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Abstract: Starting from the simple model for the spot price which is set as the jump augmented
Vasicek model, we construct a factor model of the electricity futures as the stochastic hyperbolic
systems with jumps. Representing the main spike phenomena of the electricity spot price from
one observed futures data by proxy, the filtering of factor process and the related stochastic risk
premium are formulated in a Gaussian frame work. After serving the likelihood functional, the
systems parameter estimation problem is solved.
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1. INTRODUCTION

From the recent deregulation of electricity markets, the
electricity is quoted almost as any other commodity. Not-
ing that the power prices present a higher volatility than
equity prices, the mathematical model for electricity spot
behaviors is required for pricing of electricity-related op-
tions, risk management and others. The special feature of
electricity is that one can not store electricity but there
are many other features which distinguish electricity from
other commodities.

In Fig.1, the spot price (a day-ahead market) is shown.
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Fig. 1. Nord Pool electricity spot price (day ahead implicit
auction market)

From this figure, we observe the special behaviors of elec-
tricity spot,i.e., many spikes frequently and seasonal effect.
Instead of modeling this process from the fundamentals
of supply and demand, the simple mathematical model
for this spot price is proposed and leads to calibrate
the model parameters and price the options by using

the system theoretical approach. Along this line Schwartz
and Smith Schwartz and Smith [2000] proposed a two-
factor diffusion model and the system parameters are
estimated from M.L.E. (Maximum likelihood estimate) by
using Kalman filter. In spite of the mathematically elegant
derivation of the futures prices, which are the observation
data, one need to add ad hoc observation noise in order
to derive the Kalman filter. This assumption has been
made by numerous authors, either in the commodity or
interest rate markets, see Elliott and Hyndman [2007]. The
additional noise in the observation has been interpreted
to take into account bid-ask spread, price limits, non-
simultaneity of the observations, or errors in the data. The
argument is clearly forced and unconvincing. By using the
idea proposed by Aihara and Bagchi [2010], we approach
the modeling differently. In our setup, on the one hand,
the added measurement noise is built in the model. On
the other hand, the modeling of the correlation structure
between the futures (observation) is a natural component
of our formulation. Hence the model parameters can be
calibrated through the derived likelihood functional with-
out any ad hoc observation noise. See Aihara et al. [2009]
for the detailed identification procedure.

However in these works, the important spikes in the elec-
tricity prices are not included, because including jumps 1

means giving up on the closed-form estimator like Kalman
filter. In this paper, we do not use the filtering theory for
jump-diffusion processes by using martingale theory in van
Schuppen [1977]. Fortunately, for the term structure model
in the electricity problem, we can represent the jump

1 The closed-form formulae for forwards and options are possible
even for the jump-diffusion and Levy processes in Benth et al. [2008].
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process for the spike phenomena by using one observation
component and transform the Non-Gaussian estimation
problem into the Gaussian frame work with correlated
noises.

In this paper,we choose the spot price dynamics as the
jump-diffusion model proposed in Duffie et al. [2000].
According to the idea in Aihara and Bagchi [2010], we
construct the arbitrary free model of the term struc-
ture including jump-diffusion processes in Sec. 2. In the
electricity market, the averaged-type forward and futures
contracts are observed and are used as the observation
data for calibrating system parameters. After presenting
this observation dynamics in Sec. 3, we derive the closed
form filter for estimating the whole term structure and
obtain the likelihood functional. To derive this filter, we
choose one component of observation as the proxy for the
spike process of the spot price, say yo(t). Reconstructing
the spikes from yo(t) and plugging this into observation
and system equations, the filtering problem with jumps is
converted to the Gaussian frame work in Sec. 4. For solving
the filtering problem, we need to work under the real world
measure. Hence a suggested in Carmona and Ludkovski
[2004], the stochastic market price of risk is introduced
as the linear Ito equation. This implies that our extended
state including the stochastic market price of risk is still
Gaussian, and the filtering algorithm still works with the
explicit form of likelihood functional. In the final section,
some numerical examples are demonstrated.

