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Abstract. The problem of identifying Hammerstein-Wiener systems is addressed in the presence of
linear subsystem of structure totally unknown and piecewise affine (or hard) input nonlinearity. A
frequency identification approach is developed that determines the system frequency response (at a
number of frequencies). A three-stage frequency identification method is developed to get estimates of
the linear subsystem phase and modulus as well as estimates of the input and output nonlinearities.
Finally, all suggested estimators are shown to be consistent.
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1. INTRODUCTION
This paper addresses the problem of identifying
Hammerstein-Wiener systems consisting of a linear dynamic
subsystem embedded between two nonlinear blocs (Fig. 1).
The Hammerstein-Wiener like models are used in a wide
range of applications such as chemical processes (Giri and
Bai, 2010), ionospheric dynamics (Palanthandalam-Madapusi
et al., 2005) and RF power amplifier modelling (Taringou et
al., 2010). Different approaches are available that deal with
Hammerstein-Wiener system identification. Amongst that
are: iterative nonlinear optimization procedures (e.g. Ni et al.,
2013; Schoukens, 2012), stochastic methods (e.g. Wang and
Ding, 2008), and blind methods (e.g. Giri and Bai, 2010).
Most available solutions suggest that, the output nonlinearity
is invertible and the linear subsystem is parametric (e.g. Ni et
al., 2013; Schoukens et al., 2012; Bai, 2002; Wang et al.,
2009). Generally, the iterative methods necessitates a large
amount of data, since computation time and memory usage
drastically increase, and have local convergence properties
which necessitates that a fairly accurate parameter estimates
are available to initialize the search process. The stochastic
methods are generally relied on specific assumption (e.g.
gaussianity, persistent excitation, MA linear subsystems....).
In this paper, a frequency-domain identification scheme is
designed for Hammerstein-Wiener systems involving linear
subsystem of totally unknown structure, and hard input
nonlinearity or piecewise affine with a limited number (q) of
segments (Figs. 2a-b). Note that, the proposed frequency
identification approach can be applied directly to
Hammerstein (with hard nonlinearity) or Wiener models. The
identification purpose is to estimate the system nonlinearities
and the linear subsystem phase and gain ( )( kjG  , )( kjG  ),
at a number of frequencies k )...1( mk  .

To close this section, we give an outline of the paper.
Section2 formulates the problem and derives some
preliminary results. The main results are given in Section 3
along with some remarks and proposition concerning the
lissajous curves, useful to estimate the output nonlinearity.

The identification scheme is designed and analyzed in
Section 4. For space limitation all proofs are removed.

2. IDENTIFICATION PROBLEM STATEMENT
We are considering nonlinear systems that can be described
by the Hammerstein-Wiener model (Fig.1), with hard input
nonlinearity (h(.) is characterized by a set of straight lines
segments). The above model is analytically described by the
following equations:

 )()( tuhtxi  (1a)

)(*)()( txtgtx io  (1b)

  )()()( tvtxfty o  (1c)

where  )()( 1 sGLtg  is the inverse Laplace transform of
)(sG ; the symbol * refers to the convolution operation; the

only measurable signals are the system input u(t) and output
y(t). The error v(t) is zero-mean stationary sequence of
independent random variables; it accounts for external noise,
it is supposed to be ergodic. Apart from stability, no
assumption is made on the linear subsystem G(s) which may
thus be infinite order. The input nonlinearity is subject to a

(.)u

( )v t
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Fig. 2a. Piecewise affine
function

Fig. 2b. Nonlinearity with
preload and dead zone
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Fig. 1. Hammerstein-Wiener model structure
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couple of assumptions that will prove to be useful in the
identification process:
A1. (i) h(.) is a hard or piecewise affine (e.g. Figs. 2a-b) with
a limited number of segments (e.g. 5q  or 6),

(ii) there exists at least one segment with nonzero slope.
Then, the working interval  m Mu u can be subdivided into q
intervals within which h(.) is a linearly curve. One gets:

