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Abstract: Riblets have been used as a passive method of reducing the drag of a fluid flowing
over an airfoil. Riblets are structures that run parallel to one another that are positioned
longitudinally to the flow. It has been shown experimentally that the drag coefficients over
the surface can be reduced by up to 10% when the shape, spacing and height of the riblets
are optimized. However, the mechanism of drag reduction is not fully understood. This paper
investigates the effects of riblets on energy amplification in streamwise constant channel flow.
The linearized Navier-Stokes equations are described by the two-dimensional/three-component
model. The irregular domain is converted into a uniform one through a change of coordinates.
Spectral methods are used to discretize these equations, leading to a finite-dimensional state
space model. The transient growth and H2 norm of the flow system are calculated, which shows
that the presence of riblets can reduce the transient growth and H2 norm of channel flow.

1. INTRODUCTION

The increasing cost of fuel and the need to reduce green
house gas emissions have driven research into drag re-
duction techniques in many engineering disciplines. There
are two types of drag reduction techniques available -
active and passive techniques, and this paper focuses on
a passive mechanism, which is the use of riblets. Experi-
mental and numerical studies show that the introduction
of riblet structures on the aerodynamic body results in
significant reduction in drag (Walsh, 1983). This drag-
reduction phenomenon is also widely observed in nature,
for examples on shark skin and scallop shells (Bhushan,
2012). In the 1990’s, tests on a scale model of an Airbus
A320 cruising at Mach 0.7 showed reductions in viscous
drag of 4.85% (Viswanath, 2002). Riblets have also been
successfully used in applications other than aircrafts, for
example on America’s Cup racing yachts (Coustols and
Savill, 1992), rowing skiffs and on the swimsuits used by
the USA Olympic swimming team. Since the boundary
layers in aircrafts are almost always turbulent, most stud-
ies have been focusing on investigating the effects of riblets
on the drag reduction in turbulent flow (Garćıa-Mayoral
and Jiménez, 2011). There has been less emphasis on the
effects of riblets on laminar flow. It is reported in Choi
et al. (1991) that drag reduction was not obtained in
laminar flows over riblets and the net drag was increased.
While the experimental and numerical studies in Djenidi
et al. (1994) conclude that the drag was not increased in
laminar boundary layer over riblets. Moreover, it has been
shown experimentally that riblets can delay the laminar-
turbulent transition and shift the transition downstream
(Grek et al., 1996).

This paper considers the effects of riblets on energy am-
plification in laminar streamwise constant channel flow.
Energy amplification has been identified as one possible

explanation for the subcritical transition of channel flows
(Schmid, 2007). It has been shown that due to the non-
normality of the Orr-Sommerfeld operator, the flow can
experience large energy amplification even when all the
eigenvalues have negative real parts (Reddy and Henning-
son, 1993). The subcritical transition may be delayed if
the presence of riblets can reduce the energy amplification
in the laminar flow.

The analysis starts from the Navier-Stokes equations
(NSE) of the flow over riblets. After linearizing about the
steady state, a two-dimensional/three-component (2D/3C)
model describing the streamwise invariant perturbation
velocity field is derived. The reason for restricting our
attention to streamwise independent flow modes is that
it has been shown that in plane Poiseuille flow both the
largest transient growth and maximal amplification of
external excitations are identified at streamwise constant
flow modes (Schmid and Henningson, 2001; Schmid, 2007).
The advantage of the 2D/3C formulation is that no inver-
sion of ill-conditioned operators is needed. The presence
of riblets leads to an irregular domain, which is shifted
to a space with smooth boundaries by a change of co-
ordinates. The boundary conditions are also transformed
to the new coordinate system. The infinite-dimensional
system model is then discretized using a Chebyshev collo-
cation method in the wall-normal direction and a Fourier
Galerkin method in the spanwise direction. After obtaining
the resulting finite-dimensional model of the linearized
flow, the effects that how the introduction of riblets alters
the transient growth and H2 norm are examined. Our re-
sults show that both the transient growth of most sensitive
initial conditions and energy amplifications of stochastic
forcing can be reduced by the presence of riblets. This
suggests that the suppression of the energy amplification
may delay the transition to turbulence, resulting in a
reduction in drag.
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The paper is organized as follows. Section 2 describes
the governing equations of channel flow over riblets and
obtains the steady state velocity profile. The equations
modelling the perturbed flow are then linearized about
the steady state and expressed in the 2D/3C form in
Section 3. In Section 4, the ribbed domain is converted
into a smooth domain by a transformation of coordinates
and boundary conditions in the new coordinate system are
derived. The semi-discrete (continuous in time and discrete
in space) formulation of the model is obtained in Section 5
by discretizing the flow equations with spectral methods.
The transient growth and H2 norm of the flow system are
calculated in Section 6 and Section 7 concludes the paper.

