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Abstract: In this paper, the event-triggered least squares state and fault estimation problem
is investigated for a class of systems with stochastic nonlinearities. An event-triggered scheme
is properly proposed whose main idea is to transmit the measurement output to a remote
estimator only when a specified event condition is violated and an event is triggered. A filter is
designed so as to minimize an upper bound of the filtering error covariance with event-triggered
measurement transmissions and additive stochastic nonlinearities. By solving two sets of discrete
matrix equations, the desired filter parameters are calculated recursively and thus the method
is applicable for online computation. Both the state and fault estimation problems are handled
within the same framework using the least squares method. A numerical simulation is exploited
to illustrate the effectiveness of the proposed algorithm.

1. INTRODUCTION

For decades, the state/fault estimation problem has been
a research focus as one of the fundamental problems in
the control and signal processing areas. The traditional
Kalman filter, which serves as an optimal filter for linear
systems, minimizes the filtering error covariance at each
time step. To deal with more comprehensive systems
(e.g. systems with nonlinearities or uncertainties), a great
number of results have been reported to improve the
performance of Kalman filter, such as extended Kalman
filter (Reif et al. [1999]), mixed H2/H∞ filter (Xie et al.
[2004]), etc.

Recently, event-triggered estimation and control problems
have gained an increasing research interest and much effort
has been made to address the problems (Tabuada [2007],
Wang et al. [2011], Dimarogonas et al. [2012], Hu et al.
[2012]). In an event-triggered measurement scheme, the
measurement output is transmitted to a remote estima-
tor only when a specified event condition is violated in
an event generator. An estimator that could cope with
event-triggered measurement transmission is much needed
to save data transfer and processing power, especially in
wireless networked systems with limited energy resources.
The event-triggered optimal filtering problem in the least
squares sense has stirred some initial research interests
(Sijs et al. [2009], Wu et al. [2013]). These results have
utilized the probability density functions of states and
innovations conditional on measurements to calculate the
⋆ This work was supported by National Basic Research Program
of China (973 Program) (2010CB731800), National Natural Science
Foundation of China (61210012, 61290324, 61273156).

posteriori probability density function of states and obtain
the exact minimum mean-squared estimation error. How-
ever, when the system model is relatively complicated, the
conditional probability density functions may be unavail-
able or overcomplex, which would limit the applicabilities
of the proposed algorithms. Therefore, there is a practical
need to address the event-triggered least squares filtering
problem with less prior knowledge than exact probability
density functions (e.g. only the means and covariances of
the disturbances).

The analysis problem for nonlinear systems has been ex-
tensively studied for decades, since nonlinearities are in-
evitably encountered in various industrial systems, which
may lead to undesirable dynamic behaviors. In many
real-world systems, nonlinear disturbances may occur in
a random way, because of sudden environment changes,
random failure and repairs of components, intermittent
transmission congestion, etc (Shen et al. [2011]). Such
a kind of nonlinearities can be referred to as stochastic
nonlinearities or randomly occurring nonlinearities. There
have been some results on filtering problem with stochastic
nonlinearities (Dong et al. [2011], Shen et al. [2011], Ma
et al. [2011]), most of which have focused on conservative
robust H∞ filtering schemes without considering the es-
timation performances such as the error covariances. On
the other hand, the least squares filtering problem with
stochastic nonlinearities has not been sufficiently inves-
tigated yet (Hu et al. [2012, 2013]), not to mention the
event-triggered case. This constitutes the main motivation
of our present work.
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In this article, the joint least squares state and fault
estimation problem is addressed for a class of systems
with event-triggered measurement transmissions as well as
additive stochastic nonlinearities. In the proposed event-
triggered scheme, the measurement output is transmitted
to a remote estimator only when a specified event con-
dition is violated in the event generator. A filter is de-
signed recursively that guarantees the minimization of an
upper bound of the filtering error covariance at each time
step. The main contributions of the paper are outlined as
follows: 1) a comprehensive system model is put forward
that covers event-triggered measurement transmission and
additive stochastic nonlinearities; 2) additive faults and
system states are simultaneously estimated to facilitate
both the fault isolation and the state estimation prob-
lems; and 3) the proposed algorithm can be carried out
recursively and thus applicable for online computation.