     0 1 1 2 1      ...m M q qu u d d d d d d      (2)

where 0 md u and q Md u . First, we assume that the
working point  )(),( txtu i moves along a single line segment.
Analytically, if  ll ddtu )( 1 with ql 1 , the internal
signal )(txi can be written as follows (Figs. 2a-b):

  llli PSDtutx  )()( (3)

where  ll PD , is any point belonging to the segment l and lS
its slope. The proposed frequency domain identification
method necessitates the application of sine signals:

)sin()( tAVtu kll  (4)

for a set of a priori chosen frequencies )...1( mk  . It follows
from (3) and (4) that the internal signal xo(t), In steady state,
is of the form:

   ( ) ( ) sin ( ) ( ) (0)o l l k k k l l l lx t A S G j t V D S P G       (5)

with ( ) ( )
def

k kG j    . Then, it is supposed that:

A.2. (i) the nonlinearity (.)f verifies 0)0(1 f .

(ii) (.)f is a polynomial of finite order n i.e. .

0
.( )

n
i

i
i

f x c x


 

Except for the above assumptions, the system is arbitrary.
Presently, we aim at designing an identification scheme that
is able to provide a model estimate  (.)ˆ),(ˆ(.),ˆ fjGh k that
represents well the system when this is excited by sinusoidal
inputs (4) for a set of frequencies ωk ( mk ...1 ). Since xi(t)
and xo(t) are not measurable, the system identification should
be fully based upon measurements of the input u(t) and the
output y(t). Therefore, the considered identification problem
does not have a unique solution: if the model
 )(),(),( oxfsGuh represents a solution then, any model of the
form  1 2 1 2( ) / , ( ) / , ( )oh u k G s k f k k x is also a solution (where
k1 and k2 are any nonzero real). This naturally leads to the
question: what particular model should we focus on? This
question will be answered later.

3. SYSTEM FREQUENCY ANALYSIS

3.1. Basic equations and notations

All along this Section, the identified system is submitted to
the sine input (4), where ωk > 0 is kept constant, by tuning the
offset Vl and the amplitude Al until the input signal moves
along a single line segment. This item will be detailed later.

Under these conditions, the internal signal xo(t) respect the
form (5). Let Tk be the corresponding period i.e.

kkT  /2 .
The aim of this subsection is to establish key properties
characterizing the parameterized curves

  sin ( ) , ( )l k kA t w t    . Notice that sine signals that

oscillate at the same frequency as  )(sin kkt   and
having the amplitude Al are of the form:

   tAtz kl sin)( (6)

where IR is arbitrary and IR denotes the set of real
numbers. It is readily seen that:

  )()(sin )( tztA
kkkl   (7a)

  )()(sin )( tztA
kkkl   (7b)

Let llk VAC ,,
 be the parameterized locus constituted of all

points of coordinates  )(),( twtz  0t . The dependence of
that curve on ωk , Vl and Al comes from the fact that )(tw
depends on ωk , Vl and Al . As )(tz and )(tw are periodical,
with the same period )/2( k , the curve llk VAC ,,

 turns out to
be an oriented closed-locus. The orientation sense indicates
the increasing time. The llk VAC ,,

 are viewed as a
generalization of the Lissajous curves used in linear system
frequency analysis (Rochdi et al., 2010). Then, the system
input and output are both sine signals with identical
frequency leading to a closed-locus in the form of an ellipse.
Presently, the system output )(tw is not necessarily
sinusoidal and, consequently, the locus llk VAC ,,

 is not
necessarily an ellipse. Therefore, the llk VAC ,,

 ’s will be
referred too Lissajous-like curves. Let us define the variables:

)()()( kkk jG   (8a)

   )()()( kkk jGjG (8b)

  )0()( GPSDVX lllll  (8c)

Proposition 1. Consider the Hammerstein-Wiener system
described by equations (1a-c) and excited by the input (4),
with Vl and Al are judiciously chosen so that the input signal
moves along a single linear segment of h(.). Then, one has:
1) If )( k  (modulo π), the oriented locus llk VAC ,,

 is

static. Furthermore, llk VAC ,,
 and llk VAC ,,

  are symmetric,
with respect to the axis lx X , where lX is constant.

