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Abstract: This paper aims at developing Bode-type integrals for control systems over
additive white Gaussian noise channels, by way of deriving information theoretic equalities
and inequalities. The integrals characterize the fundamental performance trade-offs of such
networked feedback systems with linear time-invariant plants and causal stabilizing controllers.
We propose two new notions to facilitate our development: channel blurredness and negentropy
rate. The channel blurredness provides an alternative measure for the quality of communication
channels to the conventional notion of channel capacity. The negentropy rate, on the other hand,
relates the entropy rate of a stochastic process to its power spectrum. Both notions are shown
to be closely relevant to networked feedback systems. Indeed, the Bode-type integrals developed
herein are seen to depend on the channel blurredness of the communication channel, as well as
the negentropy of the exogenous disturbances.

Keywords: Bode-type integrals, information theoretic analysis, channel blurredness,
negentropy rate, networked feedback systems.

1. INTRODUCTION

Networked control [Antsaklis and Baillieul (2007)] refers to
such a setting in which the measurement and control sig-
nals are transmitted over certain communication channels
(uplink channel and downlink channel, respectively) to and
from the plant’s sensors and actuators. Figure 1 shows a
typical configuration of networked feedback systems. The
sheer nature of networked feedback systems thus requires
the reconciliation and integration of communications and
control technologies. Accordingly, analysis and design of
networked feedback systems call for understanding of the
interplay between information and control theories.

Bode sensitivity integral relation [Bode (1945)] is one of
the most important results on the fundamental limita-
tions of control systems. While various extensions have
been found for different systems [Sung and Hara (1988);
Freudenberg and Looze (1988); Chen (1995); Chen and
Nett (1995); Zang and Iglesias (2003)], this result cannot
be readily applied to networked feedback systems due to

? This research was supported in part by the Hong Kong RGC under
the project CityU 111810, CityU 111511, by the City University of
Hong Kong under Project 9380054, and by the Aihara Project, the
FIRST program from JSPS, initiated by CSTP.

inherent communication constraints on channel capacity,
data rate, signal-to-noise ratio (SNR), etc. That a net-
worked feedback system often exhibits nonlinear, time-
varying behavior also poses a formidable barrier.

Fig. 1. A networked feedback system

Martins and co-workers [Martins et al. (2007); Martins
and Dahleh (2008)] recently conducted an information-
theoretic study into single-input and single-output (SISO)
networked feedback systems, which has led to Bode-type
integral inequalities incorporating channel capacity. Sub-
sequently, [Okano et al. (2008); Ishii et al. (2009)] ob-
tained similar results for multiple-input and multiple-
output systems, and for more general cases, allowing the
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presence of uplink and downlink simultaneously. Ensuing
works sought after extensions to nonlinear systems [Yu
and Mehta (2010)] and stochastic switched systems [Li
and Hovakimyan (2013)]. Applications of these integrals
were also made to molecular fluctuations analysis [Lestas
et al. (2010)] and vehicle platoon control systems [Zhao
et al. (2014)]. In all these works, concepts and results from
information theory have played a central role, which shed
new light on the study of networked feedback systems.

This paper seeks to develop Bode-type integrals with re-
spect to channels of more specific structures of which we
consider additive white Gaussian noise (AWGN) channels.
Section 2 introduces the necessary notations and prelim-
inaries. Section 3 gives the definitions of two newly pro-
posed notions: channel blurredness and negentropy rate.
Necessary interpretations and specifications are also pro-
vided. In Section 4, Bode-type integrals are obtained for
control systems over AWGN channels with linear time-
invariant (LTI) plants and causal stabilizing controllers.
Our results differ from those of [Martins and Dahleh
(2008)] in the following aspects. First, by introducing the
notion of negentropy rate, we are able to accommodate
non-Gaussian disturbances. Second, we use our newly
proposed concept of channel blurredness to characterize
the channel quality and prove that it is indeed relevant.
Finally, our integrals concern the entire frequency range,
and thus are more appropriate for addressing performance
trade-off issues.

