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Abstract: We propose a structural solution by non-regular static state feedback to the diagonal,
or row by row decoupling problem for linear systems. Without being completely general, this
solution concerns the Reduced Morgan’s Problem, that is we do not want it increases the
essential orders of the original system. The solution that we propose relies on properties between,
on one hand, some partial infinite structures extracted from well chosen interactors and on the
other hand, the controllability indices of a specific shifted system. To my knowledge, there was
at this date only very partial solutions to this problem deemed structurally hard.
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1. INTRODUCTION

The diagonal decoupling of linear systems by static state
feedbacks u = Fx + Gv, or Morgan’s Problem, is a
very difficult control problem when G should be not
invertible. Yet such non regular static solutions can
exist even when there is none regular. Such non regular
feedbacks can transform all the structures underlying the
regular solutions to control problems. The challenge
is to find new structures that will allow us to solve
the decoupling Problem. The non-regular decoupling by
dynamic state feedback was solved by Dion and Commault
[1988] due to new invariants, the essential orders (E.O.).
Now, non regular decoupling always comes down to a
problem of increasing structures. The relative simplicity
of the dynamic case comes from the facts that the E.O.
are the minimal infinite structure to achieve for decoupling
and that it is always possible to get it if there is a solution.
To make this increase, dynamic feedbacks use integrators
that are external to the system. This is no more the case
for static feedbacks that must only use internal dynamics.
We consider here the Static Reduced Morgan’s Problem
(SRMP), say the static decoupling without increasing the
E.O.: it provides insight into the complex mechanisms
of structural changes by non-regular controls and, from
the practical point of view, this restricted problem is
not without interest: indeed, if a static solution exists
with an increasing of the E.O., there always exists a
dynamic one without this increasing od E.O.. There are
so far only very partial results for the SRMP: when it
is sufficient to increase only one element of the infinite
structure (Herrera H and Lafay [1993]), or for trivial
internal structures, (Zagalak et al. [1998]),(Lafay [2013]).
The specific difficulties of SRMP are of two kinds: firstly,
the increases of infinite structure for solving SRMP depend
on the order of the outputs of the system, while the sum of
the sizes of these increases does not depend of this order.

This lock has been lift in Lafay [2013], where it is proved
that there is a unique ”minimal list of decoupling indices”
such that if SRMP has a static solution, one solution exists
with this list. Secondly we must take into account internal
couplings which are unobservable from the outputs to be
decoupled. For that, we develop a non trivial general
formulation of SRMP inspired by (Herrera H and Lafay
[1993]). The general solution of SRMP relies on the
controllability of a well defined shifted system. We propose
here only the structural aspects of decoupling, without
considerations on the internal stability.

2. NOTATIONS AND BACKGROUND

2.1 Notations

Let Σ(C,A,B), denoted shortly Σ, a linear system whose
state is supposed to be measured or reconstructible:

Σ

{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t).
(1)

x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and y ∈ Y ⊂ Rp. B is
monic and C epic. Σ is controllable and right invertible.
V∗ and R∗ are the supremal (A,B)invariant and the
supremal controllability subspaces in the kernel of C. As
the structure of V∗/R∗ does not affect the decouplability
by static state feedbacks (cf the Morse’s canonical form
Morse [1973]) we can assume without any loss of generality
that V∗=R∗, say that Σ has no finite zeros (they concern
only internal stability of the state, which is not addressed
here). A set of p elements is noted {•}p. Polynomial and
rational functions in variable s are respectively noted •[s]
and •(s). We note ∂p[s] the degree of p[s] and ∂ciM [s] the
highest degree of the ith column of matrix M[s]. f (n)(t) is
the derivative of order n of f(t) . In is the identity matrix
of order n and diag{ai}p the p× p matrix which diagonal
terms are ai, for i ≤ p.
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Definition 1. The interactor of Σ,(Wolovich and Falb
[1976]), is the unique p × p triangular and non-singular
polynomial matrix Φ[s] = [ϕi,j [s]] such that there exists
a biproper m × m (non unique) matrix B(s) satisfying :
T (s) = C(sIn −A)−1B =

[

Φ−10
]

B(s) where:

• ϕi,i = sdi , i = 1, ..., p, di being positive integers
• ϕi,j is zero or ϕi,j/s

dj is divisible by s, ∀i > j.