2) If )( k  (modulo π), the curve llk VAC ,,
 is not static

(the area of the curve llk VAC ,,


is non-null).
3) If the output nonlinearity f(.) is a polynomial function, the
locus llk VAC ,,

 is polynomial if and only if )( k 
(modulo π).

3.2. Estimation of the Parameterized Curves llk VAC ,,


Propositions 1 is quite important because it shows that
)()( kk jG   can be recovered (modulo π) by just tuning
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the parameter  until the closed-locus llk VAC ,,
 displays a

static curve. The point is that the locus llk VAC ,,
 depends on

the signal )(tw which is not accessible to measurement. This
is presently coped with making full use of the information at
hand, namely the periodicity (with period k /2 ) of both

)(tz and )(tw and the ergodicity of the noise )(tv . Bearing
these in mind, the relation )()()( tvtwty  suggests the
following estimator:





N

k
kTty

N
Ntw

1

)(1),(ˆ ; ),0[ Tt (9a)

),(ˆ),(ˆ NtwNkTtw  for any integer 0k (9b)

where kT  /2 and N is a sufficiently large integer.
Specifically, for a fixed time instant t, the quantity ),(ˆ Ntw
turns out to be the mean value of the (measured) sequence
 ...10);(  kkTty . Then, an estimate llk VA

NC ,,
,

ˆ
 of llk VAC ,,



is simply obtained substituting ),(ˆ Ntw to )(tw when
constructing llk VAC ,,

 . Accordingly, llk VA
NC ,,

,
ˆ
 turns out to be

the parameterized locus including all points  ),(ˆ),( Ntwtz
( 0)t  . These remarks lead to the following proposition:

Proposition 2. Consider the problem statement of
Proposition 1. Then, one has:

1) ),(ˆ Ntw Converges in probability to )(tw (as N ).

2) llk VA
NC ,,

,
ˆ
 Converges in probability to llk VAC ,,

 (as N )

i.e. for all 0t :

   )(),(),(ˆ),(lim twtzNtwtz
N  


(w.p.1)

3) Consequently, llk VA
NN

C ,,
,

ˆlim 


is static curve (w.p.1) if and

only if )( k  (modulo π).

4) Suppose that llk VA
NN

C ,,
,

ˆlim 


is static curve for some  .

Then, one of the following statements holds w.p.1:

a) )( k  (modulo 2π) and the llk VA
NN

C ,,
,

ˆlim 


-shape

coincides with that of output nonlinearity
 lkl XzjGSf

k
)()(  where lX is defined by (8c).

b)   )( k (modulo 2π) and the llk VA
NN

C ,,
,

ˆlim 


-shape

coincides with that of  ( )( )
kl k lf S G j z X     .

On the other hand, define:

     )()()( )()()(~
kkk

zjGSfXtzftzf kll   (10)

Then, the curve  )(~
)( tzf

k
is, more or less, spread version

of the output nonlinearity  ( ) ( )
k

f z t 
, depending on the value

of )( kl jGS  (Fig. 3). Under the above conditions, (.)f is a
variant more or less spread (Giri et al., 2013) of (.)f and

shifted by the value lX with respect to the origin of the x-
axis (Fig. 3). It is clear that the nonlinearities (.)f and (.)~f
are also polynomials. Let introduce the parameters vectors,
associated respectively to  )()( tzf

k
and  )(~

)( tzf
k

:

 Tknkk ccC )(...)()( 0   ;  0( ) ( ) ... ( ) T
k k n kC c c    

(11)

Accordingly, using (10) and part 2 of hypothesis A2, the
coefficients )(~

kic  and ic ( ni 0 ) are related by the
following relation:

  i
kliki jGScc )()(~   ; for all  mk  ,...,, 21 (12)