Notation: A dot over a variable denotes its time derivative,
superscripts T and ∗ denote transpose and conjugate trans-
pose, respectively. [−1, 1] is the continuous set including
the endpoints and all numbers between −1 and 1, while
{−1, 1} is the discrete set which includes only −1 and 1.
We borrow some notation from MATLAB, such as diag,
chol and trace.

2. EQUATIONS OF MOTION

We consider channel flow between two stationary plates.
The geometry of the problem is shown in Fig. 1, where x̃, ỹ
and z̃ are the coordinates of the streamwise, wall-normal
and spanwise directions, respectively. The upper wall is
a flat plate, while the lower wall is a plate with riblets
aligned with the streamwise direction. The dimensions of
the problem are normalized, so that the upper boundary of
the flow occurs at the plate positioned at ỹ = 1, while the
lower boundary is at ỹ = −1 + f(z̃) where f(z̃) describes
the “shape” of the riblets. The analysis will be restricted
to riblets that are aligned with the streamwise direction
and are independent of x̃. The flow will be referred to as
plane channel flow when both walls are smooth.

Fig. 1. Three-dimensional view of computational domain
showing riblet structure on lower wall of channel.

The streamwise, wall-normal and spanwise components of
the flow in the coordinate system (x̃, ỹ, z̃) are denoted by
u(x̃, ỹ, z̃, t), v(x̃, ỹ, z̃, t) and w(x̃, ỹ, z̃, t) respectively, and
the non-dimensionalized NSE in this coordinate system
are given by
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∂ỹ
+
∂w

∂z̃
= 0 (4)

where

∆̃ =
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+
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∂ỹ2
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and the Reynolds number Re is defined as

Re =
ρ?U?h?

µ?
(6)

with ρ? and µ? being the density and dynamic viscosity
of the fluid, h? is the length by which the wall-normal
domain is normalized to [−1 + f(z̃), 1], and U? is the
characteristic velocity induced by steady state streamwise
pressure gradient P ?x̃

U? = −h
?2P ?x̃
4µ?

(7)

Note the star ? is used to denote dimensional variables.

We seek a steady solution to this system of the form
(U, 0, 0) with no external forces, so that the NSE become

U
∂U

∂x̃
=−∂P

∂x̃
+

1

Re
∆̃U (8)

0 =−∂P
∂ỹ
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∂U
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= 0 (11)

we can conclude that
dP

dx̃
=

1

Re
∆̃U = − 2

Re
(12)

3. LINEARIZED EQUATIONS

We restrict our attention to streamwise constant pertur-
bations. Redefining the flow as (U + u, v, w, P + p) where
u(ỹ, z̃, t), v(ỹ, z̃, t), w(ỹ, z̃, t) and p(ỹ, z̃, t) denote the veloc-
ity and pressure perturbations, and linearizing about the
steady solution gives the 2D/3C model
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Taking ∂
∂z̃ of (14), ∂

∂ỹ of (15) and eliminating the pressure
terms gives
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Since v and w are related by the continuity equation (16),
we can define a stream function ψ(ỹ, z̃, t) such that

∂ψ

∂z̃
(ỹ, z̃, t) = v(ỹ, z̃, t) (18)

∂ψ

∂ỹ
(ỹ, z̃, t) =−w(ỹ, z̃, t) (19)

Now (17) can be rewritten as

∂

∂t
∆̃ψ =

1

Re
∆̃2ψ (20)