2. NOTATIONS AND PRELIMINARIES

In this section we collect some key definitions and pre-
liminary results from information theory ([Pinsker (1964);
Papoulis and Pillai (2002); Cover and Thomas (2006)]).
We consider real-valued continuous random variables and
discrete-time stochastic processes. The logarithm used in
this paper is that with base 2, and all the integrals herein
are over appropriate sets of the variables.

Definition 2.1. The differential entropy of a random
variable a with density function f(x) is defined as

h(a) = −
∫
f(x) log f(x) dx.

Definition 2.2. The differential entropy of a set of ran-
dom variables a1, a2, . . . , ak with joint density function
f(x1, x2, . . . , xk) is defined as

h(a1, a2, . . . , ak)

= −
∫
f(x1, x2, . . . , xk) log f(x1, x2, . . . , xk) dx1 dx2 . . . dxk.

Definition 2.3. The conditional differential entropy of
two random variables a, b with joint density f(x, y) and
conditional density function f(x|y) is defined as

h(a|b) = −
∫
f(x, y) log f(x|y) dx dy.

Definition 2.4. The mutual information between two
random variables a, b with joint density function f(x, y)
is defined as

I(a; b) =

∫
f(x, y) log

f(x, y)

f(x)f(y)
dx dy.

Definition 2.5. The entropy rate of a stochastic process
{ak} is defined as

h∞(a) = lim sup
k→∞

h(a1,...,k)

k
,

where a1,...,k is the abbreviated notation of a1, a2 . . . , ak,
and this abbreviation will be adopted throughout this pa-
per.

Definition 2.6. The (mutual) information rate between
two stochastic processes {ak} , {bk} is defined as

I∞(a; b) = lim sup
k→∞

I(a1,...,k; b1,...,k)

k
.

Definition 2.7. A zero-mean stochastic process {ak} is
asymptotically stationary if the following limit exists for
every k:

Ra(k) = lim
l→∞

E [al+kal] .

For an asymptotically stationary {ak}, its asymptotic
power spectrum is defined as

Sa(ω) =

∞∑
k=−∞

Ra(k)e−jkω.

Definition 2.8 ([Hyvärinen and Oja (2000)]). The ne-
gentropy (or negative entropy) of a random variable a is
defined as

J (a) = h (aG)− h (a) ,

where aG is a Gaussian variable with the same variance
as a.

The following lemma lists the key properties of entropy
and mutual information relevant to our subsequent devel-
opment:

Lemma 2.1 ([Pinsker (1964); Cover and Thomas (2006)]).
(1) I(a; b) = I(b; a) = h(a)−h(a|b) = h(b)−h(b|a) ≥ 0, in
which equality holds if and only if a and b are independent.
(2) h(a|b) ≤ h(a), in which equality holds if and only if a
and b are independent.
(3) h(a, b) = h(a) + h(b|a).
(4) Suppose that f is a causal function, then h(a|b) ≤
h(a|f(b)), in which equality holds if and only if f is in-
vertible.
(5) Suppose that f is a causal function, then h(a+f(b)|b) =
h(a|b), h(a|b) = h(a|b, f(b)),and I(a; b|c) = I(a; b+f(c)|c).
(6) I(a; b|c) = I(b; a|c) = h(a|c) − h(a|b, c) = h(b|c) −
h(b|a, c) ≥ 0, in which equality holds if and only if a and
b are independent given c.
(7) I(a; b, c) = I(a; b) + I(a; c|b), and I(a; b, c|d) =
I(a; b|d) + I(a; c|b, d).
(8) I(a; b) ≤ I(a; b, c), and h(a|b) ≥ h(a|b, c). For both,
equality holds if and only if a and c are independent given
b.
(9) h(a1,...,k) =

∑k
i=1 h(ai|a1,...,i−1), and h(a1,...,k|b) =∑k

i=1 h(ai|a1,...,i−1, b).

(10) I(a1,...,k; b) =
∑k
i=1 I(ai; b|a1,...,i−1), and I(a1,...,k; b|c)

=
∑k
i=1 I(ai; b|a1,...,i−1, c).
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The next lemma introduces the entropy power inequality,
which will play an important role in the sequel.

Lemma 2.2 ([Cover and Thomas (2006)]). Let a and b be
independent random variables, then

22h(a+b) ≥ 22h(a) + 22h(b),

in which equality holds if and only if a and b are both
Gaussian.