2. SPOT RATE MODEL WITH JUMP

We consider the short rate dynamics of the jump aug-
mented Vasicek model;

dr(t) = κ(r̄ − r(t))dt+ σrdwr(t) +

∫
R

νp(dν, dt), (1)

where wr is a standard BMP which is independent of the
Poisson random measure p and the compensated Poisson
measure qc is is given by

qc(dν, dt) = p(dν, dt)− (λ+ψP (dν) + λ−ψM (dν))dt (2)

and where λ+ (λ−) denotes the positive jump ( negative
jump) time intensity and ψP (ψM ) is a distribution of the
positive (negative) jump size.

Remark: It is possible to represent the random Poisson
measure p as the compound Poisson processes:∫
R

νp(dν, dt) = JP (t;ψP )dN(t;λ+)+JM (t;ψM )dN(t;λ−),

where J ·(t;ψ·) denotes the jump size with identically
distributed law ψ· and N(t, λ·) is a counting process with
parameter λ·.

Now by using above model, the spot price shown in Fig.1
is given by

S(t) = exp(r(t) + se(t)), (3)

where se(t) denotes the seasonality function. This function
is determined a-priori from the historical data by using
FFT as used in Aihara et al. [2009], Imreizeeq [2011]. For
the data shown in Fig.1, the seasonality function is given
by

se(t) = 0.1526 cos(2π5.5× 10−3t+ 2.12)

+0.1641 cos(2π8.2× 10−3t− 1.18)

+0.1739 cos(2π16.4× 10−3t+ 1.36).

The obtained shape is shown in Fig. 2
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Fig. 2. Nord Pool electricity spot log price with seasonality
function

In Table 1, the identified frequencies (cycle/day) by using
FFT are summarized with corresponding periods.

Table 1. The largest frequencies and the corre-
sponding period of Nord Pool spot log data by

using FFT

Frequency (cycle/day) Period (in day)

5.5 ×10−3 183 (days)
8.2 ×10−3 122 (days)
16.4 ×10−3 61 (days)

3. ELECTRICITY MODELL

By a basic no-arbitrage argument it follows that the price
of a futures contract F (t, T − t) which has payoff S(T ) at
future time T equals to

F (t, T − t) = E{S(T )|Ft},
with respect to the risk neutral measure. Hence we can
write the futures price as

F (t, T − t) = exp{A(t, T − t) +B(t, T − t)r(t)}, (4)

where A and B satisfy deterministic equations. (See in
Duffie et al. [2000] for details.) Although this model is
mathematically elegant, it is not consistent with the for-
ward curve as stated in Carmona and Ludkovski [2004].
From the systems identification view points, the obser-
vation futures data is added to the artificial observation
noises. In order to avoid this ambiguity, we add the extra
noise in (4) as used in Aihara and Bagchi [2010]. This noise
represents the model errors from the basic property of r(t).
This will mean that the corresponding futures price should
be given by a slight perturbation of (4),i.e.,

F (t, T − t) = exp{A(t, T − t) +B(t, T − t)r(t)

+

∫ t

0

σdw(s, T − s)}, (5)

where we use the same symbols in (4) and
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∫ t

0

σdw(s, T − s) =

∞∑
k=1

∫ t

0

σ
1

λk
ek(T − s)dβk(s), (6)

and where ek(·) is a sequence of differentiable functions
forming an orthonormal basis in L2(0, T ∗) 2 and {βk(t)}
are mutually independent Brownian motion processes with∑

1
λ2
k

<∞,i.e.,

σ2E{w(t, x1)w(t, x2)} = tq(x1, x2)

and ∫ T∗

0

q(x, x)dx =
∞∑
k=1

σ2

λ2k
<∞.

