π, c̃) ∈ Rn+1|π ≥ 0, c̃ ≥ 0, c̃ ≤ Rf (1− 1>n π)/δ}.

Let AG again denote the set of A-valued control strategies
a , (a1, · · · , aK−1) that are adapted to the filtration G.
Then the value function to the discrete-time problem that
is the discretization of (14) is

H0(φ0,W0) = sup
a∈AG

E0[

K−1∑
k=0

αU(ckWk)δ + (1− α)U(WK)], (17)

which can be solved via dynamic programming:

HK(φK ,WK) = (1− α)U(WK);

Hk(φk,Wk) = sup
ak∈A

{αU(ckWk)δ + Ek[Hk+1(φk+1,Wk+1)]}.

(18)

The rest of this section is devoted to compute the lower
and upper bounds on H0. Particularly, since the utility
function is of CRRA type, both value functions (14) and
(17) have simplified structures

V (t, φt,Wt) = W 1−γ
t J̃(t, φt), (19)

Hk(φk,Wk) = W 1−γ
k

Jk(φk), (20)

where J̃(t, φ) = V (t, φt, 1) and Jk(φk) = Hk(φk, 1). In
particular, Jk is defined recursively as JK(φK) = (1 −
α)/(1− γ) and for k = K − 1, · · · , 0,

Jk(φk) = sup
(πk,ck)∈A

{ α

1− γ
c1−γ
k

δ

+ E
[(
Rf + (Rk+1 −Rf )>πk − ck

)1−γ
Jk+1(φk+1)|φk

]}
.

(21)

3.2 Dual Bounds and Penalties

In this subsection we focus on generating an upper bound
on H0 based on the dual formulation of MDPs (see Section
2.1). We first show that the value function-based penalty
M∗ in Theorem 1 does not directly suggest a tractable
feasible penalty for the problem (15)-(17). As a reme-
dy we will introduce a heuristic and tractable penalty
by discretizing the value function-based penalty of the
continuous-time problem, assuming that an approximate
function of Jk(φ), say Ĵk(φ) (therefore, Ĥk(φk,Wk) ,
W 1−γ
k Ĵk(φk) is an approximation of Hk), and an approx-

imate policy â ∈ AG are available. We do not require that
â should be derived based on Ĵk(φ) and vice versa.

To derive an upper bound on H0, we consider the per-
fect information relaxation that assumes the investor can
foresee the future uncertainty Z = (Z1, · · · , ZK) and

Z̃ = (Z̃1, · · · , Z̃K). A function M(a,Z, Z̃) is a dual feasible
penalty in the setting of dynamic portfolio choice problem
(15)-(17) if for any (φ0,W0),

E[M(a,Z, Z̃)|φ0,W0] ≤ 0 for all a ∈ AG. (22)

LetMG(0) denote the set of all dual feasible penalties. For
M ∈MG(0) we define (LM) (φ0,W0) as (cf. (3))

E
[

sup
a∈A

{K−1∑
k=0

αU(ckWk)δ + (1− α)U(WK)−M(a,Z, Z̃)

}∣∣∣φ0,W0

]
.

(23)

Based on Theorem 1(a), (LM) (φ0,W0) is an upper bound
on H0(φ0,W0) for any M ∈MG(0) .
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To ease the inner optimization problem in the conditional
expectation in (23), we introduce decision variables Πk =
Wkπk and Ck = Wkck, which can be interchangeably used
with πk and ck. We still use a to denote an admissible
strategy, though in terms of (Πk, Ck) now. Then we can
rewrite the inner optimization problem in LM as follows:

max
{Πk,Ck}

{
K−1∑
k=0

αU(Ck)δ + (1− α)U(WK)−M(a,Z, Z̃)} (24a)

s.t. φk+1 = φk + µφ
k
δ + σφ,1

k

√
δZk+1 + σφ,2

k

√
δZ̃k+1, (24b)

log(Rk+1) = (µk −
1

2
σ2
k)δ + σk

√
δZk+1, (24c)

Wk+1 = WkRf + (Rk+1 −Rf1n)>Πk − Ck, (24d)

Πk ≥ 0, Ck ≥ 0, (24e)

Ck ≤ Rf (Wk − 1>nΠk), for k = 0, · · · ,K − 1. (24f)

Note that (24b)-(24d) is equivalent to (15a)-(15c), and(24e)-
(24f) are equivalent to (16). The advantage of this re-
formulation is that the inner optimization problem (24)
has linear constraints. Therefore, we may find the global
maximizer of (24) as long as the objective function in (24a)
is jointly concave in a.