Φ[s] is invariant under the action of the group (T, F,G),
T and G being changing of bases on X and U , and F is
a state feedback. Without any loss of generality, we can
suppose that Φ is row reduced (r.r.), (Lafay et al. [1992]).
Four lists of integers characterize partially the structure of
Σ, (see Morse [1973],Commault et al. [1986]):
- {ci}m: controllability indices of (A,B) ,
- {n′

i}p: I4 Morse’s list of the orders of the zeroes at

infinity. If the interactor of Σ is r.r., di = n′
i, i ≤ p.

- {σj}m−p
: I2 Morse’s list providing the structure of R∗,

- {nie}p: the p E.O. of the outputs yi(t): nie = ∂ciΦ[s],
i ≤ p, .
These lists are invariant under the action of the group
(T, F,G,Π), where Π is a permutation of the outputs of Σ
and G is invertible (Herrera H et al. [1997]).
An extended system Σe(Ce, A,B) is defined in Herrera H
et al. [1997] by adding m − p fictitious outputs, to reflect
the structure of R∗.

Proposition 1. The m×m interactor of Σe, called ”ex-
tended interactor of Σ”, has the structure:

Φe[s] =

[

Φe
1[s] (0)

Φe
2[s] Φ

e
3[s]

]

=
[

ϕe
i,j [s]

]

, where (2)

• Φe
1[s] = Φ[s], then if Φ is r.r., ϕe

i,i = sn
′

i , i =≤ p,

• Φe
3[s] = diag{sσ

i

}m−p,

• polynomials
[

ϕe
2i,j [s]

]

=
∑h

r=l
αrs

r of Φe
2[s] are zero

or verify: ∂ϕe
1j,j + 1 ≤ l and h ≤ σi − 1 .

Note Φ[s] = W (s)diag{snie}p. W (s) is a proper matrix,
of rank at infinity k, called ”proper part of Φ[s]”, and:

Proposition 2. (Dion and Commault [1988]) There ex-
ists output’s permutation(s) Π such that the p × p inter-
actor ΦΠ of ΣΠ(ΠC,A,B) has the structure:

ΦΠ =

[

ΦΠ,1[s] (0)
ΦΠ,2[s] ΦΠ,3[s]

]

=
[

ϕΠi,j [s]
]

, where (3)

• ΦΠ,3[s] = diag{snje}k, nje being the E.O. of the k
last outputs of ΣΠ,

• Nonzero infinite zeros of W (s) are given by {δi}p−k =

{nie − fi}p−k, where fi = ∂ϕΠi,i[s], i ≤ p− k.

• {δi}p−k is called: list of decoupling indices of Σπ.

• There are always permutations Πm such that {δi}p−k

is the unique minimal list {∆i}p−k of decoupling
indices of Σ.

{∆i}p−k is defined in (Lafay [2013]) using the notion of
”minor” list:

Definition 2. Let two lists of integers {δi}k1 and {γi}k2
such that

∑k1
i=1

δi =
∑k2

i=1
γi. Note {δ̂i}supδi and {γ̂i}supγi

their dual lists. {δi}k1 ”minor” the list {γi}k2 if, for
i = 1, ..,sup(supj(δj), supj(γj)), we have:

i
∑

j=1

δ̂j ≤

i
∑

j=1

γ̂j . (4)

2.2 Impact of a permutation Π on the extended interactor

Assume Φe[s] as in (2).

Property 1. Let Π any permutation of the outputs of Σ.
The extended interactor of ΣΠ is given by

Φe
Π[s] =

[

Φe
Π,1[s] (0)

Φe
Π,2[s] Φ

e
Π,3[s]

]

, where : (5)

• Φe
Π,1[s] = ΦΠ[s] = B1(s)Φ[s]Π

−1, where ΦΠ[s] is the

interactor of ΣΠ and B1(s) is a biproper p×p matrix,
• Φe

Π,2[s] = B2(s)Φ2e[s]Π
−1, where B2(s) is a proper

(m− p) × p matrix, which can add polynomials to
whose of Φe

2[s] but, in each column j, these polyno-
mials are all of degree less than or equal to nje.

• Φe
Π,3[s] = Φe

3[s].

The proof is not given here for sake of shortness.