We set f as

f(t, x) = A(t, x) +B(x)r(t) +

∫ t

0

σdw(s, x+ t− s), (7)

the futures contracts F (t, T − t) becomes

F (t, T − t) = exp(f(t, T − t)) (8)

with F (T, 0) = exp(f(T, 0)) = S(T ). Now we derive the
explicit forms of A and B so that F (t, T − t) is a Ft

martingale in the risk neutral measure. (see Appendix A.)
Applying the results by Aihara and Bagchi [2010], we get

Theorem 1. The explicit form of (7) is a solution of

df(t, x) =
∂f(t, x)

∂x
dt− q̃J(x)dt+ e−κx{σrdwr(t)

+

∫
R

νqc(dν, dt)}+ σdw(t, x) (9)

f(0, x) = r̄(1− e−κx) +
σ2
r

2κ
(1− e−2κx) +

1

2

∫ x

0

q(z, z)dz

+se(x) +

∫ x

0

(λ+CP (z) + λ−CM (z))dz + e−κxr(0), (10)

where

q̃J(x) = σ2
re

−2κx +
1

2
q(x, x) + (λ+CP (x) + λ−CM (x))

and

C•(x) =

∫
R

exp(e−κxν)ψ•(dν)− 1. (11)

4. REAL WORLD DYNAMICS

For applying the filtering for f to the parameter estimation
problem, we work in the real world measure. For example,
we add a simple risk premium term to (9) . Usually we need
to use the measure transformation technique to convert the
BMPs and Poisson terms to include the risk coefficients as
used in Benth et al. [2008]. In this paper, we simplify the
situation that the market price of risk Λw(t) comes mainly
from wr(t) but this moves stochastically. We set this term
as

dΛw(t) = κλ(Λ̄− Λω(t))dt+ σΛdw2(t), (12)

where the BMP w2 is independent of wr . Now under the
real world measure the BMP w̃r(t) is represented by

wr(t) = w̃r(t)−
∫ t

0

Λw(s)ds.

2 T ∗ denotes the longest future time in mind

Hence our system state [f(t, x) Λw(t)] under the physical
measure becomes

df(t, x) =
∂f(t, x)

∂x
dt− q̃J (x)dt+ e−κx{σr(−Λw(t)dt

+dw̃r(t)) +

∫
R

νqc(dν, dt)}+ σdw(t, x)

dΛw(t) = κλ(Λ̄− Λw(t))dt+ σΛdw2(t).

(13)

5. OBSERVATION

Noting that electricity is essentially not storable, the
futures contracts are based on the arithmetic averages of
the spot prices over a delivery period [T0, T ], given by

1

T − T0

∫ T

T0

S(τ)dτ.

Now, for t < T0 we can calculate the futures prices by

F (t, T0, T ) =E{ 1

T − T0

∫ T

T0

S(τ)dτ |S(t)}

=
1

T − T0

∫ T

T0

F (τ, t)dτ

=
1

T − T0

∫ T−t

T0−t

exp[f(t, x)]dx. (14)

The arithmetically averaged process is not lognormal and
in practice we adopt the geometric average as an approxi-
mation;

F (t, T0, T ) ∼ exp[
1

T − T0

∫ T−t

T0−t

f(t, x)dx]. (15)

By using this geometric approximation, the observation
data for the futures price is set as

yi(t) =
1

T − T0

∫ τi+(T−T0)

τi

f(t, x)dx, τ1 < τ2 < · · · < τm. (16)

We define

H(·) = 1

T − T0
[

∫ τ1+(T−T0)

0

(·)dx, · · · ,
∫ τm+(T−T0)

0

(·)dx]′

and

Hδ(·) = [
1

T − T0

∫
G

(δ(η−(T−T0+τi))−δ(η−τi))(·)dη]m×1.