2. PROBLEM FORMULATION

Consider the following discrete-time nonlinear stochastic
system:

{
xk+1 = Akxk +Bkuk + h(xk, αk) +Dkwk + Fkfk,

yk = Ckxk + g(xk, βk) + Ekvk, x0 = x0,

(1)

where xk ∈ Rn is the system state; yk ∈ Rm is the
measurement output; uk ∈ Rl is the control input; fk ∈ Rs

is the additive fault; wk ∈ Rp and vk ∈ Rq are the process
noise and the measurement noise, respectively. The noise
sequences are independent zero-mean Gaussian sequences,
with E{wkw

T
k } = Wk, E{vkvTk } = Vk. Ak, Bk, Ck, Dk, Ek

and Fk are known matrices with appropriate dimensions.

The functions h(xk, αk) and g(xk, βk) represent the
stochastic nonlinearities. αk ∈ R and βk ∈ R are inde-
pendent zero-mean Gaussian noise sequences. The nonlin-
earities have the following first moment:

E
{[

h(xk, αk)
g(xk, βk)

]∣∣∣∣xk

}
= 0, (2)

and the covariance given by

E

{[
h(xk, αk)
g(xk, βk)

] [
h(xj , αj)
g(xj , βj)

]T ∣∣∣∣∣xk

}

=


0, if k ̸= j,[

Π1x
T
kΩ1xk 0
0 Π2x

T
kΩ2xk

]
, if k = j,

(3)

where Ωi and Πi (i ∈ {1, 2}) are known matrices with
appropriate dimensions.

Implementing a given state feedback controller uk = Kkxk

to system (1) and defining x̄k =
[
xT
k , f

T
k

]T
, we consider the

following stochastic nonlinear closed-loop system:{
x̄k+1 = Ākx̄k + h̄(x̄k, αk) + D̄kwk,

yk = C̄kx̄k + ḡ(x̄k, βk) + Ekvk,
(4)

where

Āk =

[
Ak +BkKk Fk

0 I

]
, D̄k =

[
Dk

0

]
, C̄k = [Ck 0 ] ,

h̄(x̄k, αk) =
[
hT (xk, αk), 0

]T
, ḡ(x̄k, βk) = g(xk, βk).

Moreover, (2) and (3) can be easily rewritten as follows,
respectively:

E
{[

h̄(x̄k, αk)
ḡ(x̄k, βk)

]∣∣∣∣ x̄k

}
= 0, (5)

and

E

{[
h̄(x̄k, αk)
ḡ(x̄k, βk)

] [
h̄(x̄j , αj)
ḡ(x̄j , βj)

]T ∣∣∣∣∣ x̄k

}

=


0, if k ̸= j,[

Π̄1x̄
T
k Ω̄1x̄k 0
0 Π2x̄

T
k Ω̄2x̄k

]
, if k = j,

(6)

where

Π̄1 =

[
Π1 0
0 0

]
, Ω̄1 =

[
Ω1 0
0 0

]
, Ω̄2 =

[
Ω2 0
0 0

]
.

In this paper, the following transmission architecture is
considered: the measurement output of (4) is sampled at
each time step by the sampler, and then transmitted to
the event generator. The current measurement is released
by the generator when the current measurement yk+j and
the previously transmitted measurement yk satisfy the
following inequality:

(yk+j − yk)
T (yk+j − yk) > σ, (7)

where σ is a predefined positive scalar. If (7) is satisfied,
the current measurement is forwarded to a Zero-Order
Hold (ZOH). Considering the characteristic of ZOH, the
real estimator input ỹk can be written as

ỹk = yki , k ∈ {ki, ki + 1, · · · , ki+1 − 1}, (8)

where k0, k1, · · · are assumed to be the release times under
the strategy (7).