Remark 1. Let us consider (2) and (5). If, for j ≤ p − k,
one keeps in the jth columns of Φe

2[s] and Φe
Π,2[s] only

monomials of degree higher than nje, then the ”truncated”

matrices Φe,t
2 [s] and Φe,t

Π,2[s] satisfy Φe,t
Π,2[s] = Φe,t

2 [s]Π−1 .

2.3 On the model of the system

All the changes made so far on the transfer matrix of Σ
correspond to left biproper operations which can be glob-
ally realized by a regular static state feedback (Fm, Gm),
(Hautus and Heymann [1978]): they did not affect
the static decouplability of Σ and we can suppose that
the transfer matrix Tm(s) of Σm is Φm

−1(s). We note
Σm(Cm, Am, Bm), where Am = A + BFm, Bm = BGm

and Cm = ΠmC.
In the following it will be assumed, unless explicitly
mentioned, that Σ = Σm, (Proposition 2). Then,

Φe
m[s] =

[

ϕe
mi,j [s]

]

=





Φe
m1,1 (0) (0)

Φe
m1,2 Φe

m1,3 (0)
Φe

m2,1 Φe
m2,2 Φe

m2,3



 (6)

where the p× p interactor of Σm is:

Φm[s] =

[

Φe
m1,1 (0)

Φe
m1,2 Φe

m1,3

]

(7)

• Φe
m1,3 = diag{nie}k.

• Φe
m1,2is a p− k × k matrix with ∂ciΦ

e
m1,2 = nie ,

• Φe
m1,1 is a p − k × p − k matrix with: ϕe

mi,i = sfi ,
ϕe
mi,j = 0 for j > i and, for i < j, the non null

polynomials ϕe
mi,j are such that fj + 1 ≤ ∂min ϕe

m i,j

and ∂max ϕe
m i,j ≤ nje − 1,

• the list {nie − fi}p−k = {∆i}p−k ,

• Φe
m2,3 =diag{sσ

i

}m−p,

• for j ≤ p, polynomials of Φe
m2=

[

Φe
m2,1 Φe

m2,2

]

,
which are non null, are such that fj + 1 ≤ ∂minϕ

e
mi,j

and ∂max ϕe
m i,j < σi but it can be greater than nje.

2
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3. MORGAN’S PROBLEM

3.1 Formulation of the problem and consequences

The static diagonal decoupling without stability of Σ, or
Static Morgan’s Problem, can be stated as follows: Given
Σ described by (1), does it exists a static state feedback
u = Fx + Gv = Fx + G1v1 + ... + Gpvp, vi ∈ U and
Gi ∈ R

m×1 such that, for any i ∈ 1, 2, ..., p, vi controls the
scalar output yi without affecting the p− 1 other outputs
yj? If such a feedback exists, the transfer matrix TFG(s)
of Σ(C,A+BF,BG) is TFG(s) = diag{s−r1, ..., s−rp}, ri ∈
R. If G is regular,this problem has a solution if and only
if the ordered lists {n′

i}p and {nie}p are the same. So,

the interactor of Σ is diagonal (Commault et al. [1986]).
If {n′

i}p 6= {nie}p, Σ will be decouplable if and only if it
is possible to increase the structure at infinity so that it
matches to (new) E.O.. This can only be achieved by a
non regular feedback, say with a loss of inputs. With such
controls, the list of E.O. of Σ is not always the minimal
infinite structure to reach for the static decoupling.
Static Restricted Morgan’s Problem, (SRMP), is the par-
ticular case of Static Morgan’s Problem where the E.O. of
Σ should be the infinite structure of the decoupled system.
Finally, as any non regular decoupling reduces to increase
infinite structure, the solution will be based on a Theorem
of Loiseau [1988] that we remind now:

Theorem 1. Let a linear system, {n′
i} it’s infinite struc-

ture and {σi} it’s I2 Morse’s list. Let {pi} a list of integers.
Note {vi}, {αi} and {πi} the dual lists of, respectively,
{n′

i}, {σi} and {pi}. Let {Γi} obtained by arranging the
differences (πi−vi) in a non increasing order. Then, there
exists a static state feedback such that the structure at
infinity of the closed loop system is the list {pi} if and
only if:

v1 − vi ≥ π1 − πi, ∀i ≥ 1, (8)

j
∑

i=1

αi ≥

j
∑

i=1

Γi, ∀j ≥ 1. (9)

Let us consider now the dynamic solution of decoupling:

3.2 The Dynamic Morgan’s Problem (DMP)

Proposition 3. (Dion and Commault [1988]). DMP is
solvable if and only if Σ is right invertible and m −
p ≥ p− k, k being the rank at infinity of W (s). E.O.
can always be unmodified and such minimal solutions need
∑p

i=1
nie −

∑p

i=1
n′
i external integrators.