Equations (13) and (18)-(20) can be combined to give

Eẋ =Ax (21)

y = Cx (22)

where x = [u ψ]
T

, y = [u v w]
T

, and

E =

[
1 0

0 ∆̃

]
(23)
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 1
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∂U

∂z̃

∂
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∂ỹ

∂
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1
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C =


1 0

0
∂

∂z̃

0 − ∂

∂ỹ

 (25)

As in plane channel flow, the perturbations are assumed
to be periodic in the spanwise direction, with no-slip
conditions at solid boundaries, i.e.,

u|ỹ=1 = v|ỹ=1 = w|ỹ=1 = 0 (26)

u|ỹ=−1+f(z̃) = v|ỹ=−1+f(z̃) = w|ỹ=−1+f(z̃) = 0 (27)

4. TRANSFORMATION OF COORDINATES

Spectral methods are used to discretize the resulting gov-
erning equations with all operators replaced by appro-
priate differentiation matrices. One problem with this
approach is the poor accuracy and efficiency of spectral
methods on irregular domains (Boyd, 2001). To circumvent
this difficulty, we apply the following change of coordinates
(Orszag, 1980)

x = x̃, y = F (ỹ, z̃) =
2ỹ − f(z̃)

2− f(z̃)
, z = z̃ (28)

which has the effect of mapping ỹ ∈ [−1 + f(z̃), 1] to
y ∈ [−1, 1]. Note that

∂
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∂ỹ
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∂ỹ
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∂ỹ
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∂

∂z
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∂

∂z
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∂
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where ∂F
∂ỹ = 2

2−f(z) ,
∂F
∂z̃ = (y−1)f ′(z)

2−f(z) with f ′(z) being the

first derivative of f(z) with respect to z. All the operators
can be transformed into the new coordinates in the same
manner, although the expressions are rather cumbersome.

The boundary conditions (26) and (27) can now be trans-
formed to

u|y=±1 = v|y=±1 = w|y=±1 = 0 (31)

From the boundary conditions of w, we have

∂ψ

∂ỹ

∣∣∣∣
y=±1

=
∂F

∂ỹ

∂ψ

∂y

∣∣∣∣
y=±1

= 0 (32)

which means that
∂ψ

∂y

∣∣∣∣
y=±1

= 0 (33)

Similarly, from the boundary conditions of v,

∂ψ

∂z̃

∣∣∣∣
y=±1

=

[
∂ψ

∂z
+
∂F

∂z̃

∂ψ

∂y

]∣∣∣∣
y=±1

= 0 (34)

which together with (33) yields

∂ψ

∂z

∣∣∣∣
y=±1

= 0 (35)

Due to the assumption that the velocity field is periodic
in the spanwise direction, this condition leads to

ψ|y=±1 = 0 (36)

To sum up, in the new coordinate system, both u and
ψ satisfy homogeneous Dirichlet boundary conditions,
while ψ also satisfies homogeneous Neumann boundary
conditions.

5. SEMI-DISCRETE FORMULATION

The riblet structure is taken to be periodic in the z (and
z̃) direction with period 2π/γ. It is assumed that the
steady-state flow U(y, z), which is described by the Poisson
equation

∆̃U = −2 (37)
and the perturbation velocity field are both periodic in
z direction with wavenumber β. Since the period of the
velocity field must be an exact multiple of that of the
riblets, Q = γ/β is an integer.

We normalize the spanwise domain [0, 2π/β] to [0, 2π],
then in the normalized domain, the variables can be
expressed as Fourier series such as

v(y, z, t) =

∞∑
n=−∞

v̂n(y, t)einz (38)

f(z) =

∞∑
n=−∞

f̂neinz (39)

and f̂n = 0 for all n 6= mQ wherem is an integer. When the
spacing between riblets is small, as is usually the case for
flow with high Reynolds numbers, then Q is large, which

means that only coefficients f̂n for values of n that are
multiples of Q are nonzero, and this sparsity is exploited
in the solution of the problem.