Denoting
Y (t) = [yi(t)]m×1,

we have

dY (t) = Hδf(t, ·)dt−H(q̃J +B(x)σrΛw(t))dt

+H[dwM (t, ·)] +H[B

∫
R

νqc(dν, dt)], (17)

where B(x) = e−κx and

wM (t, x) = B(x)σrwr(t) + σw(t, x). (18)

5.1 Reconstruction of jump process

We choose one yield data for τ0 < τ1, i.e,
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y0(t) =
1

T − T0

∫ τ0+(T−T0)

τ0

f(t, x)dx. (19)

By using the following notations,

H0(·) = 1

T − T0

∫ τ0+(T−T0)

0

(·)dx,

and

H0
δ (·) =

1

T − T0

∫
G

(δ(η− (T − T0 + τ0))− δ(η− τ0))(·)dη,

we have

dy0(t) = H0
δ f(t, ·)dt−H0(q̃J +B(x)σrΛw(t))dt

+H0[dwM (t, ·)] +H0[B

∫
R

νqc(dν, dt)].

Hence it is possible to reconstruct the jump process from
y0(t) such that∫ t

0

∫
R

νqc(dν, ds) =
1

B0
(y0(t)−

∫ t

0

H0
δ fds−H0wM (t, x))

+

∫ t

0

1

B0
H0(q̃J +B(x)σrΛw(s))ds, (20)

where B0 = H0B. Plugging (20) into (13), we have

df(t, x) =
∂f(t, x)

∂x
dt− (q̃J(x) +B(x)σrΛw(t))dt

+dwM (t, x) +
B(x)

B0
{dy0(t)−H0

δ fdt

+H0(q̃J +B(x)σrΛw(t))dt−H0dwM (t, x)} . (21)

Now for more easy treatment, noting that wM− B
B0H

0wM =

(1 − B
B0H

0)σw, we transform the above equation as the
robust form for jump term. Define

f̃(t, x) = f(t, x)− B(x)

B0
y0(t). (22)

Hence we get

df̃(t, x) = (
∂

∂x
− Cδ)(f̃(t, x) +

B(x)

B0
y0(t))dt− (1− C0)

×(q̃J (x) +B(x)σrΛw(t))dt+ (1− C0)σdw(t, x), (23)

where

Cδ =
B(x)

B0
H0

δ (24)

C0 =
B(x)

B0
H0. (25)

5.2 Reconstruction of observed yields

Denoting

Hj(·) = 1

(T − T0)

∫ τi+(T−T0)

τi

(·)dx,

the original yield yj(t) becomes

yj(t) =Hjf(t, ·)

=Hj f̃(t, ·) + HjB

B0
y0(t). (26)

Now we construct the new observation such that

ỹj(t) = yj(t)−
HjB

B0
y0(t),

=Hj f̃(t, ·). (27)

Denoting
Ỹ (t) = [ỹj(t)]m×1,

and from (H −HC0)BσrΛw = HBσrΛw −HBσrΛw = 0,
we get

dỸ (t) = (Hδ −HCδ)f̃(t, ·)dt+ (Hδ −HCδ)
B

B0
)y0(t)dt

−(H −HC0)q̃Jdt+ (H −HC0)σdw(t, x). (28)

6. THE KALMAN FILTER

In (9), Poisson jump processes are included and this is not
a usual Kalman filter problem. There are many articles
for Non-Gaussian filtering problem by using a martingale
approach, e.g. van Schuppen [1977] and however it is
still difficult to derive the closed form filtering algorithm.
In our situation, the transformed system (23) with the
observation (28) do not include jump processes explicitly.
Hence our estimation problem is in the Gaussian frame
work;

d

(
f̃(t, x)
Λw(t)

)
=

(
(
∂

∂x
− Cδ) −(1− C0)
0 −κλ

)(
f̃(t, x)
Λw(t)

)
dt

+

(
(
∂

∂x
− Cδ)

B

B0
y0 − (1− C0)q̃J

κλΛ̄

)
dt+ d

(
(1− C0)w(t, x)

wΛ(t)

