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Abstract: Polynomial-based damping techniques such as Positive Position Feedback (PPF) and
Positive Velocity and Position Feedback (PVPF) have been applied successfully to a number of
lightly damped systems to overcome resonance-induced vibration issues. These control designs
exhibit several advantages such as substantial damping performance, relative ease of design and
adequate robustness in the presence of plant parameter uncertainties. Their formulation is based
on the well-known pole-placement technique where damping is achieved by pushing the poles
of the close-loop system arbitrarily away from the jω axis and in to the left-half plane. Current
designs result in changing the real part of the poles while keeping the imaginary part unaltered;
thus keeping the resonant frequency of the closed-loop, damped system unchanged, compared to
the original undamped, open-loop system. In this work, we present a pole-placement technique
which results not only in the substantial damping of the resonance but also in shifting the
system resonance to a substantially higher frequency. This result is beneficial to a number of
systems such as nanopositioners employed in Scanning Probe Microscopes, where maximizing
the positioning bandwidth is a major goal and the achievable bandwidth is severely limited by
the resonant frequency of the positioner.

1. INTRODUCTION

Unwanted vibration due to excitation of system resonance
is one of the main performance limiting factors in many
technological systems Preumont (2002). Nanopositioners
are a small but important class of systems which suffer
from resonance-related issues such as positioning errors
and fatigue. Additionally, as most nanopositioners employ
some form of piezoelectric actuator, they are also marred
by inherent piezoelectric nonlinear effects such as hystere-
sis and creep. The most prevalent method to overcome
these problems and improve the positioning performance
of nanopositioners is to adopt a hybrid control scheme
that combines a suitably designed damping controller with
some type of tracking control Fleming and Wills (2009).

Piezoelectric-tube nanopositioners or piezo-stack actuated
platform nanopositioners employed in Scanning Probe Mi-
croscopes (SPM), possess a low-pass frequency response
characteristic dominated by a single, lightly-damped reso-
nant mode evident at relatively low frequencies (< 1 KHz).
Consequently, their frequency response measured from
output displacement to input positioning command can
be accurately modeled as a lightly-damped second-order
transfer function. Nanopositioners are routinely employed
as positioning platforms for Atomic Force Microscopes
(AFM) and are required to be able to trace a raster pattern
which can be generated by combining the motion of two
axes of a platform where one axis traces a triangular path
and the other axis traces a slow ramp Devasia et al. (2007).
As the triangle waveform comprises of infinite odd har-
monics of the fundamental frequency, the lightly-damped
resonance of the nanopositioner can be excited by one

of the triangle waveform’s higher harmonic components
and result in substantial positioning errors Fleming and
Wills (2009). Thus, if the nanopositioner is to be utilized
as is (undamped, open-loop), the triangle wave frequency
is generally limited to less than 1/100th the frequency of
the resonance Fleming and Wills (2009). These slow scan
speeds are inadequate for scanning samples that change
over time (cell-biology) Zou et al. (2004). To improve
the positioning performance of the nanopositioner (and
ultimately the AFM / SPM employing it), closed-loop
schemes that damp the system resonance and track the
input triangle accurately are routinely employed Devasia
et al. (2007). The key performance criteria for nanoposi-
tioning applications then is positioning bandwidth, i.e., a
range of frequencies (0 Hz - fmax Hz) within which the
positioning errors lie within an acceptable limit.

A number of active control techniques have been formu-
lated to enhance the positioning performance of these
nanopositioners Moheimani (2003); Aphale et al. (2007);
Preumont (2002); Salapaka et al. (2002); Fanson and
Caughey (1990); Bhikkaji et al. (2007); Pota et al. (2002).
Polynomial-based pole-placement controller is one of the
popular techniques that has shown the ability to impart
substantial damping to lightly-damped resonant modes
Goodwin et al. (2001). This technique has been applied to
nanopositioning tubes Bhikkaji et al. (2007) and platforms
Aphale et al. (2008) successfully and has mainly been
presented in three distinct flavors viz: Positive Velocity
and Position Feedback (PVPF) also known as polynomial-
based controller Bhikkaji et al. (2007), Positive Position
Feedback (PPF) Ratnam et al. (2005) and Resonant con-
troller Pota et al. (2002). The main advantages of a
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Fig. 1. (a) Multi-Axis Serial-Kinematic Nanopositioner designed at EasyLab, University of Nevada-Reno. (b) Measured
frequency response of the nanopositioner (blue) along with second-order model (red) used for controller design.
(c) Block diagram shows the control scheme for damping and tracking control. Damping controller Cd(s) is either
implemented in positive or negative feedback and damps the resonant peak. Tracking controller Ct(s) is usually an
integral controller implemented in negative feedback.