The steady flow U can be solved numerically by discretiz-
ing (37) using a Chebyshev collocation method in the y
direction and a Fourier Galerkin method in the z direction.
In the new coordinate system, the Laplacian operator ∆̃
becomes

∆̃ = K1
∂

∂y
+K2

∂2

∂y∂z
+K3

∂2

∂y2
+K4

∂2

∂z2
(40)
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where the expressions Ki(y, z), i ∈ {1, 2, 3, 4} are known
and can be expressed in terms of Fourier series

Ki(y, z) =

∞∑
n=−∞

k̂(i)n (y) einz (41)

Moreover, it can be shown that k̂
(i)
n (y) is nonzero only when

n is an exact multiple of Q.

Using these expansions in (37), applying the convolution
theorem for Fourier series and rearranging leads to

∞∑
n=−∞

einz
∞∑

m=−∞
k̂
(3)
n−m(y)

d2Ûm
dy2

+
[
k̂
(1)
n−m(y)+

imk̂
(2)
n−m(y)

]dÛm
dy
−m2k̂

(4)
n−m(y) Ûm(y) = −2 (42)

Defining an inner product as

〈p(y, z)q(y, z)〉 =

∫ 2π

0

p∗(y, z) q(y, z)dz (43)

and taking the inner product of the expression in (42)
with a Galerkin test function ei`z, where the summation is
limited to 2M + 1 terms, we have

2π

M∑
m=−M

k̂
(3)
`−m(y)

d2Ûm
dy2

+
[
k̂
(1)
`−m(y) + imk̂

(2)
`−m(y)

] dÛm
dy

−m2k̂
(4)
`−m(y) Ûm(y) = b` (44)

where

b` =

{
−4π for ` = 0

0 for ` 6= 0
(45)

which represents 2M + 1 coupled second order, ordinary
differential equations. The values of Ûm(y) can be solved
numerically at the Chebyshev Gauss Lobatto points on
y ∈ [−1, 1] by stacking the values of Ûm(y) at N sample

points into a vector Û ∈ C(2M+1)N , so that

Û =
[

Û−M . . . Û−1 Û0 Û1 . . . ÛM

]T
(46)

where Ûm ∈ CN are the samples of Um(y) at theN Cheby-
shev points. The discretized version of the coupled ODE’s
in (44) take the form ∆̃Û = b where b ∈ C(2M+1)N con-

tains the terms b`. The matrix ∆̃ ∈ C(2M+1)N×(2M+1)N

consists of a series of blocks [∆̃]`,m ∈ CN×N , that satisfy

[∆̃]`,m = diag
{

k̂
(3)
`−m

}
D2
N + diag

{
k̂
(1)
`−m + im k̂

(2)
`−m

}
DN

− diag
{
m2k̂

(4)
`−m

}
(47)

where DN ∈ RN×N and D2
N ∈ RN×N are the first and

second order Chebyshev differentiation matrices with the
homogeneous Dirichlet boundary conditions imposed on,

respectively, and k̂
(i)
`−m ∈ CN are vectors obtained by

sampling k̂
(i)
`−m(y) at the Chebyshev points.

The key point is that because k̂
(i)
`−m(y) is only nonzero

when `−m is an exact multiple of Q, the ∆̃ matrix has
the structure shown in Figure 2(a), where each of the
individual blocks has dimension N by N . By rearranging
the order of the terms in Û, the structure of the ∆̃ matrix
can be arranged into the block diagonal form shown in
Figure 2(b), which consists of Q blocks.
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Fig. 2. Structure of ∆̃ matrix (a) before rearranging (b)
after rearranging

Equations (21)-(22) can be discretized via the same meth-
ods that were used to solve the steady solution U , although
the implementation is more laborious. Chebyshev differ-
entiation matrices implemented by Weideman & Reddy
(Weideman and Reddy, 2000) are used in the calculation.
Then a finite-dimensional state space model of the lin-
earized flow can be expressed as

E ˙̂x = Ax̂ (48)

ŷ = Cx̂ (49)

where E,A and C are the discretized versions of the corre-
sponding operators. x̂ and ŷ are vectors stacking the values
of Fourier coefficients of x and y at the sample points,
respectively. The matrices can also be made block diagonal
by rearranging the structures. Since E is well-conditioned,
it is possible to invert the matrix without introducing non-
negligible errors. Now we are able to describe the system
with the standard state space representation

˙̂x = Âx̂ (50)

ŷ = Ĉx̂ (51)

with Â = E−1A and Ĉ = C.

