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Abstract: From a gain-scheduling control perspective, we will study the output feedback
control problem for linear systems with some of control channels subject to actuator saturation.
This includes the scenario of all actuator saturation as a special case. A feedback controller,
expressed in the form of linear fractional transformation, is proposed to guarantee regional
stability of the closed-loop system and minimizes disturbance/error effect measured in L2 gain.
The resulting synthesis condition is formulated as linear matrix inequalities (LMIs) and can
be solved efficiently. A modified inverted pendulum is utilized to demonstrate the proposed
approach.

1. INTRODUCTION

Actuator saturation is a typical nonlinearity and is widely
encountered in control engineering. It can significantly
deteriorate the performance of a closed-loop system or
even render a stable system unstable. Therefore it has
attracted a lot of attention from the control community
(see, for example, Bernstein et al. [1995], Hu et al. [2001],
Lin [1998], Tarbouriech et al. [1997] and the references
therein).

Earlier research focuses on stable open-loop systems, for
which various control problems have been studied in depth
in the global or semi-global framework (see, for example,
Lin [1998], Chitour [2001], Lin et al. [1996], Liu et al.
[1996], Saberi et al. [1996], Sussmann et al. [1994]). Be-
cause many control systems encountered in control engi-
neering are open-loop exponentially unstable, much effort
has recently focused onto unstable open-loop systems with
actuator saturation. As such systems under actuator satu-
ration are null controllable only in a part of the state space,
the objectives are to characterize the null controllable
region Hu et al. [2001] and to design feedback controllers
that work on a large portion of it or even the entire null
controllable region (see, for example, Hindi et al. [1998],
Nguyen et al. [1999], Hu et al. [2001], Paim et al. [2002],
Hu et al. [2004], Fang et al. [2004]).

So far both state feedback technique and output feed-
back methods have been proposed through various frame-
work(see, for example Hu et al. [2004], Nguyen et al.
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[1999], Paim et al. [2002], Scorletti et al. [2002], Wu
et al. [2007, 2009], Dai et al. [2009]. More specifically, a
saturation control synthesis method has been proposed in
Dai et al. [2009] for the construction of output feedback
controllers with an internal deadzone loop. It has been
shown that the synthesis condition for such a controller
can be formulated into the LMI form. In Wu et al. [2009],
an output gain-scheduled saturation controller has been
developed to attenuate the effect of the disturbances on
the system output in addition to achieving local stability.
Nevertheless, it has been shown that the control synthesis
conditions are in bilinear matrix inequality forms and not
easy to solve. Based on the work in Wu et al. [2009], by
carefully choosing the auxiliary subspace in representing
the saturation/deadzone nonlinearities, the output feed-
back synthesis condition can be recast into LMIs Wu
[2011]. However, the disadvantage is that the form of
the controller is somewhat complicated and the synthesis
condition is also computationally expensive. It consists of
2nu +nu +1 LMIs and 2+ nu +2× 2nu decision variables
with nu representing the number of inputs. Motivated by
the systematic gain-scheduling control design techniques
developed in Packard [1994], Apkarian [1995], an output
feedback controller in the form of linear fractional transfor-
mation has been proposed to guarantee regional stability
of the closed-loop system and provide disturbance/error
attenuation measured in L2 gain in Ban et al. [2012]. The
resulting synthesis condition can be formulated as a set of
LMIs and can be solved efficiently. Moreover, it turns out
that the controller proposed in Dai et al. [2009] is a special
case of the controller proposed in Ban et al. [2012].

While in this research, we will extend the work in Ban
et al. [2012] to the linear plants with partial control
channels subject to actuator saturation, which includes
the plants with all the input channels saturated as a
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special case. The study on the linear plants with partial
control channels subject to saturation are important from
engineering viewpoint. For multi-input systems, one may
wonder which input channel saturation will have a stronger
effect on the closed-loop performance. To answer this
question, we can calculate the optimal performance of the
closed-loop system with just one input channel saturated
by using the results developed in this research and repeat
the procedure for other input channels. By comparing the
results from this trade study, proper selection of actuators
can be made to reduce the cost of the control system.