)
.(29)

with

dỸ (t) = (Hδ −HCδ , 0)
(
f̃(t, x)
Λw(t)

)
dt

+((Hδ −HCδ)
B

B0
y0(t)− (H −HC0)q̃J)dt

+(H −HC0)dw(t, x). (30)

Denoting
·̂ = E{·|Yt},

for Yt = σ{Ỹ (s), y0(s); 0 ≤ s ≤ t}, we have

d
ˆ̃
f(t, x) = (

∂

∂x
− Cδ)( ˆ̃f(t, x) +

B(x)

B0
y0(t))dt

−(1− C0)(B(x)Λ̂w(t) + q̃J(x))dt

+
{
P̃ff (t)(Hδ −HCδ)∗ + (1− C0)Q(H −HC0)∗

}
Φ−1

×

{
dỸ (t)− (Hδ −HCδ , 0)

(
ˆ̃
f(t, x)

Λ̂w(t)

)
dt

−((Hδ −HCδ)
B

B0
y0(t)− (H −HC0)q̃Jdt

}
, (31)

and

dΛ̂w(t) = κλ(Λ̄− Λ̂w(t)dt

+P̃Λf (t)(Hδ −HCδ)∗Φ−1

×

{
dỸ (t)− (Hδ −HCδ , 0)

(
ˆ̃
f(t, x)

Λ̂w(t)

)
dt

−((Hδ −HCδ)
B

B0
y0(t) + (H −HC0)q̃Jdt

}
, (32)
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where Q =
∫

q(x, z)(·)dz ,

Φ = (H −HC0)((H −HC0)Q)∗, (33)

and

∂P̃ff (t)

∂t
= (

∂

∂x
− Cδ)P̃ff (t) + P̃ff (t)(

∂

∂x
− Cδ)∗

+(1− C0)Q(1− C0)∗

−
{
P̃ff (t)(Hδ −

HB

B0
H0

δ )
∗ + (1− C0)Q(H −HC0)∗

}
Φ−1{

P̃ff (t)(Hδ −
HB

B0
H0

δ )
∗ + (1− C0)Q(H −HC0)∗

}∗
, (34)

∂P̃fΛ(t)

∂t
= (

∂

∂x
− Cδ)P̃fΛ(t)− P̃fΛ(t)κλ

−
{
P̃ff (t)(Hδ −

HB

B0
H0

δ )
∗ + (1− C0)Q(H −HC0)∗

}
Φ−1{

P̃Λf (t)(Hδ −
HB

B0
H0

δ )
∗
}∗

. (35)

6.1 Original form of the Kalman filter for f(t, x)

Noting that

ˆ̃
f(t, x) = f̂(t, x)− B(x)

B0
y0(t),

we get

df̂(t, x) = (
∂

∂x
− B(x)

B0
H0

δ )f̂(t, x)dt

−(1− B(x)

B0
H0)(B(x)Λ̂w(t)

+q̃J(x))dt+
B(x)

B0
dy0(t) +K(t)dℓ(t) (36)

where the innovation process ℓ(t) is given by

dℓ(t) = dỸ (t)− (Hδ −HCδ)f̂(t, ·)dt−H(1− C0)q̃Jdt,
and

K(t) =
{
P̃ff (t)(Hδ −HCδ)∗ + (1− C0)QH(1− C0)∗

}
Φ−1.