4. FREQUENCY IDENTIFICATION METHOD

4.1 Phase Estimation

The results observed in Section 3 show that the phase of the
linear subsystem can be discerned by exciting the system
with a sine wave moving along a single line segment of h(.).
The knowledge of just one segment is sufficient to begin the
procedure for phase identification. To this end, the system is
excited by the signal (4) throughout this part, the choice of
the parameters Vl and Al may be experimentally. To facilitate
the adjustment of parameters Vl and Al , the signal (4) will be
replaced by the following excitation:

   )sin(1)sin(1)( 1 tutdtu klmkll    ( 1l ) (13)

where
1 0 l m lV d u    and l is an arbitrary small value

and the frequency k is constant. If the resulting system
steady-state response y(.) turns out to be constant (up to
noise), then the segment in question has a zero slope.
Consequently, exciting in another segment i.e. Vl should be
increased until the output changes. Afterwards, establish the
lissajous curves llk VAC ,,

 , by tuning the angle  in [0 π[. If
llk VAC ,,

 becomes static for any value of  , the value of l
can be adapted to expand the obtained static curve
 lkl XzjGSf

k
)()(  , change Al if necessary. Let l

denotes the first having a nonzero slope. Note llA  and

lV the chosen final values of Al and Vl, respectively.
Generally, a preliminary selection of the segment can be done
practically by exciting with a set of constant values and
observing the output response )(ty (in the steady-state).

Remark 1. It is interesting to note that the first part of the
assumption A1 greatly simplifies the search for a linear
segment with a slope non-zero.

def

def

(.)f
lX(.)f (.)~f for

1)( jGSl

(.)~f for

1)( jGSl

Fig. 3. (.)~f is a
more or less spread
version of (.)f

(.)f
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Finally, the propositions 1 and 2 suggest the following phase
estimator:

Table 1. Phase Estimator (PE)

Step 1: Let  mk  ,...,, 21 . The system (1a-c) is excited
by the sine input (4). For any small amplitude Al and any
offset  Mml uuV  , change Vl if )(ty turns out to be
constant (up to noise), otherwise construct the curve
 )(),( tytz , where )(tz is defined by (6). Change Vl, if

 )(),( tytz never turns out to be a static curve (up to noise)
for any  0  . Else, adjust the value of Al to zoom the

obtained static curve (if needed change Vl). Let l l .
Step 2: Take a record of the output )(ty over the interval

 0 2 / kN   for some 1N .

Step 3: Compute the filtered output ),(ˆ Ntw applying (9a-b).

Step 4: Plot   , ,
,

ˆ ˆsin( ), ( , ) ,  0k l lA V
N klC A t w t N t T

      ,

for different values of  until , ,
,

ˆ k l lA V
NC

 becomes static. Let *

denotes the first value of  such that , ,
,

ˆ k l lA V
NC

 is static curve.

Then, take *)(ˆ  kN
.

Step 5: Repeat the above steps for all  mk  ,...,, 21 .
Check that the lissajous curves obtained at a given step is
similarly static as all those obtained in previous steps.

Remark 2. It is crucial to emphasize that the phase estimate
)(ˆ

kN  obtained at step 4, for a frequency k and a
sufficiently large N, could be either )()( kk jG   or

 )( k . It is impossible to know which one of the
previous values is actually determined. This uncertainty is not
an issue as long as phase estimation is performed at a single
frequency. But, when the phase is to be computed for a set of
frequencies  m ,...,, 21 , the corresponding estimates

)(ˆ
kN  must be coherent in the sense that either )(ˆ

kN 
corresponds to )()( kk jG   , for all

k ’s, or
corresponds to  )( k . It does not matter to know which
case is being actually focused on. This coherency issue is
coped to the previous estimator.