The notations used in this paper are rather standard. R
stands for the set of real numbers and R+ for the non-
negative real numbers. Rm×n is the set of real m × n
matrices. We use Sn×n to denote real, symmetric n ×
n matrices, and Sn×n

+ for positive-definite matrices. The
identity matrix of any dimension is denoted by I. A block-
diagonal matrix with matrices X1, X2, · · · , Xp on its main
diagonal is denoted as diag {X1, X2, · · · , Xp}. In large
symmetric matrix expressions, terms denoted as ⋆ will be
induced by symmetry. Co{S} denotes the convex hull of a
set S.

2. PROBLEM FORMULATION

Consider the linear plant subject to partial actuator satu-
rations,







ẋ = Ax+B1d+B2ssat(us) +B2nun

e = C1x+D11d+D12ssat(us) +D12nun

y = C2x+D21d

(1)

where x ∈ Rn is the plant state; us ∈ Rns is the
control input subject to saturation; un ∈ Rnn represent
the control inputs which will not be saturated; d ∈ Rnd

is the exogenous input, possibly including disturbance,
measurement noise or reference signals; y ∈ Rny is the
measurement output and e ∈ Rne is the performance
output. sat(·) is a vector saturation function with the
saturation levels given by a vector ū ∈ Rns , ūi > 0, i =
1, · · · , ns. More specifically,

sat(us) =







σ(u1)
...

σ(uns
)






, σ(ui) = sgn(ui)min {ūi, |ui|} .

Throughout this article, it is assumed that (A, [B2s B2n])
is stabilizable and (C2, A) is detectable.

The deadzone nonlinearity is closely related to saturation
function and is defined by dz(us) = us − sat(us), which
could be utilized to obtain more relaxed conditions for
regional analysis of unstable plants. The property of the
deadzone function is shown in the following lemma.

Lemma 1. (Hu et al. [2006]). Let h(x) = Hx be a linear
map and suppose eTi Hx ∈ [−ūi, ūi], where ei denotes
the ith column of the unity matrix. For any ui, we have
σ(ui) ∈ Co

{

ui, e
T
i Hx

}

and dz(ui) = θi(ui − eTi Hx) for
some θi ∈ [0, 1].

Using the deadzone function, the dynamic equation of the
plant can be rewritten as







ẋ
us

e
y






=







A −B2E B1 B2

0 0 0 ET

C1 −D12E D11 D12

C2 0 D21 0













x
p
d
u






(2)

p = dz(us). (3)

where B2 = [B2s B2n] , D12 = [D12s D12n] and u =
[

us

un

]

, E =

[

Ins

0

]

.

For a matrix [H1 H2], we will define the set

L([H1 H2]) =
{

(x, xk) ∈ R2n :
∣

∣

∣
eTj [H1 H2]

[

x
xk

]

∣

∣

∣
≤ ūj, j = 1, · · · , ns

}

.

Again ej denotes the jth column of the identity matrix.
xk is the state of the controller to be designed. Then from
Lemma 1, the nonlinear equation (3) can be replaced by

p = Θ(us −H1x−H2xk) (4)

where

Θ = {diag {θ1, · · · , θns
} : 0 ≤ θj ≤ 1, j = 1, · · · , ns} .

The gain-scheduled controller as described in eqns. (5)-(6)
will be synthesized for the plant (1)

[

ẋk

qk
u

]

=

[

Ak Bk0 Bk1

Ck0 Dk00 Dk01

Ck1 Dk10 Dk11

] [

xk

pk
y

]

(5)

pk = Θ(qk −Hk1x−Hk2xk), (6)

where xk is the state of the controller. The number of
controller states is chosen to be the same as that of
plant states n. pk, qk ∈ Rns are the pseudo-input and
output of the controller, respectively. As a result, the
controller parameters will depend on Θ (i.e., the actuator
saturation status) in the form of LFT. Note that this form
of gain-scheduling controller is similar to the ones shown in
Apkarian [1995] and Packard [1994]. But the measurable
parameter is restricted to 0 ≤ Θ ≤ I here.