3. CHANNEL BLURREDNESS AND NEGENTROPY
RATE

3.1 Channel Blurredness

We consider a general channel as depicted in Figure 2, in
which v is the channel input, u the output, and n the noise
process. We assume that n does not depend on v.

Fig. 2. A channel with input v, noise n, and output u

Definition 3.1. Consider the channel given in Figure 2.
The blurredness of the channel (or channel blurredness)
is given by

B , min
v
I (n;u) , (1)

which is measured in bits. The minimum is to be taken
over classes of inputs of interest.

If u = f(v, n) = v+n, then the channel in Figure 2 reduces
to an additive channel, as shown in Figure 3. An additive
channel with n being an white Gaussian noise independent
of the channel input v is said to be an AWGN channel.

Fig. 3. An additive channel

Theorem 3.1. Consider the AWGN channel depicted in
Figure 3 with power constraint Ev2 ≤ P . Let n be zero-
mean with variance σ2

n. Then its channel blurredness is
given by

B = min
p(v): Ev2≤P

I (n;u)

=
1

2
log

(
1 +

σ2
n

P

)
bits per channel use. (2)

Proof. Since n does not depend on v, we have

I (n;u) = h(u)− h(u|n) = h(u)− h(v|n) = h(u)− h(v),

and

I (v;u) = h(u)− h(u|v) = h(u)− h(n|v) = h(u)− h(n).

Using the entropy power inequality,

22h(u) ≥ 22h(v) + 22h(n),

it follows that

22[h(v)−h(u)] + 22[h(n)−h(u)] ≤ 1,

and

I (n;u) = h(u)− h(v) ≥ −1

2
log
{

1− 22[h(n)−h(u)]
}

= −1

2
log
[
1− 2−2I(v;u)

]
.

It is known from [Cover and Thomas (2006)] that I (v;u) =
h(u)− h(n) reaches its maximum

C = max
p(v): Ev2≤P

I (v;u) =
1

2
log

(
1 +

P

σ2
n

)
,

when v is Gaussian and Ev2 = P . In this case,

I (n;u) = h(u)− h(v) = −1

2
log
{

1− 22[h(n)−h(u)]
}

= −1

2
log
[
1− 2−2I(v;u)

]
.

Thus, I (n;u) reaches its minimum. Consequently,

B = min
p(v): Ev2≤P

I (n;u)

= −1

2
log
[
1− 2−2 maxp(v): Ev2≤P I(v;u)

]
=

1

2
log

(
1 +

σ2
n

P

)
.

�

Remark 3.1. It is well-known that the channel capacity of
the AWGN channel is given by [Cover and Thomas (2006)]

C = max
p(v): Ev2≤P

I (v;u) =
1

2
log

(
1 +

P

σ2
n

)
.

Using Theorem 3.1, the relationship between the channel
blurredness and channel capacity of the AWGN channel
can be found as

B = −1

2
log
(
1− 2−2C

)
=

1

2
log

(
1 +

1

22C − 1

)
, (3)

or alternatively,

2−2B + 2−2C = 1, (22B − 1)(22C − 1) = 1. (4)

Clearly, the larger C is, the smaller B is. Hence, the
channel blurredness serves as a measure of poorness on
the channel’s quality.

3.2 Negentropy Rate

Definition 3.2. The negentropy rate of an asymptoti-
cally stationary stochastic process {ak} is defined as

J∞ (a) , h∞ (aG)− h∞ (a) , (5)

where {aG (k)} is a Gaussian process with the same asymp-
totic power spectrum as {ak}.
Proposition 3.1. Suppose that {ak} is asymptotically
stationary with asymptotic power spectrum Sa (ω), then

J∞ (a) = h∞ (aG)− h∞ (a)

=
1

2π

∫ π

−π
log
√

2πeSa (ω)dω − h∞ (a) . (6)

Furthermore, J∞ (a) ≥ 0, and the equality holds if and
only if {ak} is Gaussian.

Proof. It is known from [Martins and Dahleh (2008)] that

h∞ (a) ≤ 1

2π

∫ π

−π
log
√

2πeSa (ω)dω,

in which equality holds if and only if {ak} is Gaussian.
Since SaG (ω) = Sa (ω), we have
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h∞ (aG) =
1

2π

∫ π

−π
log
√

2πeSaG (ω)dω

=
1

2π

∫ π

−π
log
√

2πeSa (ω)dω.