The dynamic solution puts Σ in the form ΣΠ (3), but
{δi}p−k = {nie − fi}p−k is not necessarily the list of min-
imal decoupling indices. DMP amounts to annihilating
{δi}p−k by the following iterative procedure for i ≤ p− k:
- for i = 1, u1 is replaced by an external chain of δ1
integrators controlled by an entry of R∗, for instance
v1 = up+1. This chain is independent of the (m−p) chains
of σi integrators of R∗. This substitution amounts to
multiply the first row of (3) by sδ1 . So ∂ϕΠ1,1 becomes n1e

and it is possible, by a left biproper operation, to eliminate

all the other polynomials of the first column of ΦΠ .
- we made the same operation for the other rows of ΦΠ,1,
taking at each step a new entry vi of R

∗, which is possible
as m− p ≥ p− k. The final interactor is diag{snie}p and
the system with entries {v1, v2, ..., vp−k, up−k+1, ..., up} is
regularly decouplable. So we need p − k independent
chains of integrators coming from a dynamic extension of
dimension

∑p

i=1
nie −

∑p

i=1
n′
i.

Note that the right invertibility or Σ expresses the inde-
pendence of it’s outputs. So this property will be also
necessary for the SRPM.

4. THE SOLUTION OF SRMP

Let Σm as in Subsection 2.3. We note Bm =
[

Bb Bs Br

]

and u(t) =
[

ub(t) uS(t) ur(t)
]T

, whereBb = [b1, ..., bp−k],

Bs = [bp−k+1, ..., bp] and Br = B ∩R∗ = [bp+1, ..., bm].
Define the m×m polynomial matrix ΦS,e

m [s] by:

ΦS,e
m [s] =

[

ΦS,e
m1[s] (0)

ΦS,e
m2[s] Φ

S,e
m3[s]

]

, where (10)

• ΦS,e
m1[s] = diag{snie}p

• ΦS,e
m3[s] = diag{sσ

i

}m−p

• ΦS,e
m2[s] comes from Φe

m2[s] =
[

Φe
m2,1 Φe

m2,2

]

by elimi-
nating, in each column i ≤ p, monomials of degree less
than or equal to nie by a left biproper transformation.

• ΦS,e
m [s] has the structure of an interactor.

4.1 Shifted system

Definition 3. The shifted system ΣS
m(CS

m, AS
m, BS

m) asso-
ciated with Σm is the invertible system of which ΦS,e

m [s],
equation (10), is the extended interactor.

Extend X by an dynamic extension Xa, of dimension

na =
∑p−k

i=1
∆i, composed of p − k independent con-

trollable and observable chains of integrators of lengths
∆1, ...,∆p−k with entries w1(t), ..., wp−k(t) in Ua and out-
puts z1(t), ..., zp−k(t) in Ya. The state, control and out-
put spaces of Σm complemented by this extension are
XS = X ⊕ Xa, US = U ⊕ Ua and YS = Y ⊕ Ya.
The shifted system is obtained by replacing the entries
ub(t) of Bb by zi(t) for i ≤ p− k. Then:

AS
m =











Am AS
1 . . . AS

p−k

(0) J∆1 (0) (0)

(0) (0)
. . . (0)

(0) . . . (0) J∆p−k











, where (11)

J∆i
are upper ∆i × ∆i Jordan’s blocks and the n × ∆i

matrices AS
i =

[

bi(n×1) (0)n×∆i−1

]

.

BS
m =

[

BS
a BS

s BS
r

]

=
[

(0)(n×p−k) Bs(n×k) Br(n×m−p)

Ba(na×p−k) (0) (0)

]

, where (12)

Ba = diag{ba,i}p−k, ba,i = [0 . . . 0 1]
T

being ∆i × 1
vectors.