It is observed from eqn. (6) that the state vector of the
plant x explicitly appears in the controller. If all the states
of the plant are measurable, the parameter Θ can be
computed in real time and the gain-scheduled controller
can be implemented directly. However, for the output
feedback control problem, the plant state information is
generally not available. In this case we can assume that
H1 = Hk1 = 0. Then we can implement such an output
controller. In order to get a complete understanding of the
role of H1 and Hk1, however, we still include H1 and Hk1

as optimization variables in the following derivation.

In this research, our objective is to synthesize a gain-
scheduled output feedback controller to stabilize linear
systems with partial actuator saturation (1) and minimize
its disturbance effect. For disturbance attenuation, we
are mainly concerned with a class of energy-bounded
disturbances

Ws =

{

d : R+ → Rnd ,

∫

∞

0

dT (τ)d(τ)dτ ≤ s2, d ∈ L2

}

.

By combining the plant and the controller dynamics to-
gether, we obtain the closed-loop system as below:
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[

ẋcl

qcl
e

]

=

[

Acl B0,cl B1,cl

C0,cl D00,cl D01,cl

C1,cl D10,cl D11,cl

][

xcl

pcl
d

]

(7)

pcl =

[

Θ 0
0 Θ

]

(qcl −Hxcl), (8)

where xcl = [x xk]
T , qcl = [us qk]

T , pcl = [p pk]
T , and

[

Acl B0,cl B1,cl

C0,cl D00,cl D01,cl

C1,cl D10,cl D11,cl

]

=











A 0 −B2E 0 B1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
C1 0 −D12E 0 D11











+











0 0 B2

I 0 0

0 0 ET

0 I 0
0 0 D12











[

Ak Bk0 Bk1

Ck0 Dk00 Dk01

Ck1 Dk10 Dk11

][

0 I 0 0 0
0 0 0 I 0
C2 0 0 0 D21

]

:=

[

A0 B01 B02

C01 D011 D012

C02 D021 D022

]

+

[

E0
E1
E2

][

Ak Bk0 Bk1

Ck0 Dk00 Dk01

Ck1 Dk10 Dk11

]

[G0 G1 G2]

H =

[

H1 H2

Hk1 Hk2

]

.

The above linear system description is valid for the par-
tially saturated system when (x, xk) ∈ L ([H1 H2]).

3. GAIN-SCHEDULING CONTROL WITH PARTIAL
ACTUATOR SATURATION

Motivated by the general results in both H∞ and gain-
scheduling control theories Gahinet et al. [1994], Packard
[1994], the main theorem of this research will be presented
in the following theorem.

Theorem 2. Given scalars s > 0 and γ > 0, if there exist
positive definite matrices R,S ∈ Sn

+, diagonal matrices

L, J > 0 and matrices Ĥ1, Ĥ2, Ĥk1 ∈ Rns×n such that
[

N T

Φ̃
0

0 I

]

×









RAT +AR −B2EL− ĤT
2 RCT

1 B1

−LETBT
2 − Ĥ2 −2L −LETDT

12 0
C1R −D12EL −γ2I D11

BT
1 0 DT

11 −I









×

[

N
Φ̃

0
0 I

]

< 0 (9)

[

N T
Γ 0
0 I

]

×









ATS + SA SB1 −SB2E − ĤT
k1 CT

1

BT
1 S −I 0 DT

11

−ETBT
2 S − Ĥk1 0 −2J −ETDT

12

C1 D11 −D12E −γ2I









×

[

NΓ 0
0 I

]

< 0 (10)

[

R I
I S

]

> 0 (11)

[

L I
I J

]

> 0 (12)