For system (4), an estimator of the following structure is
proposed:

x̂k+1|k = Ākx̂k|k, (9)

x̂k+1|k+1 = x̂k+1|k + Ξk+1

(
ỹk+1 − C̄kx̂k+1|k

)
, (10)

where x̂k+1|k ∈ Rn and x̂k|k ∈ Rn are the one-step
prediction and the estimate of x̄k at time step k with

x̂0|0 =
[
xT
0 , 0

T
]T

, respectively, and Ξk+1 is the parameter
to be designed.

The model (4) is put forward in the paper so as to cater for
the nonlinearities that occur in a random way. In fact, such
stochastic nonlinearities could encompass large quantities
of nonlinearities including the state multiplicative noises.
The proposed transmission condition (7), which means
that the current measurement is transmitted only when it
changes significantly, can lead to lower traffic requirement
and more efficient resource utilization. Meanwhile, the
estimation results would have some robustness to small
variations in the system under such a strategy. In an
extreme situation, if σ=0, then all the measurements
would be transmitted, and it reduces to traditional time-
triggered transmission.

Denote the prediction error and filtering error by ek+1|k =
x̄k+1 − x̂k+1|k, and ek+1|k+1 = x̄k+1 − x̂k+1|k+1, respec-

tively, and their covariances by Pk+1|k = E
{
ek+1|ke

T
k+1|k

}
and Pk+1|k+1 = E

{
ek+1|k+1e

T
k+1|k+1

}
. The goal of the

paper is to design a recursive filter in the form of (9)
and (10) for system (4) such that an upper bound of the
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filtering error covariance Pk+1|k+1 can be provided and
minimized.

3. MAIN RESULTS

Firstly, by the definitions of Pk+1|k and Pk+1|k+1, the two
covariances would be obtained in the sequel, respectively.

Theorem 1. Pk+1|k obeys the following recursion relation:

Pk+1|k =ĀkPk|kĀ
T
k + Π̄1tr

{
E
{
x̄kx̄

T
k

}
Ω̄1

}
+ D̄kWkD̄

T
k .
(11)

Proof. Based on (4) and (9), we have

ek+1|k =Ākek|k + h̄(x̄k, αk) + D̄kwk. (12)

Noticing that the stochastic nonlinearity h̄(x̄k, αk) and the
additive noise wk are zero-mean, (11) follows directly from
(6) and (12).

Theorem 2. Pk+1|k+1 satisfies the following equation:

Pk+1|k+1 =(I − Ξk+1C̄k+1)Pk+1|k(I − Ξk+1C̄k+1)
T

+ Ξk+1E
{
(ỹk+1 − yk+1)(ỹk+1 − yk+1)

T
}

× ΞT
k+1 + Ξk+1Π2tr

{
E
{
x̄k+1x̄

T
k+1

}
Ω̄2

}
ΞT
k+1

+ Ξk+1Ek+1Vk+1E
T
k+1Ξ

T
k+1 − Ξk+1

× E
{
(ỹk+1 − yk+1)e

T
k+1|k

}
(I − Ξk+1C̄k+1)

T

− (I − Ξk+1C̄k+1)E
{
ek+1|k(ỹk+1 − yk+1)

T
}

× ΞT
k+1. (13)

Proof. From (4) and (10), it follows that

ek+1|k+1 =ek+1|k − Ξk+1

(
ỹk+1 − C̄kx̂k+1|k

)
. (14)

Adding a zero term Ξk+1yk+1−Ξk+1yk+1 to the right-hand
side of (14), we have

ek+1|k+1 =(I − Ξk+1C̄k+1)ek+1|k − Ξk+1ḡ(x̄k+1, βk+1)

− Ξk+1Ek+1vk+1 − Ξk+1(ỹk+1 − yk+1). (15)

With zero-mean stochastic nonlinearity ḡ(x̄k+1, βk+1) and
additive noise vk+1, Pk+1|k+1 can be written as:

Pk+1|k+1 =(I − Ξk+1C̄k+1)Pk+1|k(I − Ξk+1C̄k+1)
T

+ Ξk+1E
{
(ỹk+1 − yk+1)(ỹk+1 − yk+1)

T
}

× ΞT
k+1 + Ξk+1Ek+1E

{
vk+1v

T
k+1

}
ET

k+1Ξ
T
k+1

+ Ξk+1E
{
ḡ(x̄k+1, βk+1)ḡ

T (x̄k+1, βk+1)
}
ΞT
k+1

− (I − Ξk+1C̄k+1)E
{
ek+1|k(ỹk+1 − yk+1)

T
}

× ΞT
k+1 − Ξk+1E

{
(ỹk+1 − yk+1)e

T
k+1|k

}
× (I − Ξk+1C̄k+1)

T . (16)

Then with (6) and E{vk+1v
T
k+1} = Vk+1, (13) can be

obtained directly. The proof is complete.