Theorem 1. Consider the problem statement of Proposition
1. The phase estimator )(ˆ

kN  , described in Table 1, is
consistent in the sense that one of the following two
statements does hold w.p.1:

(i) )()(ˆlim kkNN
 


(for all  mk  ,...,, 21 )

(ii)  


)()(ˆlim kkNN
(for all  mk  ,...,, 21 )

4.2 Estimation of the output nonlinearity and Gain Modulus

The phase Estimator provides, for each frequency k , an
estimate of the phase )()( kk jG   . For reasons of
simplification, it is assumed that the phase identification has
been correctly carried, i.e. for all  1, ... ,k m   :

)()(ˆ
kkN   or   )()(ˆ

kkN
. Then, all curves of the

family  , ,
ˆ ( ),

ˆ k l l

N k

A V
NC

 
coincide with  )()( tzf

k
 for all

 1, ... ,k m   or with  ( ) ( )
k

f z t  



for all

 1, ... ,k m   . The resulting nonlinearity and phase will
be denoted respectively later

( )
( )( )

k
tf z

 
and )( k . On the

other hand, since (.)f is a polynomial function, note that the
identification of f(.) can be done using only the data of
Table1. For each frequency k , the vector )( kC  can be
determined minimizing the error:

 
2

0
0

( , ) ( , ) ( , ) ( )ˆˆ sin( )k k k

nT i
i l k

i
N t N NJ w c A t dt   



    
 

 (14)

Then, the estimate  T

knkk NcNcNC 0 ),(~̂...),(~̂),(~̂   of the
vector )(~

kC  can easily be discerned (part 1 of hypothesis
A2). Specifically, for each k , horizontally moving the
estimate nonlinearity of the value

lX (relocate the non-
linearity at the origin), where

lX (defined by (8c)) can be

determined easily i.e. the intersection of (.)f with the x-axis
(Fig. 3)). The coefficients ic~ ( )1 ni  are not uniquely
determined, because the quantities )( kjG  )1( mk  are
also unknown. This is a direct consequence of the problem of
multiplicity of solutions discussed in Section 2. Therefore,
the models  )(),(),( oxfsGuh and  )(,/)(,/)( 2121 oxkkfksGkuh
are solutions of the above identification problem whatever

01 k and 02 k . To solve this problem, it is suggested the
following choice of the scaling factor:

1 lk S and
nn

i

in
ick

/1

1

/
2












  (15)

This model is the only that checks the property:

1lS  and 1
1

/ 


n

i

in
ic (16)

Using (15), it readily follows from (12) that for ni 1 :

 //( ) ( )
n i nn i

i k i klc c S G j  for all  mk  ,...,1 (17)

Adding the both sides of (17) over ni 1 and using (16):

 //

1 1

( ) ( ) ( )
n n n i nn i n

i k i k kl
i i

c c S G j G j  
 

   (18)

where  mk  ,...,1 . From (18) one immediately gets:
nn

i

in
kik cjG

/1

1

/)(~)( 






 


 for all  1,  ... ,k m   (19)

This uniquely determines the set of frequency gain modulus
)( kjG  )1( mk  in terms of elements of the vector

parameters  T
knkk ccC 0 )(~...)(~)(~   . Substituting the right

side of (19) to )( kjG  in (12) yields for ni 1 :
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nin

i

in
kiiki ccc

/

1

/)(~)(~ 






 


 for all  1, ... ,k m   (20)

The expressions in (20) show that, for a given ni 1 , each
coefficient ci comes in linearly in m equations. Therefore, it is
judicious to get benefit of all m equations involving a given
coefficient to determine that coefficient. To this end, we
proceed by adding, side by side, all m equations involving ci
in (20) and solving the resulting expression with respect to ci.
Doing so, one gets:

 



 













m

k

nin

i

in
ki

m

k
ki

i

c

c
c

1

/

1

/

1

)(~

)(~




for ni 1 (21a)

Clearly, from (12), only the first coefficients c0 is uniquely
determined, i.e.

0 0( )kc c   . Then, this coefficient can be
determined using the following expression:

0 0
1

1 ( )
m

k
k

c c
m




   (21b)

Then, it follows from A2 that c0 = 0, subsequently the
calculation of c0, for all  mk  ,...,1 , is not useful.
Finally, the equations (19) and (21a-b) suggest the estimators
of Table 2 for the frequency gain )( kjG  and the
coefficients of the output nonlinearity.