polynomial-based controller are: substantial damping per-
formance, relative ease of design and adequate robustness
in the presence of plant parameter uncertainties. The
design is based on the well-known pole-placement tech-
nique where damping is achieved by pushing the poles of
the close-loop system arbitrarily away from the jω axis
and further in to the left-half plane Fanson and Caughey
(1990). All the designs reported so far change the real part
of the poles, thus keeping the resonant frequency of the
closed-loop, damped system unaltered compared to the
original undamped, open-loop system. Though adequate
damping is achieved by such manipulation, the position-
ing bandwidth remains limited by the nominal resonance
frequency of the nanopositioner.

It was generally accepted that increasing the positioning
bandwidth of a given nanopositioner would basically en-
force a mechanical redesign that results in a resonance
at a higher frequency. Recently Namavar et al. (July,
2013), it was shown that closed-loop control could be effec-
tively employed to not only deliver adequate damping but
also shift the resonance frequency of the overall system,
thereby resulting in substantial increase in positioning
bandwidth. In this work, we utilize the flexibility afforded
by the polynomial-based controller technique to not only
damp the resonance but also push the system resonance
to a higher frequency. This resonance-enhanced damping
scheme combined with a suitable tracking controller (an
integrator) delivers a substantial increase in the over-
all positioning bandwidth. Furthermore, it is shown that
this technique also exhibits superior input-disturbance re-
jection characteristics when compared to the traditional
polynomial-based designs.

This paper is structured as follows. In Section 2, the
system model, the damping controller and the tracking
controller are briefly described. Section 3 explains the
modified controller design approach and is followed by
simulation results presented in Section 4. A detailed com-
parison between the traditional polynomial-based con-
troller (PBC) performance and the modified polynomial-
based controller (MPBC) performance is presented, clearly
demonstrating the key performance advantages delivered
by the modified design. Section 5 concludes the paper.

2. BACKGROUND

2.1 System Model

As described earlier, the frequency-response of a typical
nanopositioner measured from output displacement of one
axis to input command signal to the same axis shows
the presence of a dominant lightly-damped resonant mode
Aphale et al. (2008). In most cases, the dynamics beyond
the first resonant mode roll-off quickly and can be (and
usually are) neglected; therefore the useful model of an axis
of the nanopositioner reduces to a lightly-damped second-
order transfer function with a feed-through term added
to compensate for the truncation of the high-frequency
response data Moheimani (2000). This can be given by:

G(s) =
α

s2 + 2ξωns+ ω2
n

+ d, (1)

where ξ, ωn, and d are damping ratio, undamped natural
frequency, and the feed-through term respectively. Here,
α = dcgain × ω2

n.

2.2 Traditional Control Design

Damping Controller Aphale et al. (2008) presents a
detailed comparison of the damping imparted to the dom-
inant resonant mode of a nanopositioner by three popular
controllers viz: (i) Polynomial-based Controller, (ii) Posi-
tive Position Feedback (PPF) and (iii) Resonant Control.
Based on the simulations as well as the experimental
results, it was concluded that the Polynomial-based Con-
troller (PBC) resulted in the best overall performance in
terms of damping and disturbance rejection. Additionally,
in conjunction with a suitably designed integral tracking
controller, it was shown to deliver the best positioning
performance Aphale et al. (2008). The strategy of de-
signing the polynomial-based controller is to move the
lightly-damped poles of the resonant system further into
the left-half plane (LHP), thereby imparting substantial
damping to them. The resulting controller is a second-
order transfer-function given by:

Cd(s) =
Γ1s+ Γ2

s2 + 2δωps+ ω2
p

(2)
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Fig. 2. (a) Open-loop poles of the nanopositioner are shown as blue ×. Closed-loop implementation of the traditional
PBC results in shifting the poles (denoted by red +) further into the left half plane, resulting in resonance damping.
(b) The placement of the system poles as a result of the MPBC implementation (denoted by black ∗) clearly shows
the location of poles compared to that achieved by the PBC.

Tracking Controller For nanopositioning applications,
a tracking controller is implemented to ensure that the
output y follows the desired reference input r with high
accuracy. The source of error can either be external distur-
bances and / or nonlinearities of the piezoelectric actuators
namely: hysteresis and creep. A suitably gained integrator
given by (3) is generally utilized.

Ct(s) =
kt
s

(3)

A block-diagram of the overall control scheme is shown
in Fig. 1(c). The tracking gain kt is determined by dif-
ferent performance criteria such as maximum tracking
bandwidth and minimum settling time. In Section 3, both
cases are discussed.