The challenge is to design effective penalties that lead to
tight upper bound and also keep the inner optimization
problem easy to solve. We first investigate the optimal
penalty for the problem (15)-(17) according to (4):

M∗(a,Z, Z̃) =

K−1∑
k=0

∆Hk+1(a,Z, Z̃)

=

K−1∑
k=0

(
Hk+1(φk+1,Wk+1)− E[Hk+1(φk+1,Wk+1)|φk,Wk, ak]

)
(25)

We may approximate Hk by Ĥk = W 1−γ
k Ĵk, however,

it does not mean that ∆Ĥk+1 can be easily computed,
since an intractable conditional expectation Ek[Hk+1], i.e.,
an integral over (n + d)-dimensional space is involved in
(25). Another difficulty is that M∗ enters into (24a) with
possibly positive or negative signs for different realizations
of (Z, Z̃), making the objective of (24) nonconcave, even
if U1 and U2 are concave functions. Therefore, it can be
extremely hard to locate the global maximizer of (24).

As an alternative approximation scheme, we exploit the
value function-based penalty h∗v for the continuous-time
problem (12)-(14) based on Proposition 5, assuming that
all the technical conditions hold. Note that by selecting
xt = (φt,Wt) and Vx = (Vφ, VW ), we can formally write

h∗v(u, z, z̃) =

∫ T

0

(
Vφ(t, φt,Wt)
VW (t, φt,Wt)

)>(
σφ,1t σφ,2t

Wtπtσt 0

)(
dzt
dz̃t

)
=

K−1∑
k=0

∫ (k+1)δ

kδ

[
Vφ(t, φt,Wt)

>σφ,1t dzt

+ Vφ(t, φt,Wt)
>σφ,2t dz̃t + VW (t, φt,Wt)Wtπtσtdzt

]
,

=

K−1∑
k=0

∫ (k+1)δ

kδ

[
W 1−γ
t ∇φJ̃(t, φt)

>σφ,1t dzt

+W 1−γ
t ∇φJ̃(t, φt)

>σφ,2t dz̃t + (1− γ)W 1−γ
t J̃(t, φt)πtσtdzt

]
, (26)

for u = (πt, c̃t)0≤t≤T ∈ UF(0), where the last equality holds
due to structure of the value function (19). In particular,

we use ∇φ to denote the gradient of the function J̃ with
respect to φ. Motivated by the fact that our discrete-time

model is discretized from the continuous-time model, we
propose the following function to approximate (25), i.e.,

M1(a,Z, Z̃)

,

K−1∑
k=0

[
Ψ1
k+1(a,Z, Z̃) + Ψ2

k+1(a,Z, Z̃) + Ψ3
k+1(a,Z, Z̃)

]
, (27)

where Ψ1
k+1(a,Z, Z̃) =W̄ 1−γ

k
∇φĴk(φ̄k)>σ̄φ,1

k

√
δZk+1,

Ψ2
k+1(a,Z, Z̃) =W̄ 1−γ

k
∇φĴk(φ̄k)>σ̄φ,2

k

√
δZ̃k+1,

Ψ3
k+1(a,Z, Z̃) =(1− γ)W̄−γ

k
Ĵk(φ̄k)Π>k σ̄k

√
δZk+1.