Table 2. Estimators of Gain and Output Nonlinearity
Step 1: Minimizing the error (14) and using (10), the estimate

 T

knkk NcNcNC 0 ),(~̂...),(~̂),(~̂   can be provided.

Step 2: Calculate the gain estimate:
nn

i

in

kik NcNjG
/1

1

/
),(~̂),(ˆ 







 


 for all  mk  ,...,1 (22)

Step 3: Determine the coefficient of the output nonlinearity:

 



 













m

k

nin

i

in

ki

m

k
ki

i

Nc

Nc
Nc

1

/

1

/

1

),(~̂

),(~̂

)(ˆ




for ni 1 and c0=0 (23)

Recall that the identification of the output nonlinearity and
frequency gain modulus can be achieved only using the
recorded data in Table 1, without needed any other
information.
Theorem 2. Consider the problem statement of
Propositions1-2. The frequency gain estimator (22) and the
output nonlinearity (the coefficient) estimator (23) are
consistent in the sense that the following two statements hold
w.p.1:

(i) )(),(ˆlim kkN
jGNjG  


(for all  mk  ,...,1 )

(ii)
iiN

cNc 


)(ˆlim for ni 1

4.3 Estimation of the input nonlinearity

The knowledge of the estimates of the output nonlinearity
and linear subsystem allowed determining the input
nonlinearity. From A1 and (2), the working interval

 Mm uuI  can be decomposed into q subintervals, where the
input nonlinearity is linear in each subinterval  ll dd 1 and
having a slope lS (that may be zero). This decomposition of I
can be performed easily using the search procedure specified
in paragraph 4.1. The frequency  throughout this part will
be kept constant, where  m ,...,1 . Let Nld ,

ˆ designates

the estimate of ld ( 0l q  ), with mN ud ,0
ˆ and MNq ud ,

ˆ .
The system is excited by the inputs (13), for an arbitrarily
small value 1 and 1 0 ml lV d u    ( 1l ), the resulting
steady-state output signal y(t) turns out to be constant (up to
noise) or variable, then the slope in this latter case is nonzero
and zero in the first case. It is obvious that the curve 1,

)(

C is

identical to a line segment ( 01 S ) or static curve ( 01 S )
within  10 dd , gradually increasing 1 until 1,

)(

C becomes

non-static, let *
,1̂ N denotes the first value of 1 which leads

to a non-static curve of 1,
)(


C . Then, it is readily seen that:

*
,1,1 ˆ2ˆ
NmN ud  (24a)

The same procedure can be applied to identify Nd ,2
ˆ i.e. by

exciting the system with the signal (13), progressively
increasing 2 and by observing the curve 2,

)(

C until it

becomes non-static, *
,2ˆ N designates the first value of 2 that

leads to a non-static curve. Then: *
,2,1,2 ˆ2ˆˆ
NNN dd  .

Generally speaking:
*
,,1, ˆ2ˆˆ
NlNlNl dd   for all  1,...,1  qd l (24b)

Let NlX ,
ˆ , NlP ,

ˆ , NlS ,
ˆ , and )0(ˆ

NG denote the estimates of lX ,

lP , lS ( 1l q  ), and (0)G respectively. It is interesting to
note that the determination of the parameters lS and lP
(relating to segments having a non-zero slope) can be
achieved using only data collected during the identification of

ld ( ql 0 ) without resorting out to any other information.
Determining

lX (i.e. the intersection of the curve
( )

( )( )
k

tf z
 

with the x-axis) for two values of
lV ( 1

lV and 2
lV ), where l

the segment within which the phase estimate scheme was
carried out. It readily follows from (8c) and (16) that:

  )0(11 GPDVX llll  ;   )0(22 GPDVX llll  (25)

where  ll PD , is any point belonging to the segment l .
Within each subinterval  ll dd 1 ( ql 1 ), with 0lS , the
elements )0(G and

lP can be provided easily from (25).