3. MODIFIED POLYNOMIAL-BASED CONTROLLER
DESIGN (MPBC)

Traditional PBC design focuses on damping the resonant
mode by pushing the poles further into the left-half plane
(LHP) while keeping the resonant frequency unchanged
(jω coordinate of the poles is unchanged) Aphale et al.
(2008); Yong et al. (2009); Bhikkaji et al. (2007). In the
Modified Polynomial-based Controller (MPBC) approach
we aim to place the closed-loop poles in the s-plane such
that both the real as well as the imaginary coordinates
of the poles are changed; thereby increasing the resonant
frequency (ωn) as well as the damping coefficient (ξ).

The generic transfer-function of the PBC is given by (2)
and consists of two poles and one zero, implemented in a
positive feedback loop. Controller parameters are Γ1, Γ2, δ
and ωp. The resulting closed-loop transfer function of the
damped system Gd(s) is:

Gd(s) =
G(s)

1−G(s)Cd(s)
, (4)

where its poles are the roots of P (s), see (5).

P (s) = s4 + (2ξωn + 2δωp)s
3

+ (ω2
n + 2ξωn ∗ 2δωp + ω2

p)s
2

+ (2ξωnω
2
p + 2ω2

nδωp − αΓ1)

+ ω2
nω

2
p − αΓ2 (5)

Note: Since the closed-loop poles will be placed arbitrarily
in the LHP, feed-through term d can be neglected.
Assume the desired closed-loop poles are the roots of Q(s),
see (6).

Q(s) = s4 +K1s
3 +K2s

2 +K3s+K4 (6)

Controller parameters are determined by solving a set of
four simultaneous equations by matching the coefficients
of P (s) and Q(s) for the same power of s. A mathematical
approach to designing such a controller is reported in
Bhikkaji et al. (2007). It is shown that the amount of pole
displacement with respect to jω axis is not restricted theo-
retically as long as the conditions defined in Bhikkaji et al.
(2007) are satisfied. However, there are some practical
limitations such as required control effort and disturbance
rejection capabilities.

In the MPBC design, we assume that the amount of damp-
ing imparted by the traditional PBC suits the application
and the MPBC is designed to impart the same amount.
To achieve same amount of damping as imparted by the
traditional PBC, one pair of closed-loop poles is placed on
the straight line passing through origin and the traditional
PBC poles (the constant ξ line) such that the frequency
of the closed-loop poles greater than the open-loop poles
of the system, see Fig. 2. The other pair is placed at
the same jω-coordinate as the first pair but five times
further in to the LHP. Such pole-placement has shown
to effectively reduce the adverse effects on the closed-
loop transfer function Dorf and Bishop (2010). The re-
sulting fourth-order closed-loop transfer function exhibits
a substantially damped resonant mode. If both closed-
loop pairs are placed at the same location (at the higher
jω coordinate), it was found that the overall closed-loop
system behaves like an under-damped system. A detailed
comparison of the improvements afforded by the proposed
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Fig. 3. Numerical optimization for tracking gain selection: (a) shows that Kt1 = 2100 is the best choice for minimum
settling time for overall closed-loop system. (b) shows the suitable gain for maximizing ±1 dB bandwidth is
Kt1 = 3200.
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Fig. 4. (a) Open-loop (dashed blue), traditional PBC (red), and TPBC plus tracking controller(black). (b) Open-loop
(dashed blue), MPBC (red), and MPBC plus tracking controller (black).

MPBC over the traditional PBC is presented in the next
section.

4. SIMULATION RESULTS

4.1 System Model

The second-order transfer-function that accurately models
the frequency response of one axis of a nanopositioning
platform shown in Fig. 1 is given by:

G(s) =
1.925× 107

s2 + 27.74s+ 1.016× 107
(7)

The dominant resonant mode occurs at 507 Hz and has
a magnitude of 46.8 dB. The system has two stable,
underdamped complex conjugate poles at −13.9±j3187.4.

4.2 Damping Controller

In the traditional PBC design, it was seen that adequate
damping was achieved by placing the closed-loop poles a
1000 units further into the LHP, resulting in two complex
conjugate pairs at−1014±j3187. For the MPBC, one pole-
pair was placed at−2028±j6375. This placement imparted
the same damping to the system as the traditional PBC
but effectively increased the system resonance by two
times. The other pair was placed at (−5× 2028)± j6375.
The resulting MPBC transfer-function is given by:

Cdm(s) =
−6.42× 104s− 1.96× 108

s2 + 2.43× 104s+ 2.60× 108
(8)

4.3 Tracking Controller

To determine the tracking controller gain kt, a numerical
search was carried out to identify the optimal gain for
two important performance criteria namely: (i) Maximum
tracking bandwidth and (ii) Minimum settling time. The
appropriate gain that minimized the settling time of the
overall closed loop system was found to be kt1 = 2100, see
Fig. 3a.