In Theorem 1 and Theorem 2, the exact recursion relations
of Pk+1|k and Pk+1|k+1 have been obtained. However, the
terms which are related to (ỹk+1−yk+1), are very difficult
to calculate. This results from the factor that the outputs
are restricted not only by the measurement formulation
(4) – but also by the transmission strategy (7). In other
words, the exact covariances of prediction error and filter-
ing error are dependent on whether the current measure-
ment is transmitted or not. To obtain exact covariances of
prediction error and filtering error, we need to calculate

the posteriori probability density function of the states
based on the probability density functions of states and
innovations conditional on measurements. When the sys-
tem dynamics is relatively complicated, for example, the
system contains some stochastic nonlinearities as (4), the
conditional probability density functions might be difficult
to calculate, and the exact error covariances might be over-
complicated or even unavailable. A seemingly nature way
is to find an upper bound of the filtering error covariance,
and then minimize the bound by appropriately designing
the filter gain at each time step. This way, the conditional
probability density functions will be no longer needed.

Before proceeding further, the following lemma is to be
introduced.

Lemma 3. (Hu et al. [2012]) For any two vectors x, y ∈ Rn,
the following inequality holds

xyT + yxT ≤ εxxT + ε−1yyT , (17)

where ε > 0 is a scalar.

With Lemma 3, an approach is proposed in the following
theorem to determine the filter gain such that an upper
bound of the filtering error covariance is minimized.

Theorem 4. Let ε be a positive scalar. If the next two
equations:

Qk+1|k =ĀkQk|kĀ
T
k +Π1tr

{
XkΩ̄1

}
+ D̄kWkD̄

T
k , (18)

Qk+1|k+1 =(1 + ε)(I − Ξk+1C̄k+1)Qk+1|k(I − Ξk+1

× C̄k+1)
T + (1 + ε−1)σΞk+1Ξ

T
k+1

+ Ξk+1Π2tr
{
Xk+1Ω̄2

}
ΞT
k+1

+ Ξk+1Ek+1Vk+1E
T
k+1Ξ

T
k+1, (19)

where

Xk+1 =ĀkXkĀ
T
k +Π1tr{XkΩ̄1}+ D̄kWkD̄

T
k , (20)

with initial conditions Q0|0 ≥ 0 and X0 = x̄0x̄
T
0 , have

positive definite solutions. Then, Qk|k is an upper bound
of Pk|k. Meanwhile, if the the filter gain is chosen as

Ξk+1 = ZT
k+1Y

−1
k+1, (21)

where

Yk+1 =(1 + ε)C̄k+1Qk+1|kC̄
T
k+1 + (1 + ε−1)σI

+Π2tr{Xk+1Ω̄2}+ Ek+1Vk+1E
T
k+1, (22)

Zk+1 =(1 + ε)C̄k+1Qk+1|k, (23)

then Qk+1|k+1 is minimized.

Proof. The conclusions can be obtained by induction. It
is already known that Q0|0 > P0|0 = 0. Then, assuming
that for i = 1, 2, . . . , k, Pi|i ≤ Qi|i, it remains to show that
Pk+1|k+1 ≤ Qk+1|k+1.

With Lemma 3, we have the following inequality:

− (I − Ξk+1C̄k+1)E
{
ek+1|k(ỹk+1 − yk+1)

T
}
ΞT
k+1

− Ξk+1E
{
(ỹk+1 − yk+1)e

T
k+1|k

}
(I − Ξk+1C̄k+1)

T

≤ε(I − Ξk+1C̄k+1)E
{
ek+1|ke

T
k+1|k

}
(I − Ξk+1C̄k+1)

T

+ ε−1Ξk+1E
{
(ỹk+1 − yk+1)(ỹk+1 − yk+1)

T
}
ΞT
k+1.