As a result,

J∞ (x) = h∞ (aG)− h∞ (a)

=
1

2π

∫ π

−π
log
√

2πeSa (ω)dω − h∞ (a) .

Furthermore, J∞ (a) ≥ 0, and the equality holds if and
only if {ak} is Gaussian. �

Remark 3.2. Negentropy rate generalizes the concept of
negentropy to asymptotically stationary stochastic pro-
cesses, and it provides a measure of non-Gaussianity for
such processes.

4. INFORMATION THEORETIC (IN)EQUALITIES
AND BODE-TYPE INTEGRALS

In this section, we derive Bode-type integrals for control
systems over AWGN channels with LTI plants and causal
stabilizing controllers, by obtaining information theoretic
equalities and inequalities for such systems first.

4.1 Networked Feedback System

Consider the SISO networked feedback system with an
uplink AWGN channel, as depicted in Figure 4. In this
setup, the reference signal r is assumed to be known, and
y denotes the plant’s output.

Fig. 4. A control system over an AWGN channel

Let the plant P be an LTI system, with the state-space
model given by[
xk+1

yk

]
=

[
A b
c 0

] [
xk
ek

]
,

where xk ∈ Rm, ek ∈ R, yk ∈ R, A ∈ Rm×m, b ∈ Rm×1, c ∈
R1×m. Suppose that the initial state x0 is a random vector
with a finite entropy h(x0).

The controller K is assumed to be causal. That is, at any
time constant k, wk = Kk (r0,...,k, y0,...,k) .

The channel noise {nk} is assumed to be an independent
and identically distributed (i.i.d.) Gaussian process with
zero mean and variance σ2

n. The channel input {vk} is
subject to a power constraint Ev2 ≤ P . Besides, {nk}
does not depend on {vk}. The disturbance {dk} is assumed
to be additive and asymptotically stationary, which does
not depend on {zk}. We assume that {nk} , {dk} , x0 are
independent of each other.

The encoder and the decoder are assumed to be causal.
According to the standardized interfaces and layering prin-
ciples [Gallager (2008)], the encoder may include the quan-
tizer, the source encoder, and the channel encoder, etc.,
while the decoder may include the channel decoder, the
source decoder and the table lookup, etc. Mathematically,
the causalities of the encoder E and decoder D translate
into vk = Ek (w0,...,k) and zk = Dk (u0,...,k) .

4.2 Information Theoretic Equalities and Inequalities

The information theoretic equalities and inequalities given
below provide the necessary foundations for the rest of this
paper, which relate the system’s input and output signals
using information measures. The proofs of Lemma 4.1 and
Lemma 4.2 are omitted due to lack of space.

Lemma 4.1. For the system given in Figure 4, the
following equality holds:

h (e0,...,K) = h (d0,...,K) + I (e0,...,K ;x0)

+ I (n0,...,K ; e0,...,K , x0) . (7)

Lemma 4.2.

h∞ (e) ≥ h∞ (d) . (8)

Furthermore,

h∞ (e) = h∞ (d) + I∞ (n; e)

+ lim sup
K→∞

I(n0,...,K , e0,...,K ;x0)

K + 1
. (9)

4.3 Bode-Type Integrals

As one of the main results of this paper, the following
Bode-type integral characterizes the fundamental perfor-
mance trade-off of the system given in Figure 4.

Theorem 4.1. Suppose that K stabilizes the system in the
sense that supk E

(
xTk xk

)
<∞, and {ek} is asymptotically

stationary. Then the following integral holds:

1

2π

∫ π

−π
log

√
Se (ω)

Sd (ω)
dω = J∞ (e)− J∞ (d) + I∞ (n; e)

+ lim sup
K→∞

I(n0,...,K , e0,...,K ;x0)

K + 1
,

(10)

where Se (ω) and Sd (ω) are the asymptotic power spectrum
of {ek} and {dk} respectively.