The kinetic energy density of the perturbation is defined
as

E =
1

2

∫ z̃=2π

z̃=0

∫ ỹ=1

ỹ=−1+f(z̃)

(
u2 + v2 + w2

)
dỹdz̃ (52)

which in the new coordinate system is

E =
1

2

∫ z=2π

z=0

∫ y=1

y=−1

(
u2 + v2 + w2

)( 1
∂F
∂ỹ

)
dydz (53)

and in the discrete formulation becomes

E = ŷ∗Ŵyŷ = x̂∗Ĉ∗ŴyĈx̂ (54)

Defining Ŵx = Ĉ∗ŴyĈ and F̂x = chol(Ŵx), the
energy norm and the standard Euclidean norm of vector
x̂ is related by ‖x̂‖E = ‖F̂xx̂‖2. Similarly, denote F̂y =

chol(Ŵy), then ‖ŷ‖E = ‖F̂yŷ‖2. By a change of variables

x̌ = F̂xx̂ and y̌ = F̂yŷ, the representation of the system
can be transformed to

˙̌x = Ǎx̌ (55)

y̌ = Čx̌ (56)

with Ǎ = F̂xÂF̂−1x and Č = F̂yĈF̂−1x .

The discretization resolutions used to obtain the results
reported in the following section were checked to ensure
that they are sufficiently high.
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6. EFFECTS OF RIBLETS ON ENERGY
AMPLIFICATION

In the remainder of the paper we shall consider sinusoidal
riblets which take the form f(z) = κ sin(γz), although the
analysis is generally applicable to any riblet whose shape
function is fourth differentiable. The dimensionless steady
state velocity profile U(ỹ, z̃) at γ = 8 and κ = 0.04 is
depicted in Fig. 3.

0

2

4

6

0
0.2

0.4
0.6

0.8

−1

−0.5

0

0.5

1

z̃

U(ỹ, z̃)

ỹ

Fig. 3. Steady state velocity profile of channel flow over
riblets, γ = 8, κ = 0.04

6.1 Most Unstable Eigenvalues

In order to see how the presence of riblets alters the
linear stability of the flow system, the eigenvalues of Â are
calculated. Due to the structure of operator A, change of
Reynolds number Re only scales the eigenvalues. Therefore
it suffices to compute the eigenvalues at one Reynolds
number. The time of calculating the eigenvalues and eigen-
vectors of Â is reduced by a factor of roughly Q2 due to
the sparsity of the matrix. Fig. 4 plots the eigenvalue with
largest real part Λ against Q at Re = 600, β = 2, κ = 0.02.
As a comparison, the most unstable eigenvalue in the
absence of riblets is Λc = −4.112 × 10−3, which is shown
in the red line.

0 5 10 15
−4.135

−4.13

−4.125

−4.12

−4.115

−4.11
x 10

−3

Q = γ/β

Λ

Fig. 4. Effects of riblets on Λ, Re = 600, β = 2, κ = 0.02.

Note that Q = γ/β stands for the number of riblets within
one period of perturbation velocity field. It therefore
means that in the case considered, the smaller the riblet
spacing, the more linearly stable the flow.

6.2 Transient Growth without External Forcing

In this subsection, the effects of riblets on the transient
energy growth of the linearized channel flow are investi-

gated. It is now well known that although the streamwise
constant plane channel flow is always linearly stable, due
to the nonnormality of the Orr-Sommerfeld operator, with
certain initial perturbations, the kinetic energy of the
flow can grow rapidly before decaying eventually and this
phenomenon is known as transient growth (Schmid, 2007).
It has been identified that the streamwise constant flow is
the modes which can have the largest transient growth
(Schmid and Henningson, 2001). The largest possible en-
ergy amplification factor is shown to behave like O(Re2)
in plane channel flow (Reddy and Henningson, 1993).

The maximal energy amplification factor at time t is
defined as

G(t) = sup
x̌0 6=0

‖x̌(t)‖22
‖x̌0‖22

= ‖ exp(Ǎt)‖22 = ‖F̂x exp(Ât)F̂−1x ‖22
(57)

and it is essentially an optimization over all initial condi-
tions. For ease of reference, we define G = suptG(t), which
is an optimization over time t.