CS
m =

[

Cm(p×m) (0)(p×na)

]

. (13)

Then,(cf Subsection 3.2), the interactor of ΣS
m is given by

ΦS
m[s] =

[

diag{snie}p
]

, (14)
3
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and the corresponding extended interactor of ΣS
m is:

ΦS,e
m [s] =

[

diag{snie}p (0)p×m−p

ΦS,e
m,2 diag{sσi}m−p

]

, where (15)

ΦS,e
m2[s] comes from Φe

m2[s] by eliminating, in each column
j ≤ p, monomials of degree less than or equal to nje.

4.2 A convenient formulation of SRMP

SRMP will be solved if it is possible to replace the p − k
independent external chains of DMP by p−k independent
chains extracted from Σ. A chain of length L is actived
only at its beginning by a function fa(t) and generate fe(t),

i.e. f
(L)
e (t) = fa(t). Let a set of q chains of integrators

defined by f i
e

(Li)(t) = f i
a(t), i ≤ q. For SRMP, we require

that each function f i
a(t) contains at least one input of

Σ. These chains are independent if, ∀j 6= i, the term
containing the inputs in f i

a(t) is not a linear combination
(l.c.) of corresponding terms in f j

a(t), and if f i
e(t) is not a

l.c. of f j
e (t). The following Lemma characterizes internal

chains that will increase the infinite structure without
changing the E.O.: it is a new formulation for SRMP,
generalizing in a non trivial way Lemma 4.2 in (Herrera H
and Lafay [1993])valid when k = p− 1.

Lemma 1. Let a right invertible system Σm with R∗ =
V∗, k the rank of W (s) and

{

∆i
}

(p−k)
its decouplability

indices (minimal decoupling indices of Σ). Then, SRMP
has a solution if and only if it is possible to extract, from
R∗ p − k, independent chains of integrators of lengths

∆1, ...,∆p−k described by f i
e(t)

(∆i) = f i
a(t), i ≤ p− k such

that:

(a) The output f i
e(t) of each chain is only function of x(t)

and these p− k functions are independent,
(b) For i ≤ p− k, the entry f i

a(t) of each chain does not
contain derivatives of uj(t), j = p− k + 1, ..., p.

(c) For i ≤ p− k, the entry f i
a(t) of each chain does not

contain derivatives of inputs uj(t) of order greather
than or equal to ∆j , j ≤ p− k .

Proof 1. IF. Let a state feedback (F,G) which decouples
Σm. From Dion and Commault [1988] this feedback is
equivalent to the precompensator C(s) = (Im − F (sIn −

Am)−1Bm)−1G =

[

W1,m(s)
X(s)

]

, where X(s) is a proper

m − p × p matrix and, noting d = s−1, the p × p proper
part W1,m(s) of the interactor of Σm can be written as:

W1,m(s) =























d∆1

ϕ̂2,1
. . . (0)

d∆p−k

(ϕ̂i,j)
... 1
... (0)

. . .
ϕ̂p,1 ϕ̂p,p−k 0 · · · 1























, (16)

and ∂ϕ̂i,j [d] < ∆j = nje − fj for i ≤ p− k.

G = lim
s→∞

W1,m(s) =

[

(0)p−k×p−k (0)
(gi,j)k×p−k Ik

]

where gi,j ∈ R,

(Herrera H [1992]) .
So, the feedback u(t) = Fx(t) +Gv(t) is given by:

ui(t) =







Fix(t), i = 1, ..., p− k (a)

Fix(t) +
∑p−k

j=1 gi,jvj(t) + vi(t),
i = p− k + 1, .., p (b)

(17)

As Σm,(F,G)(Cm, Am + BmF,BmG) is assumed to be
decoupled without changing the E.O., we have:

y
(nie)
i (t) =

{

u
(∆i)
i (t) = vi(t), i = 1, ...p− k

u
(0)
i (t) = vi(t), i = p− k + 1, ..., p.

(18)

Therefore, equations (18) and (17a) describe p− k chains
of lengths ∆1, ...,∆p−k generating independent functions
Fix(t). Moreover, from (17b), these chains are not acti-
vated by derivatives of up−k+1(t), ..., up(t) and for i and
j ≤ p − k, the ith chain is not actived by derivatives of
vj(t), i 6= j. But, by (17b), if the chains should only make
Σm regularly decouplable, the ith chain can be activated
by derivatives of ui(t) of order less than ∆i for i ≤ p− k,
because each chain must generate a function of x(t), say:

f i
a(t) = f i

e

(∆i)(t) and f i
a(t) = Fix(t).