Here φ̄k, σ̄φ,1k ,σ̄φ,2k are the realization of φk, σφ,1k ,σφ,2k based

on the realization of (Z, Z̃), and W̄k is the realization

of Wk under the strategy â = (â0, · · · , âK−1); Ĵk(·) and

∇φĴk(·) are approximations of Jk and its (sub)gradient
with respect to φ.

Note that for a fixed realization of (Z, Z̃), M(a,Z, Z̃) in
(27) is linear in Πk (hence, in a), therefore, the objective
function (24a) is jointly concave in a. As a result, the inner
optimization problem (24) remains a convex optimization
problem and can be efficiently solved.

To find some variants of the penalties while still keeping
the inner optimization problem convex, we also generate
Ψ̆1
k+1 based on a first-order Taylor expansion of Ψ1

k+1

around the strategy âk−1 = (Π̂k−1, Ĉk−1):

Ψ̆1
k+1(a,Z, Z̃)

=
[
W̄ 1−γ
k

+ (1− γ)W̄−γ
k

(
(R̄k −Rf1n)>(Πk−1 − Π̄k−1)

− (Ck−1 − C̄k−1)
)]
· ∇φĴk(φ̄k)>σ̄φ,1

k

√
δZk+1,

where R̄k is the realization of Rk based on the realization
(Z, Z̃), while Π̄k−1 and C̄k−1 are the realized decisions

made according to the strategy âk−1. Then Ψ̆1
k+1 is affine

in Πk−1 and Ck−1. We can also obtain a variant of Ψ2
k+1,

say Ψ̆2
k+1, in exactly the same way. Since Ψ3

k+1 is already
linear in Πk, we do not linearize it with respect to âk−1.
In our numerical experiments we will also consider dual
bounds induced by (24) with M = M2, where

M2(a,Z, Z̃)

,

K−1∑
k=0

[
Ψ̆1
k+1(a,Z, Z̃) + Ψ̆2

k+1(a,Z, Z̃) + Ψ3
k+1(a,Z, Z̃)

]
. (28)

Finally, we can easily justify that M1 and M2 are dual
feasible penalties in the sense of (22).

Proposition 1. The functions M1 in (27) and M2 in (28)
are dual feasible penalties, i.e., M1,M2 ∈ MG(0). Hence,
LM1 and LM2 are upper bounds on H0.

Proof. We observe that with a fixed non-anticipative policy â ∈ AG,
it is obvious that φ̄k, W̄k, Ĵk(φ̄k), ∇φĴk(φ̄k), σ̄k, and σ̄φ,j

k
, j = 1, 2,

are naturally Gk-adapted for k = 0, · · · ,K−1. We also note that Πk
is Gk-adapted due to a ∈ AG. Since Zk+1 and Z̃k+1 have zero means
and are independent of Gk and (φ0,W0), we have for any (φ0,W0),

E[Ψik+1(a,Z, Z̃)|φ0,W0] = 0 for all a ∈ AG,

for i = 1, 2, 3. So E[M1(a,Z, Z̃)|φ0,W0] = 0 for all a ∈ AG, and hence
M1 ∈MG(0). Since the same argument can apply on Ψ̆ik+1(a,Z, Z̃)
for i = 1, 2, it can be concluded that M2 ∈MG(0).

The penalties in the forms of (27) and (28) bear several ad-
vantages: first, it can be evaluated without computing any
conditional expectation, i.e., a substantial computational
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work can be avoided; second, the design of the penalty
function is quite flexible: we can use any admissible policy
to obtain a valid penalty, and we can choose to do a
linearization around this policy, which makes the inner
optimization problem (24) computationally tractable.

3.3 Numerical Experiments

In this section we discuss the use of Monte Carlo simula-
tion to evaluate the performance of the suboptimal policies
and the dual bounds on the expected utility (17).

• Problem parameters: we consider a model with three risky
assets (n = 3) and one market state variable (m = 1); T = 1
year and δ = 0.1 year; the weight of the intermediate utility
function: α = 0.5; the initial condition: φ0 = 0 and W0 = 1;
control space: A in (16); µφ

k
= −λφk, µk = µ0 +µ1φk, σk ≡ σ,

σφ,1
k
≡ σφ,1, and σφ,2

k
≡ σφ,2. The values of rf , λ, µ0, µ1, σ,

σφ,1, and σφ,2 are listed in Table 1 and 2.