Denote Gc as the maximal amplification factor G for
streamwise constant plane Poiseuille flow at Re = 600, β =
2, it is straightforward to use the methods specified in
Schmid and Henningson (2001) to obtain Gc ≈ 70.772,
which occurs at t ≈ 46. Note that this value can also
be obtained by setting κ = 0 and carrying out the
computation described previously. The relative error is of
order 10−7. We use Gc as a benchmark to check how G is
changed by the presence of riblets with κ = 0.02. To reduce
the computing time, a number of most stable eigenmodes
of Â are discarded in the calculation. This strategy was
employed in Reddy and Henningson (1993) and the details
can be found in Schmid and Henningson (2001). The result
is illustrated in Fig. 5, where (G/Gc − 1)× 100 is plotted
against Q.

0 5 10 15
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Q = γ/β

(
G
/
G

c
−
1
)
∗
1
0
0

Fig. 5. Effects of riblets on G, Re = 600, β = 2, κ = 0.02.

As can be seen, the presence of sinusoidal riblets can
indeed reduce G with the exception at Q = 2. The
percentage of reduction is monotonically increasing with Q
between 2 and 14, suggesting that the smaller the spacing
of riblet is, the smaller G is. The calculation for larger Q
is very expensive and therefore is not carried out here.

What is interesting is that at Q = 2, although Λ < Λc, G
is larger than Gc. A closer examination reveals that the
second rightmost eigenvalue of Â at Q = 2 is increased
by riblets. While for other Q, this particular eigenvalue is
decreased. This might be the reason that G is increased at
Q = 2.
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The behavior of G at Re = 1000 is very similar to that
at Re = 600, although the exact percentages of reduction
are not identical. This is probably because the change of
eigenvalues by riblets has a dominant effect on G.

Our computation shows that G decreases with increasing
κ, but it should be noted that κ should be reasonably
small, otherwise the laminar pressure gradient will be
changed and the model will no longer be valid.

6.3 Energy Amplification with Stochastic Forcing

This subsection is concerned with the energy amplification
of the fluid flow system subject to stochastic forcing
which models background noise. For simplicity, the energy
of the noise is assumed to be unity. Studies of energy
amplification of stochastic forcing in plane channel flow
were conducted in Butler and Farrell (1992) and Bamieh
and Dahleh (2001). It has been shown analytically that the
energy amplification of streamwise constant channel flow
with stochastic excitation can be as high as O(Re3). The
situation is more involved with the presence of riblets and
the analysis here is carried out numerically.

Since we assume that the stochastic forcing has unit
energy, the model of system (55)-(56) becomes

˙̌x = Ǎx̌ + ďw (58)

y̌ = Čx̌ (59)

The energy amplification factor of the system is given by
trace(ČΩ̌Č∗) with Ω̌ being the controllability grammian,
which is the solution of the Lyapunov equation

ǍΩ̌ + Ω̌Ǎ∗ = −I (60)

where I is an identity matrix. Using the identities of matrix
trace, it is not difficult to verify that trace(ČΩ̌Č∗) =
trace(Ω̌).

The square root of trace(Ω̌) is theH2 norm of the system.
By comparing the H2 norms of channel flow over riblets
and over flat plates, we can see how the riblets affect the

energy amplification. Denote T as
√
trace(Ω̌) at κ =

0.02,Re = 600, β = 2 and Tc as the value without riblets.
Fig. 6 shows that riblets have the effect of suppressing the
H2 norm of the system. Unlike transient growth, the H2

norm is reduced for all Q considered.
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Fig. 6. Effects of riblets on T , Re = 600, β = 2, κ = 0.02.

7. CONCLUDING REMARKS

This paper shows that the introduction of riblets can
suppress the transient growth of the most sensitive initial

conditions and energy amplification of stochastic forcing
in linearized channel flow. Since transient growth and
energy amplification have been identified as the possible
explanations for subcritical transition of channel flow,
their suppression could be the reason for the delay of
laminar-turbulent transition of the flow over riblets.
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