From Loiseau [1988], since any increasing of infinite
structure can only be done using entries of R∗, entries
v1(t), ..., vp−k(t) should contain independent l.c. of entries
of R∗.
Only if : Assume that these p− k independent chains can
be constructed. For i ≤ p− k, each chain is characterized
by its length ∆i, its entry f i

a(t) and its output f i
e(t) linked

by f i
e

(∆i)(t) = f i
a(t). As f i

e(t) is uniquely a function of
x(t), we can write f i

e(t) = Fix(t), where Fi ∈ R
1×n, and

as the chains are independent, rank F̄ =







F1

...
Fp−k






= p− k.

Now, as the chains are extracted from R∗, each func-
tion f i

a(t) contains at least one l.c. of the entries
up+1(t), ..., um(t) and these l.c. are independent: this
implies that dimB∩R∗ ≥ p− k, (a necessary and sufficient
condition for DMP). For static decoupling, we must add:
∑p−k

i=1
∆i ≤

∑m−p

i=1
σi. By assumption, no derivative of

up−k+1(t), ..., up(t) appears in functions f i
a(t). However

there may be terms which depend on x(t) and/or on
up−k+1(t), ..., up(t), and/or for i ≤ p − k, on derivatives
of entries ui(t) of order less than ∆i, (from the fact that
f i
e = Fix(t)). So, for i ≤ p − k, the general form of f i

a(t)
is:

f i
a1(up+1(t), ..., um(t)) + f i

a2(x(t), up−k+1(t), ..., up(t))

+

p−k
∑

j=1

f i
a3,j(u

(1)
j (t), .., u

(∆j−1)
j (t)). (19)

f i
a1 are nonzero and independent functions.

As u
(j)
i (t) = y

(fi+j)
i (t) = y

(nie−∆i+j)
i (t), the Laplace’s

transform of each function f i
a(t) is:

f i
a1(up+1(s).., um(s)) + f i

a2(x(s), up−k+1(s).., up(s))

+

p−k
∑

j=1

Ψi,j[s]yj(s), (20)

where ∂Ψi,j[s] < nje.
Define the non regular feedback u(t) = Fx(t) +Gv(t) by:

F =





F̄p−k×n

0k×n

F0 m−p×n



 and G =





0p−k×k 0p−k×p−k

Ik 0k×p−k

0 m−p×k G0m−p×p−k



.
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Here rankF̄ = p− k and rank G0 = p− k ≤ m− p.
The possibly non regular feedback (F0, G0) acts only on
R∗ to create the p − k independent chains of integrators.
Noting Br = ImB ∩ R∗ and xR∗(t) trajectories in R∗,
this part of feedback is such that: F0xR∗(t)+BrG0v∗(t) =






f1
a1(•)
...

fp−k
a1 (•)






, where v∗(t) =







vp−k+1(t)
...

vp(t)






.

Then, as y
(fi)
i (t) = ui(t) = f i

e(t) for i ≤ p− k, we obtain:

L(y
(nie)
i (t)) = f i

ex(s)s
∆i = f i

a(t) = f i
a1(•) + f i

a2(•) +
∑p−k

j=1 Ψi,j[s]yj(s) with ∂Ψi,j [s] < nje. Then, outputs y(s)

and new entries v(s) are linked by:
[

H1,1 (0)p−k×k

H2,1 H2,2

]

y(s) = V (s) =

[

V1(s)
V2(s)

]

, where (21)

1- The p−k×p−k polynomial matrix H1,1 is given by:

H1,1 =















sn1e −Ψ1,1

. . . (−Ψi,j)

(ϕe
mi,j −Ψi,j)

. . .

sn(p−k)e −Ψp−k,p−k















.
2- H2,1 =

[

ϕe
mi,j [s]

]

is a k × p− k polynomial matrix
3- H2,2[s] = diag{sn(p−k+1)e , ..., snpe}k.

4- V1(s) =







f1
a1(•) + f1

a2(•)
...

fp−k
a1 (•) + fp−k

a2 (•)






and

V2(s) =







vp−k+1(s) = up−k+1(s)
...

vp(s) = up(s)






.

As the polynomial of highest degree of each column ofH [s]
is the diagonal polynomial, the infinite structure coincides
with E.O.: this system is regularly decouplable without
increasing E.O.. This ends the proof of Lemma 1.