A convincing argument pointing out the inadequacies of
applying the well-known criteria of −3 dB bandwidth
criteria to nanopositioning systems has been detailed in
Namavar et al. ((in press). Therefore, a ±1 dB band-
width criteria was employed. The corresponding gain, kt,
which maximizes the tracking bandwidth was numerically
searched and found to be kt2 = 3200, see Fig. 3b.

4.4 Results

Frequency responses for open-loop, damped closed-loop as
well as damped and tracked closed-loop for the traditional
PBC as well as the MPBC are given in Fig. 4(a) and
Fig. 4(b) respectively. Parametric comparison of both the
techniques has been tabulated in Table (1). As reported,
the MPBC technique results in a ± 1 dB positioning
bandwidth of 200 Hz which is almost 2.5 times that
achieved by the traditional PBC technique (70 Hz). -3 dB
bandwidth shows an increase of more than three times
with the MPBC implementation.
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Table 1. Parametric comparison between the traditional Polynomial-based controller and the
proposed MPBC

Parameter For Traditional PBC For proposed MPBC

Damping controller Cd(s) Cdt(s) =
−208s+2.06×106

s2+4028s+1.62×107 Cdm(s) = −6.42×104s−1.96×108

s2+2.43×104s+2.60×108

Damped system poles 2 pairs at −1014± j3187 −2028± j6375 and
−10116± j6375

Tracking controller Ct(s) Ctt =
260
s

Ctm = 2100
s

Settling Time (ms) 7.1 2.5
±1 dB Bandwidth (Hz) 70 200
-3 dB Bandwidth (Hz) 143 440

RMS Error (20 Hz, 2 µm) 0.109 0.047
RMS Error (40 Hz, 2 µm) 0.207 0.093
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Fig. 5. (a) and (d) Time-domain traces generated by the PBC-based closed-loop system for 20 Hz and 40 Hz triangular
inputs respectively. (b) and (e) Time-domain traces generated by the MPBC-based closed-loop system for 20 Hz
and 40 Hz triangular inputs respectively. (c) and (f) Error plots for the PBC-based and MPBC-based closed-loop
system for 20 Hz and 40 Hz triangular inputs respectively. Note that in (a), (b), (d) and (e) signals are shifted
vertically for clarity.

Positioning performance for both the PBC-based as well
as the MPBC-based closed-loop systems was simulated
using triangular positioning commands at f1 = 20 Hz and
f2 = 40 Hz. These time-domain results are presented in
Fig. 5. As seen from Fig. 5(c) and (f) and reported in
Table (1), the MPBC-based closed-loop system reduces
positioning errors to less than 50% of those produced by
the PBC-based closed-loop system.

4.5 Disturbance rejection characteristics

Input disturbance and measurement noise (sensor noise)
are common causes for positioning errors. Transfer func-
tions from output to input disturbance (y(s)/di(s)) as well
as from output to measurement noise (y(s)/do(s)) were
computed (using Fig. 1(c)) and their frequency-responses
were analyzed. Fig. 6(a) shows that the MPBC scheme ex-
hibits superior input disturbance rejection characteristics
compared to the traditional PBC scheme.

Measurement noise is an inherent characteristic of using
closed-loop techniques. Fig. 6(b) shows that the PBC
scheme closed-loop rolls off sooner than the one employing
the MPBC. As most position sensors exhibit low-pass

characteristics and come equipped with an adjustable
cutoff, this is not a major drawback.

5. CONCLUSIONS

The modified polynomial-based controller design (MPBC)
results in a controller with the potential to significantly
increase the positioning bandwidth of the overall damped
and tracked system without the need of any physical mod-
ifications to the nanopositioner. The simulation results
show that MPBC increased the positioning bandwidth by
2.85 times and provided a significantly improved input
disturbance rejection capability. Though the traditional
polynomial-based controller (PBC) scheme has better out-
put disturbance rejection characteristics, the significant
increase in positioning bandwidth as well as the improved
input disturbance rejection afforded by the MPBC deems
the proposed design modification beneficial to nanopo-
sitioning and similar precision positioning applications.
Experimental verification, mathematical optimization of
tracking gains as well as further refinements to the pole-
placement strategy are currently in progress.
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Fig. 6. (a) Output to input disturbance (y(s)/di(s)) and (b) Output to measurement noise (y(s)/do(s)) magnitude
response plots for PBC (red) and MPBC (black) respectively.
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