Proof. By Proposition 3.1, we have

J∞ (d) =
1

2π

∫ π

−π
log
√

2πeSd (ω)dω − h∞ (d) ,

and

J∞ (e) =
1

2π

∫ π

−π
log
√

2πeSe (ω)dω − h∞ (e) .

From (9), it follows that
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1

2π

∫ π

−π
log
√

2πeSe (ω)dω − 1

2π

∫ π

−π
log
√

2πeSd (ω)dω

− J∞ (e) + J∞ (d)

= h∞ (e)− h∞ (d)

= I∞ (n; e) + lim sup
K→∞

I(n0,...,K , e0,...,K ;x0)

K + 1
.

This can be rewritten as

1

2π

∫ π

−π
log

√
Se (ω)

Sd (ω)
dω = J∞ (e)− J∞ (d) + I∞ (n; e)

+ lim sup
K→∞

I(n0,...,K , e0,...,K ;x0)

K + 1
.

�

Remark 4.1. Of the four terms on the right-hand side
of (10), the first two terms J∞ (d) and J∞ (e) depend
directly upon the non-Gaussianity of {dk} and {ek} re-
spectively. The third term I∞ (n; e), as to be seen shortly,
is determined by the channel’s properties. The last term

lim supK→∞
I(n0,...,K ,e0,...,K ;x0)

K+1 is intimately related to the

properties of the plant P. Based on the results in [Martins
et al. (2007)], it can be obtained that

lim sup
K→∞

I(n0,...,K , e0,...,K ;x0)

K + 1

≥ lim inf
K→∞

I(n0,...,K , e0,...,K ;x0)

K + 1

≥ lim inf
K→∞

I(e0,...,K ;x0)

K + 1
≥

m∑
i=1

max {0, log |λi (A)|} .

Remark 4.2. When {nk} = 0, and {dk} is Gaussian (so
J∞ (d) = 0), then the equality in (10) reduces to [Martins
et al. (2007); Martins and Dahleh (2008)]

1

2π

∫ π

−π
log

√
Se (ω)

Sd (ω)
dω

= J∞ (e) + lim sup
K→∞

I(n0,...,K , e0,...,K ;x0)

K + 1

≥ J∞ (e) + lim inf
K→∞

I(e0,...,K ;x0)

K + 1

≥
m∑
i=1

max {0, log |λi (A)|} .

The following theorem relates the term I∞ (n; e) to the
blurredness of the channel, and the relationship character-
izes the influence of the channel’s properties in the integral.

Theorem 4.2. Consider the system in Figure 4. Given P,

min
K

max
E,D,d

I∞ (n; e)

≥ B =
1

2
log

(
1 +

σ2
n

P

)
=

1

2
log

(
1 +

1

22C − 1

)
, (11)

in which the maximum is to be taken over all E,D, d
for which the system can be stabilized by a causal con-
troller; and the minimum is to be taken over all causal K
such that the system is stabilized. Herein, stability means
supk E

(
xTk xk

)
<∞ and {ek} is asymptotically stationary.

Proof. Since n0,...,K and d0,...,K are independent of each
other, we have

I(n0,...,K ; e0,...,K) = h(n0,...,K)− h(n0,...,K |e0,...,K)

= h(n0,...,K |d0,...,K)− h(n0,...,K |e0,...,K)

≤ h(n0,...,K |d0,...,K)− h(n0,...,K |e0,...,K , d0,...,K)

= I(n0,...,K ; e0,...,K |d0,...,K).

On the other hand, if d0,...,K is known, it can be viewed
equivalently as part of the reference r, which is also
assumed to be known. Thus

I(n0,...,K ; e0,...,K |d0,...,K) = I(n0,...,K ; e0,...,K)|d0,...,K=0.

So

max
E,D,d

lim sup
K→∞

I(n0,...,K ; e0,...,K)

K + 1

= max
E,D,d=0

lim sup
K→∞

I(n0,...,K ; e0,...,K)

K + 1

= max
E,D,d=0

lim sup
K→∞

I(n0,...,K ; z0,...,K)

K + 1
.

Next, as zk = Dk (u0,...,k) is causal, we have

I(n0,...,K ; z0,...,K) ≤ I(n0,...,K ;u0,...,K),

and thus

max
E,D,d=0

lim sup
K→∞

I(n0,...,K ; z0,...,K)

K + 1

= max
E,D,d=0

lim sup
K→∞

I(n0,...,K ;u0,...,K)

K + 1
.