(24)

With the definition of Pk+1|k, (24) can be written as
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− (I − Ξk+1C̄k+1)E
{
ek+1|k(ỹk+1 − yk+1)

T
}
ΞT
k+1

− Ξk+1E
{
(ỹk+1 − yk+1)e

T
k+1|k

}
(I − Ξk+1C̄k+1)

T

≤ε(I − Ξk+1C̄k+1)Pk+1|k(I − Ξk+1C̄k+1)
T

+ ε−1Ξk+1E
{
(ỹk+1 − yk+1)(ỹk+1 − yk+1)

T
}
ΞT
k+1.

(25)

Substituting (25) into (13), we have

Pk+1|k+1 ≤(1 + ε)(I − Ξk+1C̄k+1)Pk+1|k(I − Ξk+1

× C̄k+1)
T + (1 + ε−1)Ξk+1E{(ỹk+1 − yk+1)

× (ỹk+1 − yk+1)
T }ΞT

k+1 + Ξk+1Ek+1Vk+1

× ET
k+1Ξ

T
k+1 + Ξk+1Π2tr

{
E
{
x̄k+1x̄

T
k+1

}
Ω̄2

}
× ΞT

k+1. (26)

Based on (7), for any k ∈ N, we have

(ỹk − yk)(ỹk − yk)
T ≤σI. (27)

Considering (26) and (27), we have

Pk+1|k+1 ≤(1 + ε)(I − Ξk+1C̄k+1)Pk+1|k(I − Ξk+1

× C̄k+1)
T + (1 + ε−1)σΞk+1Ξ

T
k+1

+ Ξk+1Π2tr
{
E
{
x̄k+1x̄

T
k+1

}
Ω̄2

}
ΞT
k+1

+ Ξk+1Ek+1Vk+1E
T
k+1Ξ

T
k+1. (28)

To proceed further, denote Xk = E
{
x̄kx̄

T
k

}
. From (4), it

follows directly that

Xk+1 =ĀkXkĀ
T
k +Π1tr{XkΩ̄1}+ D̄kWkD̄

T
k ,

which is (20).

Based on our assumption that Pk|k ≤ Qk|k, it can be easily
verified that,

Qk+1|k − Pk+1|k = Āk(Qk|k − Pk|k)Ā
T
k ≥ 0. (29)

With (28), (29) and the definition of Xk, we have

Pk+1|k+1 ≤ (1 + ε)(I − Ξk+1C̄k+1)Qk+1|k(I − Ξk+1

× C̄k+1)
T + (1 + ε−1)σΞk+1Ξ

T
k+1

+ Ξk+1Π2tr
{
Xk+1Ω̄2

}
ΞT
k+1

+ Ξk+1Ek+1Vk+1E
T
k+1Ξ

T
k+1

= Qk+1|k+1.

So far, we have proved that Qk|k is an upper bound of
Pk|k.

Next we are going to show that the filter gain given in (21)
minimizes the upper bound Qk+1|k+1 at each time step. It
follows from (22) and (23) that

Qk+1|k+1 =(1 + ε)Qk+1|k + Ξk+1Yk+1Ξ
T
k+1 − ZT

k+1Ξ
T
k+1

− Ξk+1Zk+1. (30)

Since Yk+1 = Y T
k+1 > 0, completing the square with

respect to Ξk+1 in (30) yields that

Qk+1|k+1 =(Ξk+1 − ZT
k+1Y

−1
k+1)Yk+1(Ξk+1 − ZT

k+1Y
−1
k+1)

T

− ZT
k+1Y

−1
k+1Zk+1 + (1 + ε1)Qk+1|k. (31)

Thus, it is obvious that when Ξk+1 = ZT
k+1Y

−1
k+1, Qk+1|k+1

is minimized and, in such a case,

Qk+1|k+1 =− ZT
k+1Y

−1
k+1Zk+1 + (1 + ε)Qk+1|k. (32)

That concludes the proof.