7. LIKELIHOOD FUNCTIONAL

Our objective now is to estimate the unknown system pa-
rameters. Our first difficulty is the covariance kernel q(x, y)
and seasonality function se(t). If we can parameterize it
with one or more parameter(s), say c, then we can estimate
q(x, y) from Aihara and Bagchi [2010] in advance. It is
also possible to identify se(t) as explained in Section2.
Now we specify the randomness of the jump processes.The
distribution of the jump intensity ψ•(dν) is Gaussian with
the mean m•

J and the covariance σ•
J . Hence we have

C•(x) =

∫
R

exp(e−κxν)ψ•(dν)− 1

= ee
−κxm•

J+
(σ•

J
)2

2 e−2κx

− 1

Hence the parameters we need to estimate are κ, σr, λ
+, λ−,

mP
J ,m

M
J , σ

P
J , σ

M
J , σ, κλ, Λ̄, σΛ and r̄. The standard ap-

proach is to use the method of maximum likelihood, for
which we need to calculate the likelihood functional from

the observation data {Ỹ (t); 0 ≤ t ≤ tf}, where tf denotes
a final time. The likelihood functional for our problem is

L(tf , Y ) =

∫ tf

0

Φ−1(s)(H
[

ˆ̃
f(s, x)

Λ̂w(s)

]
+ Ĝ)∗dỸ (s)

−
1

2

∫ tf

0

||Φ−1/2(s)(H
[

ˆ̃
f(s, x)

Λ̂w(s)

]
+ Ĝ)||2ds, (37)

where
ˆ̃
f(s, x) and Λ̂w(s) are the ”best” estimates of the

states f̃(s, x) and Λw(s) given by the observation data

σ{Ỹ (τ); 0 ≤ τ ≤ s}, H = [Hδ −HC0, 0], and Ĝ = ((Hδ −
HCδ) B

B0 y0(t) + (H − HC0)q̃J . The MLE of the unknown

parameter θ = [κ σr λ+ λ− mP
J mM

J σP
J σ κλ Λ̄

σΛ r̄] is then given by

θ̂ = argmax L(tf , Y ). (38)

8. SIMULATION STUDIES

8.1 Filtering

First we check the feasibility of our developed filtering
algorithm. The system parameters are set as in Table-2.

Table 2. Systems parameters

κ r̄ σr σ mP
J λ+, σP

J

5.00 3.00 0.80 0.001 0.50 8.00 0.20

mM
J λ− σM

J κλ Λ̄ σλ

-0.50 8.00 0.20 4.00 0.30 3.00

Setting the seasonality function is set as shown in Table -1,
we simulate (13) by using the finite difference method with
dx = 0.01, dt = 0.005. For details, see Imreizeeq [2011].
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We also generate the observation data Y (t) = [10yi(t)]i for
i = 1, 2, · · · , 7 with τ1 = 0, τ2 = 0.1, · · · , τ7 = 0.6 shown
in Fig.4.
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The filtering for the stochastic market price of risk is
demonstrated in Fig. 5.

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time(year)

Tr
ue

an
d
es
tim

at
ed

Λ λ

 

 
Estimated Λ̂λ

True Λλ

Fig. 5. True and estimated Λw(t)

The estimated f̂(t, x) is also shonw in Fig.6.
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Fig. 6. Estimated f̂(t, x)

At each x = 0, 0.1 points, we show the true and estimated
f from Fig.7,and 8.
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Fig. 7. True f(t, 0) and estimated f̂(t, 0)
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Fig. 8. True f(t, 0.1) and estimated f̂(t, 0.1)

8.2 MLE

By using the Generic Algorithm toolbox in MATLAB, the
MLE estimates for unknown parameters listed in Table 2
are performed. The results are shown in Table-3 and Fig.
9.

Table 3. MLE of systems parameters

κ̂ ˆ̄r σ̂r σ̂ m̂P
J λ̂+ σ̂P

J

1.5000 1.8339 0.9971 0.0008 0.7338 3.4000 0.4126

m̂M
J λ̂− σ̂M

J κ̂λ
ˆ̄Λ σ̂λ

-0.9722 3.5784 0.6000 8.7175 0.1638 0.9064

The MLE results have still some estimated errors in only
one year data. To support consistency we need for more
long range historical data.
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Fig. 9. GA output using MATLAB GA toolbox
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