Then it can be obtained that

max
E,D,d

I∞ (n; e) = max
E,D,d=0

lim sup
K→∞

I(n0,...,K ;u0,...,K)

K + 1
.

Thus

min
K

max
E,D,d

I∞ (n; e) ≥ min
K′

max
E,D,d

I∞ (n; e)

= min
K′

max
E,D,d=0

lim sup
K→∞

I(n0,...,K ;u0,...,K)

K + 1

= min
p(v): Ev2≤P

lim sup
K→∞

I(n0,...,K ;u0,...,K)

K + 1
,

in which K is to be taken from the set of causal stabilizing
(in the sense that supk E

(
xTk xk

)
< ∞, and {ek} is

asymptotically stationary) controllers, while K′ is from the
set of causal controllers, and the inequality holds as K is
a subset of K′.

It is worth mentioning that as there exists an implicit
feedback from the channel’s output to the encoder, the
channel in the networked feedback system is no longer a
memoryless channel. Let v̄, n̄, ū denote the input, noise,
and output of the memoryless version of the channel. As

I(n0,...,K ;u0,...,K) = h(n0,...,K)− h(n0,...,K |u0,...,K)

= h(n0,...,K)− h(n0|u0,...,K)− h(n1|n0, u0,...,K)

− . . .− h(nK |n0,...,K−1, u0,...,K),

and

I(n̄0,...,K ; ū0,...,K) = h(n̄0,...,K)− h(n̄0,...,K |ū0,...,K)

= h(n̄0,...,K)− h(n̄0|ū0,...,K)− h(n̄1|n̄0, ū0,...,K)

− . . .− h(n̄K |n̄0,...,K−1, ū0,...,K)

= h(n̄0,...,K)− h(n̄0|ū0)− h(n̄1|ū1)− . . .− h(n̄K |ūK),

we have

min
p(v): Ev2≤P

lim sup
K→∞

I(n0,...,K ;u0,...,K)

K + 1

≥ min
p(v̄): Ev̄2≤P

lim sup
K→∞

I(n̄0,...,K ; ū0,...,K)

K + 1
.
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So

min
K

max
E,D,d

I∞ (n; e)

≥ min
p(v): Ev2≤P

lim sup
K→∞

I(n0,...,K ;u0,...,K)

K + 1

≥ min
p(v̄): Ev̄2≤P

lim sup
K→∞

I(n̄0,...,K ; ū0,...,K)

K + 1

= min
p(v̄): Ev̄2≤P

I(n̄; ū) = B =
1

2
log

(
1 +

σ2
n

P

)
=

1

2
log

(
1 +

1

22C − 1

)
,

where the first equality holds as the channel is memoryless.
�

Remark 4.3. The term minK maxE,D,d I∞ (n; e) can be
interpreted as designing the controller to minimize the
worst-case information rate over all encoders, decoders,
and disturbances, which is similar in a way to the min-
max optimization in H∞ control.

Remark 4.4. In [Martins and Dahleh (2008)], for a
control system with LTI plants and causal stabilizing
controllers over a communication channel with feedback
capacity Cf (for AWGN channels, feedback capacity Cf
is equal to channel capacity C), it is proven that if
{dk} is asymptotically stationary and Gaussian auto-
regressive, and the system is stabilized in the sense that
supk E

(
xTk xk

)
<∞, as well as that {ek} is asymptotically

stationary, then

1

2π

∫ π

−π
min

{
0, log

√
Se (ω)

Sd (ω)

}
dω

≥
m∑
i=1

max {0, log |λi (A)|} − Cf .

Comparison of this result with those obtained by us can
bring about deeper insights into this problem.

5. CONCLUSION

In this paper, we have developed Bode-type integrals for
control systems over AWGN channels with LTI plants and
causal stabilizing controllers via an information theoretic
approach. Two new notions are proposed to facilitate our
development: channel blurredness and negentropy rate,
and the integrals are shown to depend on the channel
blurredness of the communication channel, as well as the
negentropy of the exogenous disturbances.
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