Remark 2. Functions f i
a(t) cannot contain derivatives or

entries of R∗. If that were the case, for example for the
first chain, the effective length of this chain would be less
than ∆1. Indeed, suppose that this chain of length ∆1 is

activated by up+1(t) and by u
(1)
p+j(t), for j ≤ m− p. Then

f1
e

(∆1)(t) = f1
a (t) = up+1(t) + u

(1)
p+j(t) and f1

e

(∆1−1
)(t) =

∫

f1
a (t)dt =

∫

up+1(t)dt+
∫

u
(1)
p+j(t)dt = f(x(t)) + up+j(t).

The effective length of the chain is ∆1 − 1.

Remark 3. Inputs u1(t), ..., up−k(t) are suppressed, while
inputs up−k+1(t), ..., up(t) are preserved.

Remark 4. If functions f i
a(t) do not include derivatives of

inputs ui(t), i = 1, ..., p− k, the system is decoupled.

Lemma 1 will help us to derive conditions on Σm for ensure
that such p− k independent decoupling chains exist.
To characterize the maximal lengths of the chains of R∗

which are not actived by derivatives of entries uj(t) of
order higher or equal to ∆j , j ≤ p, it is possible to apply
Theorem 4.1 in Herrera H and Lafay [1993] taking into
account the following remark:

Remark 5. The chains of R∗ satisfying items (b) and (c)
of Lemma1 for Σm are the same as the chains of R∗

which are not actived by derivatives of entries w1, ..., wp−k

up−k+1, ..., up for ΣS
m.

Theorem 4.1 in Herrera H and Lafay [1993] becomes:

Proposition 4. Let Σ̄S
m deduced from Σm by reordering

BS
m as B̄S

m =
[

BS
r BS

a BS
s

]

. Let {ci}m the controllability

indices of (AS
m, B̄S

m). Then the set {αi}m−p of maximal
lenghts of subchains of R∗ not activated by derivatives of
inputs w1, ..., wp−k, up−k+1, ..., up is given by the control-
lability indices of the entries of R∗:

αi = ci, for i ≤ m− p. (22)

4.3 Main result: the solution of SRMP

Theorem 2. Let the right invertible system Σ be given
with R∗ = V∗ and k the rank at infinity of W (s). Let
Σm deducted by regular state feedback from Σ such that
the infinite structure {∆i}(p−k) of Wm(s) of Σm is the

minimal list of decoupling indices of Σ. Let {αi}(m−p)

the controllability indices of the entries of R∗ for the
shifted system Σ̄S

m associated with Σm. Then SRMP has
a solution if and only if, for all i ≥ 1,

i
∑

j=1

α̂j ≥

i
∑

j=1

γj , (23)

where {α̂i}supαi
the dual list of {αi}(m−p) and {γi}sup∆i

is the dual list of {∆i}(p−k).

Proof 2. Sufficiency:

Remark 6. As mentioned in Lafay [2013], Theorem 1
cannot be applied directly , but it suffices to apply it
choosing for list {n′

i}p−k the list {1}p−k and try to obtain

{1 + ∆i}p−k. This amounts to build, from them−p chains
of integrators of lengths σi of R

∗, p−k independent chains
of lengths {∆i}. Note that condition (8) is still always
true. So there remains only conditions (9).

Let us now return to SRMP. It is sufficient to replace the
dynamic extension of Subsection 4.1 by p− k independent
chains of lengths {∆i}(p−k) extracted from R∗ and satis-

fying Lemma 1. This is equivalent to create, from Σ̄S
m,

p − k independent chains extracted from R∗ not actived
by derivatives of entries w1, ..., wp−k, up−k+1, ..., up (cf Re-
mark 5). By Proposition 4, such chains should be built
from the maximal sub-chains of R∗ which are not individ-
ually actived by derivatives of w1, ..., wp−k, up−k+1, ..., up.