Table 1. Parameter Set 1

µ0 µ1 σ rf

log(R)

(
0.081
0.110
0.130

) (
0.034
0.059
0.073

) (
0.186 0.000 0.000
0.228 0.083 0.000
0.251 0.139 0.069

)
0.01

φ λ σφ,1 σφ,2

0.336
(

-0.741 -0.037 -0.060
)

0.284

Table 2. Parameter Set 2

µ0 µ1 σ rf

log(R)

(
0.081
0.110
0.130

) (
0.034
0.059
0.073

) (
0.186 0.000 0.000
0.228 0.083 0.000
0.251 0.139 0.069

)
0.01

φ λ σφ,1 σφ,2

1.671
(

-0.017 0.149 -0.058
)

1.725

We first derive Ĵk(·), ∇φĴk(·), and a suboptimal policy â
using the state-space discretization method: we approxi-
mate each φk with 21 evenly spaced grids from −2 to 2,
and the random variables Zk and Z̃k are approximated
by Gaussian quadrature method with 3 points for each
dimension(see, e.g., Judd [1998]). To compute the condi-
tional expectation in (21), we simply ignore the correlation
between φk+1 and Rk+1 and assume they are independent
conditional on φk. For the optimization problem in (21) we
use CVX, a package to solve convex optimization problems
in MATLAB, to determine the optimal policy on each grid
of φk at time k. We record the value function and the cor-
responding policy on this grid at each time k = 0, · · · ,K.
Since the market state variable φk is one dimensional, the
value function and the policy can be naturally defined
on φk that is outside the grid by piecewise linear inter-
polation. In our numerical implementation the extended
value function and the extended policy play the roles of
Ĵk(φk) and â; and we take the slope of the piecewise linear

function Ĵk(φ) as ∇φĴk(φ), if φ is between the grid points;
otherwise, we can use the average slope of two consecutive
lines as ∇φĴk(φ).

We then apply the aforementioned policy â to get an
estimate of the lower bound on H0 by generating 100
random sequences of (Z, Z̃), which is referred to as “Lower
Bound” in Table 3; based on each random sequence we can
solve the inner optimization problem (24) with the penalty
M1 in (27) and M2 in (28), respectively, which leads to

an estimate of upper bounds on H0; these two bounds
are referred to as “Dual Bound 1” and “Dual Bound
2”. To see the effectiveness of these proposed penalties,
we use zero penalty and repeat the same procedure to
compute the upper bounds that are referred to as “Zero
Penalty”. We present our numerical results in Table 3 and
4: these bounds on H0 are reported in the sub-column
“Value”, where each entry shows the sample average and
the standard error (in parentheses) of 10 independent
runs of the above procedures; in the sub-column “CE”
we report the certainty equivalent of the expected utility
(also reported in Cvitanic et al. [2003]), i.e., the equivalent
wealth at time T = 1, where “CE” is defined through
U(CE) = Value. For ease of comparison, in the column
“Duality Gap” we report the smaller difference (in relative
sense) between “Lower bound” and two “Dual Bounds” on
the expected utility and its certainty equivalent.

We consider utility functions with different relative risk
aversion coefficients γ = 1.5, 3.0, and 5.0, which reflect
low, medium and high degrees of risk aversions. The dual
bounds induced by the zero penalty perform poorly as we
expected. On the other hand, it is hard to distinguish
the performance of “Dual Bound 1” and “Dual Bound
2”, which may imply that Ψ3