The least squares fault and state estimation problem is
solved by Theorem 4 for a class of systems subject to
event-triggered measurement transmissions and additive
stochastic nonlinearities. To deal with the event-triggered
measurement transmissions, special effort has been made
to calculate an upper bound of the filtering error co-
variance, which is dependent on the covariances of the
stochastic nonlinearities and the threshold in the event
generator. By doing so, the traditionally required prob-
ability density functions of states and innovations con-
ditional on measurements, which may be complicated or
even unavailable for relatively complicated systems, are no
longer needed. In other words, we do not need to calculate
the posteriori probability density function of states and
the exact least squares filtering error covariance, thereby
improving the feasibility and robustness of the algorithms
at the cost of sacrificing certain accuracy at an acceptable
level. It is worth mentioning that, when the measurement
is transmitted at each time step (i.e., σ = 0) and there
is no stochastic nonlinearity, the proposed filter can be
specialized to the classical Kalman filter. Moreover, the
proposed algorithm is suitable for on-line applications,
since it is carried out by solving discrete matrix equations.

4. SIMULATION

Consider system (1) with parameters given as follows:

Ak =

[
0.1 0
−0.5 0.2

]
, Fk =

[
1
0

]
, Bk = Dk = I,

Ck = [ 1 0 ] , Ek = 1, Kk = −0.21I, x0 = [0, 0]T .

Denoting xk =
[
x
(1)
k , x

(2)
k

]T
, the stochastic nonlinearities

are formulated as:

h(xk, αk)

=

[
0.2
0.1

] [
0.3sign(x

(1)
k )x

(1)
k α

(1)
k + 0.4x

(2)
k sign(x

(2)
k )α

(2)
k

]
,

g(xk, βk)

=0.3
[
0.3sign(x

(1)
k )x

(1)
k β

(1)
k + 0.4x

(2)
k sign(x

(2)
k )β

(2)
k

]
,

where α
(i)
k and β

(i)
k (i = 1, 2) stand for zero-mean uncorre-

lated Gaussian white noises with unity covariances. Based
on the expressions above, it is straightforward to see that:

E
{[

h(xk, αk)
g(xk, βk)

]∣∣∣∣xk

}
= 0,

and

E

{[
h(xk, αk)
g(xk, βk)

] [
h(xj , αj)
g(xj , βj)

]T ∣∣∣∣∣xk

}

=


0, if k ̸= j,[

0.04 0.02 0
0.02 0.01 0
0 0 0.09

]
xT
k

[
0.09 0
0 0.16

]
xk, if k = j.

Other variables are set as:Q0|0 = 20I, σ = 0.05, and ε = 1.

The additive fault is set as

fk =

{
−1, if k ≥ 30,
0, otherwise.
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Fig. 1. The actual measurement yk and transmitted mea-
surement ỹk
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Fig. 2. The state x
(1)
k and its estimation

Fig. 1 depicts the actual measurement and the transmitted
measurement. Figs. 2-4 plot the states/fault and their
estimations obtained from Theorem 4. It can be seen that,
the proposed filter could estimate the states and fault
well with event-triggered measurement transmissions and
additive stochastic nonlinearities.

5. CONCLUSION

The least squares state and fault estimation problem has
been investigated for a class of systems with stochastic
nonlinearities and event-triggered measurement transmis-
sions. An event-triggered scheme has been properly pro-
posed where the measurement output is transmitted to a
remote estimator only when a specified event condition is
violated in an event generator. An appropriate filter gain
has been determined to minimize an upper bound of the
filtering error covariance with event-based transmissions
and additive stochastic nonlinearities at each time step. By
solving two sets of discrete matrix equations, the desired
filter gain could be calculated recursively, and thus the
method is applicable for online computation. Additive
faults and system states have been simultaneously esti-
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Fig. 3. The state x
(2)
k and its estimation
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Fig. 4. The fault and its estimation

mated in a unified framework. A simulation example has
been presented to show the effectiveness of the proposed
method.
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