ū2
ℓ

s2
eTℓ Ĥ2 eTℓ Ĥ1

ĤT
2 eℓ R I

ĤT
1 eℓ I S









≥ 0, ∀ ℓ ∈ I[1, ns] (13)

where N
Φ̃

:=
[

N T

Φ̃1

N T

Φ̃2

N T

Φ̃3

]T

= Ker
[

BT
2 E DT

12

]

and

NΓ :=
[

N T
Γ1

N T
Γ2

]T
= Ker [C2 D21] respectively, and

[

Ĥ1 Ĥ2

Ĥk1 Ĥk2

]

=

[

I 0
J V

] [

H1 H2

Hk1 Hk2

] [

I R

0 MT

]

(14)

with MNT = I − RS,UV T = I − LJ , then a nth-order
gain-scheduling controller in the form of (5)-(6) will locally
asymptotically stabilize the plant (1) and render the L2

gain of the closed loop system less than γ for any bounded
disturbance d ∈ Ws.

Proof. Use a quadratic Lyapunov function V (xcl) =
xT
clPxcl with P > 0 and a positive-definite matrix Λ =

[

Λ1 Λ2

Λ2 Λ3

]

> 0 commutable with diag {Θ,Θ}. It is clear

that Λ1,Λ2 and Λ3 should be diagonal matrices. Then a
regional performance condition

V̇ +
1

γ2
eT e− dT d+ pTclΛ(qcl −Hxcl − pcl)

+ (qcl −Hxcl − pcl)
TΛpcl < 0 (15)

and the set inclusion condition
{

xcl : xT
clPxcl ≤ s2

}

⊂ L([H1 H2]) (16)

will guarantee the closed-loop stability and L2 gain per-
formance for partially saturated linear systems. Using the
scaled Bounded Real Lemma and exploring the set inclu-
sion relation Dai et al. [2009], we obtain the following two
equations for the regional performance condition and the
set inclusion condition.








AT
clP + PAcl ⋆

BT
0,clP + Λ(C0,cl −H) Λ(D00,cl − I) + (D00,cl − I)TΛ

BT
1,clP DT

01,clΛ
C1,cl D10,cl

⋆ ⋆
⋆ ⋆
−I ⋆

D11,cl −γ2I






< 0 (17)







ū2
ℓ

s2
eTℓ [H1 H2]

[

HT
1

HT
2

]

eℓ P






≥ 0, ℓ ∈ I[1, ns]. (18)

In the following, we will show that (9)-(13) is equivalent to
the regional performance condition and the set inclusion
condition.

Taking eqn. (7) into consideration, the inequality (17) can
be rewritten as

Ψ + ΓTΠTΦ+ ΦTΠΓ < 0, (19)

where
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Ψ :=







AT

0
P + PA0 ⋆

B
T

01
P +Λ(C01 −H) Λ(D011 − I) + (D011 − I)TΛ

B
T

02
P D

T

012
Λ

C02 D021

⋆ ⋆
⋆ ⋆
−I ⋆

D022 −γ2I





Π :=

[

Ak Bk0 Bk1

Ck0 Dk00 Dk01

Ck1 Dk10 Dk11

]

Γ :=
[

G0 G1 G2 0
]

=

[

0 I 0 0 0 0
0 0 0 I 0 0
C2 0 0 0 D21 0

]

Φ :=
[

ET

0
P ET

1
Λ 0 ET

2

]

=

[

0 I 0 0 0 0
0 0 0 I 0 0

BT

2
0 E 0 0 DT

12

]





P 0 0 0
0 Λ 0 0
0 0 I 0
0 0 0 I



 .

Applying Elimination Lemma Packard [1994], and parti-
tioning Lyapunov matrix P and scaling matrix Λ according
to plant and controller states as

P =

[

S N

NT ⋆1

]

, P−1 =

[

R M

MT ⋆2

]

,

Λ =

[

J V

V T ⋆3

]

, Λ−1 =

[

L U

UT ⋆4

]

,

we obtain the equations (9) and (10) from (19).

As for the eqns. (11)-(12), according to Packard [1994],
P > 0, P−1 > 0 if and only if eqn. (11) holds. Similarly,
Λ > 0, and Λ−1 > 0 is equivalent to condition (12).