According to the construction of the shifted system, and
Remark 5, integers {αi}m−p represent equivalently the
maximal lengths of sub-chains of R∗ not activated by
derivatives of inputs up−k+1, ..., up and for i ≤ p − k not
activated by derivatives of inputs ui of order greater than
or equal to ∆i. From Remark 6 we obtain (23) which is a
sufficient condition for SRMP.
Necessity: The necessity comes from two facts. First:
by Proposition 2, if there is a solution to SRMP, some
of them require only (p-k) increases of infinite structure.
Conditions (9) therefore requires that the minimal list of
decoupling indices contains only (p-k)terms. Secondly: If
there is no solution with these indices, it does not exist
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solution for any other list of decoupling indices coming
from other permutations of outputs of Σ.

Corollary 1. The right invertibility of Σ and condition
(23) are necessary and sufficient conditions for the general
Static Morgan’s Problem when m− p = k.

5. COMPARISONS

At our knowledge, the more advanced structural results
on static Morgan’s problem are the following .

5.1 Herrera H and Lafay [1993]

SRMP is solved when k = p− 1.

Theorem 3. Let the right invertible system Σm be
given with R∗=V∗. Suppose k = p − 1. Let δ1 be
the (nonzero)infinite structure of the interactor Π1m[s],
and {αr,i}m−p

the controllability indices of the pair

(Am, [Br|Bs]) related with the columns of Br = B ∩ R∗.
SRMP has a solution if and only if:

m−p
∑

j=1

αr,j ≥ δ1. (24)

Let Σm(Cm, Am, Bm). Note Bm = [b1|Bs|Br] as in Section
4. As k = p − 1, the list of decoupling indices contains
only one term δ1 =

∑p

i=1
nie −

∑p

i=1
n′
i < n1e, and is

minimal. A static solution will exist if and only if the
sum of the lengths of the sub-chains of R∗ not actived by
derivatives of entries (u2, ..., up) is greater than or equal
to δ1. Consider now the permuted shifted system Σ̄S

m

associated with Σm. By (11) and (4.1), we have:

AS
m =

[

Am AS
1

(0) Jδ1

]

where (25)

• Jδ1 is the upper δ1 Jordan bloc, and matrix AS
1 =

[

b1(n×1) (0)n×δ1−1

]

.

• BS
m =

[

Br(n×m−p) (0)(n×1) Bs(n×p−1)

(0) ba(δ1×1) (0)

]

with (26)

ba = [0 . . . 0 1]
T
.

Let us compare the controllability indices {αi}m−1 of

(Am, [Br|Bs]) and these
{

cSi
}

m
of Σ̄S

m. By the Brunovsky’s

procedure, Brunovski [1970], we have cS1 ≥ n1e, then

• if αi ≤ n1e, then αi = cSi+1, and

• if αi > n1e, we can have cSi+1 < αi but c
S
i+1 > n1e.

Then as δ1 ≤ n1e the two Theorems are equivalent for the
existence of a solution for SRMP.

5.2 Zagalak et al. [1998]

The authors consider systems Σ with special conditions
on dimensions as m = 2p and

∑p

i=1
δi =

∑p

i=1
σi, and

mainly without couplings between R∗ and the blocks
of infinite structure, ie Φe

m2=
[

Φe
m2,1 Φe

m2,2

]

=[0] in the
extended interactor of Σm. The problem was however
difficult although these assumptions seem very simplistic.
Certainly, the authors propose factorizations which must

have a link with the minimal list of decoupling indices but,
unless I have not properly understood their approach, this
structural information does never appear explicitly.

6. CONCLUSION

In this paper, we propose a necessary and sufficient con-
ditions for the row by row decoupling problem without
modifying the essential orders. Even in this special form,
the problem was recognized as structurally difficult. It
remains to solve the general problem which is much more
difficult because we do not know yet how to define minimal
structures for the decoupled system.
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l’infini par retour d’état statique. SIAM J. Contr. and
Optimiz., vol. 26, 251–273.

Morgan Jr, B. (1964). The synthesis of linear multivariable
systems by state feedback. J.A.C.C. 64, 468–472.

Morse, A.S. (1973). Structural invariants of linear mul-
tivariable systems. SIAM J. Contr. Optimiz., vol.
11(no.3), 446–465.

Wolovich, W.A. and Falb, P.L. (1976). Invariants and
canonical forms under dynamic compensation. SIAM J.
Contr. Optimiz., vol. 14, 996–1008.

Zagalak, P., Eldem, V., and Ozcaldiran, K. (1998). On a
special case of the Morgan problem. In 5th Conference
IFAC System Structure and Control, volume 1, 169–174.
Nantes France.

6

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4720