Then, for two values of lll dV  1 with *
,ˆ Nll   . Let 1

lX
and 2

lX be the corresponding values of lX respectively.
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The parameters lS and lP can be provided using )0(G , 1
lX

and 2
lX . In the case where the search procedure leads to a

zero slope ( 0)lS  , the curve lC 

,

)( is identical to a line
segment, then the input nonlinearity is constant within this
segment having the value lP , subsequently the value of the
curve lC 


,

)( is  )0(GPf l . Under these conditions, if (.)f is
invertible at this point (i.e. there is a single value )0(GPl ),
then the parameter lP can be estimated directly. Else, there
exists then a set  )0(,...),0( **

1 GPGP r such that:

   )0(...)0( **
1 GPfGPf r with r is any integer (26)

For all values  * *
1( ) , ... ,i rx t P P (constant), the steady-state

system output converges to a unique value, however these
different values have different transitory regimes. Then, to
keep only the true value lP one must perform an audit to
remove the other candidates. The verification can be done by
exciting the system with a periodic signal, e.g. a square wave
with two values, one belongs to the segment l already
known and the other belongs to the current segment, the
determination of lP can be easily obtained by measuring only
one harmonic (e.g. the fundamental frequency) of the
decomposition of ),(ˆ Ntw , since the linear block and the
output nonlinearity are already determined.

Finally, the results obtained suggest the following estimator
for the input nonlinearity:

Table 3. The input nonlinearity Estimator (INE)

Step 1: Let ll  , for two values of
lV ( 1

lV and 2
lV ),

determine
lX ( 1

,
ˆ

NlX and 2
,

ˆ
NlX ). Then:

 21

2
,

1
,

ˆˆ
)0(ˆ

ll

NlNl
N VV

XX
G




 (27a)

   1 2 2 1
, ,

, 2 1
, ,

ˆ ˆ
ˆ

ˆ ˆ
l N l l l N l l

l N
l N l N

X V D X V D
P

X X
  




; 1lS (27b)

Step 2: Select  m ,...,1 , let
mN ud ,0

ˆ and 1l .

Step 3: Apply the sine input  1,
ˆ( ) 1 sin( )l N lu t d t    ,

where εl is initialized to a small value. If the resulting curve
lC 


,

)( is a horizontal segment, then go to step 4. Otherwise

(i.e. lC 

,

)( is static and 0lS ), for two values of lV ( 1
lV and

2
lV ), estimate lX ( 1

,
ˆ

l NX and 2
,

ˆ
l NX ). So, determine lS and lP :

 
  )0(ˆ

ˆˆ
ˆ

21

2
,

1
,

,
Nll

NlNl
Nl GVV

XX
S




 (28a)

   
  )0(ˆ

ˆˆ
ˆ

12

12
,

21
,

,
Nll

llNlllNl
Nl GVV

DVXDVX
P




 (28b)

If needed increase εl. Then, go to step 5.
Step 4: If (.)f is invertible at (0)lPG determine lP directly.

Else, conduct an audit in order to choose the correct estimate
of lP .

Step 5: Increasing progressively εl until the curve lC 

,

)(

becomes non-static or ( ) Mu t u . Let *
,ˆ Nl the corresponding

value of εl. Then:
*
,,1, ˆ2ˆˆ
NlNlNl dd   (29)

If ( ) Mu t u then 1l l  and go to step 3. Else q l (end).

Theorem 3. Consider the problem statement of
Propositions1-2. The system is subject to assumptions A1-2.
Then, the estimator described in Table 3, is consistent in the
sense that the following statements hold w.p.1:
(i) lNlN

dd 
 ,

ˆlim (for all  ql ,...,0 )

(ii)
lNlN

PP 
 ,

ˆlim and
lNlN

SS 
 ,

ˆlim (for all  ql ,...,1 )

6. CONCLUSION

In this paper, a frequency-domain solution has been
developed to deal with Hammerstein-wiener system
identification in presence of hard input nonlinearity or
piecewise affine with a limited number of segments. The
identification method is designed using analytic geometry
tools. Interestingly, the linear part of the system can be of
unknown structure. The output nonlinearity is not necessarily
invertible, except in the origin. The method only necessitates
simple experiments involving sine input excitation. All
estimators are shown to be consistent.
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