To verify eqn. (13), we choose the invertible matrix Z =

diag

{

1,

[

R M
I 0

]}

and multiply condition (18) by Z from

the left and ZT from the right side. Using the fact
[

S N

NT ⋆1

] [

R M

MT ⋆2

]

= I, then condition (13) is confirmed

through variable changes (14), which completes the proof.

Remark 3. Note that Theorem 2 provides a solvability
condition for the existence of the gain-scheduled controller
in the form of (5)-(6) which depends on both x and xk. To
get a practical output feedback controller, we need to set
Ĥ1 = Ĥk1 = 0 in the control synthesis conditions (9)-(13),
which corresponds to H1 = Hk1 = 0 as mentioned before.

Remark 4. The synthesis conditions (9)-(13) are in the
form of LMIs and can be solved efficiently using interior
point optimization algorithms. Moreover, the feasibility
condition (9)-(13) can be formulated as the following
optimization problem

min
R,S,L,J,Ĥ1,Ĥ2,Ĥk1

γ2

subj. to (9)− (13).

to minimize the closed-loop performance γ.

As a special case, if the open-loop system is asymptotically
stable, the deadzone nonlinearity will be captured globally
by the condition dz(u) = Θu, 0 ≤ Θ ≤ I. Then the
equivalent open-loop system becomes







ẋ
us

e
y






=







A −B2E B1 B2

0 0 0 ET

C1 −D12E D11 D12

C2 0 D21 0













x
p
d
u






(20)

p = Θus. (21)

In other words, auxiliary linear subspace is not required in
the equivalent LFT description. Then the gain-scheduling
control synthesis condition would degenerate to eqns. (9)-

(12) with Ĥ1 = Ĥ2 = 0 and Ĥk1 = 0.

4. CONTROLLER RECONSTRUCTION

Given any feasible solution to the above LMI constraints,
the parameters of a corresponding controller can be deter-
mined via a constructive procedure as follows:

Step 0 Set Ĥ1 = 0 and Ĥk1 = 0, by solving the LMIs

(9)-(13), we obtain R,S, L, J , and Ĥ2.
Step 1 Choosing M,N and U, V matrices such that
MNT = I −RS and UV T = I − LJ .

Step 2 Compute H2 = Ĥ2M
−T .

Step 3 Calculate Hk2 and Π by (19) as an LMI feasibility
problem, then we obtain the controller gains.

For open-loop stable systems, the construction of output
feedback saturation control follows the same procedure by
setting Ĥ1 = Ĥ2 = 0 and Ĥk1 = Ĥk2 = 0.

5. NUMERICAL EXAMPLES

In this section, a modified inverted pendulum will be used
to demonstrate the proposed gain-scheduling saturation
control approach (see Fig. 1). One motor is used to drive
the cart of the inverted pendulum. Different from a typical
setup, another motor is installed on the moving cart to
control the pendulum bar directly. This will provide a two-
input controlled pendulum.

Fig. 1. Schematic drawing of the inverted pendulum.

The linearized equations of motion for the inverted pen-
dulum at its equilibrium (0, 0, 0, 0) are given by
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





ẋ1

ẋ2

ẋ3

ẋ4






=













0 1 0 0
amgl

c
−
af

c
0

µml

c
0 0 0 1

−
m2l2g

c

mlf

c
0 −

bµ

c



















x1

x2

x3

x4







+













0 0 0 0
a

c

ml

c

a

c
−
ml

c
0 0 0 0
ml

c

b

c
−
ml

c

b

c



















d1
d2

sat(u1)
u2






(22)















e1
e2
e3
e4
y1
y2















=















1 0 0 0
0 0 0.1 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0





















x1

x2

x3

x4






+















1 0 0 0
0 0.1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0





















n1

n2

sat(u1)
u2






.