k+1 plays an essential role in
the inner optimization problem in order to make the dual
bounds tight in this problem. We observe that the duality
gaps on H0 are generally smaller when γ is small, implying
that both the approximate policy and penalties are near
optimal. As γ increases, the duality gaps of the expected
utility generally become larger; however, the duality gaps
in terms of “CE” are kept at a relatively constant range
for different γ, which implies that the sub-optimal policies
derived for different γ are good enough considering the
the certainty equivalent wealth. There are several possible
reasons for the enlarged duality gaps with increasing γ.
Note that the utility function U(x) is a power function
(with negative power of 1 − γ) of x and it decreases at
a higher rate with larger γ, as x approaches zero. This
is reflected by the fact that both the lower and upper
bounds on the value function H0 decrease rapidly with
higher value of γ. In the case of evaluating the upper
bounds on H0, it can be inferred that with larger γ the
objective value (24a) is more sensitive to the solution of
the inner optimization problem (24), and hence the quality
of the penalty functions. In other words, even a small
deviation from the optimal penalty will lead to significant
deterioration on the quality of the dual bound. In our case
the heuristic penalty is derived by discretizing the value
function-based penalty for the continuous-time problem;
however, this penalty may become farther away from
optimal for the discrete-time problem when γ increases.
The performance of the sub-optimal policy also influences
the quality of the penalty function, since the penalties M1

and M2 involve the wealth W̄k induced by the suboptimal
policy and its error compared with the wealth under the
optimal policy will be accumulated over time. Hence, the
increasing duality gaps on the value function with larger
risk aversion coefficients are contributed by both sub-
optimal policies and sub-optimal penalties.

4. CONCLUSION

In this paper we study the dual formulation of controlled
Markov diffusions based on the information relaxation
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Table 3. Results with Parameter Set 1

Lower Bound Dual Bound 1 Dual Bound 2 Zero Penalty Duality Gap

γ Value CE Value CE Value CE Value CE Value CE

1.5 −5.480 0.1332 −5.391 0.1376 −5.392 0.1376 -4.861 0.1693 1.61% 3.30%
(0.003) (0.0001) (0.008) (0.0004) (0.007) (0.0004) (0.012) (0.0008)

3.0 −42.887 0.1080 −39.227 0.1129 −39.873 0.1120 -27.562 0.1347 7.53% 3.70%
(0.036) (0.0001) (0.164) (0.0002) (0.317) (0.0004) (0.252) (0.0006)

5.0 −2445.9 0.1005 −2066.5 0.1049 −2025.5 0.1054 -1105.7 0.1226 15.51% 4.38%
(1.635) (0.0001) (22.019) (0.0003) (17.833) (0.0002) (16.438) (0.0004)

Table 4. Results with Parameter Set 2

Lower Bound Dual Bound 1 Dual Bound 2 Zero Penalty Duality Gap

γ Value CE Value CE Value CE Value CE Value CE

1.5 −5.466 0.1339 −5.380 0.1382 −5.381 0.1381 -4.864 0.1691 1.56% 3.14%
(0.005) (0.0001) (0.011) (0.0006) (0.015) (0.0008) (0.020) (0.0008)

3.0 −42.585 0.1084 −39.645 0.1123 −39.690 1.1122 -27.708 0.1343 6.80% 3.51%
(0.081) (0.0001) (0.229) (0.0003) (0.155) (0.0002) (0.209) (0.0005)

5.0 −2431.6 0.1007 −2043.8 0.1052 −2040.7 0.1052 -1122.1 0.1222 15.95% 4.47%
(7.510) (0.0001) (11.881) (0.0002) (19.882) (0.0003) (9.842) (0.0004)

duality approach. This dual formulation can be used to
derive a dual bound on the value function associated
with the controlled diffusion. In particular, we explore
the structure of the value function-based optimal penalty,
which is the underpinning of developing near-optimal
penalties that lead to tight dual bounds. We illustrate
the use of this dual formulation in a dynamic portfolio
choice problem that is discretized from a continuous-time
model: we proposed a class of penalties that can be viewed
as discretizing the value function-based penalty for the
continuous-time problem, and these new penalties makes
the inner optimization problem computationally tractable.
These numerical studies complement the existing examples
of applying the dual approach to continuous-state MDPs.
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