(23)

where c = (M + m)(J + ml2) − m2l2,a = M + m,
b = J + ml2. M and m represent the mass of the
cart and the bar respectively; l is the half length of
the bar; J is bar’s moment of inertia about its mass
center; µ and f are friction coefficients of the bar and
the cart, respectively. x1, x2, x3, and x4 denote the angle
of the bar from vertical axis, its angular velocity, the
position of the cart along the linear track and its velocity.
d1 is the disturbance torque applied to the bar, and
d2 represents the disturbance force on the cart. u1, u2

represents the motor torque applied to the bar and the
force exerted on the cart. It is assumed that control input
u1 is subject to saturation with its magnitude ū1 = 1Nm.
On the other hand, no saturation limit is imposed on the
control input u2. n1, n2 are the measurement noises. Our
design objective is to stabilize the inverted pendulum and
optimize the controlled performance with input saturation
on u1. The values of pendulum parameters are listed in
Table 1. It is easy to verify that the open-loop system is

Table 1. Parameters of the inverted pendulum.

parameter value (units)

M 1kg
m 0.1kg
g 9.8m/sec2

l 0.4m
f 0.01
µ 0.01

unstable because it contains one positive pole at 4.38. By
solving the synthesis condition (9)-(13), we determine a
suboptimal performance level of γ = 6.0519 for s = 0.1.
The following controller matrices are also obtained using
controller construction algorithm.

Π =



















−14.99 1.14 −0.56 −0.18 15.25 0.56 −0.00
−10.23 −7.36 −0.15 −1.55 −10.01 −0.03 −0.01
−0.54 0.01 −1.94 0.99 0.58 1.94 −0.00
−3.46 0.38 −1.95 −0.46 4.68 1.89 −0.00
1.21 −0.18 0.10 −0.12 −2.14 −0.12 1.00
1.11 −0.05 0.15 −0.83 −1.15 −0.29 −0.00

−0.71 0.55 −0.10 0.05 −2.14 −0.12 1.00



















,

H2 = [−0.67 −0.10 −0.03 −0.18] ,

Hk2 = [−2.59 0.63 −0.23 −0.01] ,

with H1 = Hk1 = 0.

In our simulation, the disturbance d1 is chosen as a
pulse force of magnitude 0.42Nm starting at 5sec and
ending at 6sec, and other disturbances are all set to 0
for convenience. The response of the closed-loop system
for s = 0.1 case is shown in Fig. 2. As suggested by the
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Fig. 2. Response of the inverted pendulum: s = 0.1 case.

main theorem, one can obtain controllers that tolerate a
larger class of disturbances with higher energy level by
increasing the value of s. Nevertheless, the performance of
the closed-loop system will degrade as seen from Table 2.
Note that the condition number of the resulting controllers
is not necessarily increasing monotonically.

Table 2. Relation between disturbance level s
and performance γ.

disturbance s performance γ condition number

0.001 4.6055 4.9262e+004
0.01 4.6111 2.2854e+003
0.1 6.0519 593.1303
0.2 47.7137 386.7040
0.4 63.5936 628.4768
0.8 70.1903 1.5092e+003
2.0 74.3208 634.8559

When the value of s increases to 2, the relaxed perfor-
mance level grows to γ = 74.3208. This controller can
tolerate much larger disturbance than the one for s = 0.1.
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Using the controller designed for s = 2, the closed-loop
system remains stable for the disturbance up to 4.2Nm.
Nevertheless, for s = 0.1, the closed-loop system becomes
unstable when the magnitude of d1 increases to 0.46Nm.

6. CONCLUSION

In this article, a gain-scheduling control approach is pro-
posed to design output feedback controllers for linear
plants with partial input channels saturated. Within this
framework, the control design methods for linear systems
and saturated linear systems are unified. The control syn-
thesis condition is formulated as a convex optimization in
terms of LMIs. For unstable plants, if the solution to the
LMIs exists, a gain-scheduled output feedback controller
can be constructed that guarantees regional stability of
the closed-loop system and achieves prescribed distur-
bance/error attenuation performance. As for stable plants,
a globally stabilizing output feedback control could be
obtained. The gain-scheduling control design provides an
alternative approach to the existing actuator saturation
control methods.
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