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Abstract: It is common that only a subset of the parameters of dynamic models can be accurately 

estimated.  One approach for identifying a subset of parameters for estimation is to perform clustering of 

the parameters into groups based upon their sensitivity vectors. However, this approach has the drawback 

that uncertainty cannot be directly incorporated as the sensitivity vectors are based upon the nominal 

values of the parameters. One technique to address this deficiency is to define sensitivity cones, where a 

sensitivity cone includes all possible sensitivity vectors of one parameter for different values resulting 

from the uncertainty. Parameter clustering can then be performed based upon the sensitivity cones, 

instead of the sensitivity vectors. This paper applies this new approach to a signal transduction pathway 

model with a large number of uncertain parameters. 

 

1. INTRODUCTION 
 

Mathematical models composed of ordinary differential 

equations (ODEs) are widely used to describe the dynamic 

behaviors of biological and biomedical systems. The 

prediction accuracy of these models not only depends on the 

structure of the model, but also relies on adjustable 

parameters of the model, many of which are either directly 

taken from the literature or estimated using experimental data. 

A number of studies have investigated various aspects of 

parameter estimation of dynamic systems (Anh et al., 2006; 

Kravaris et al., 2013; Poyton et al., 2006). However, before 

any estimation is performed, it is important to determine if all 

of these parameters are numerically identifiable and, if not, 

then what subset of parameters can be accurately estimated 

(Chu et al., 2007).  
 

Sensitivity analysis is a powerful tool to study how parameter 

variations can qualitatively or quantitatively influence the 

model behavior. As such, a variety of methods for parameter 

set selection have been studied and are based on local or 

global sensitivity analysis. The main drawback of local 

sensitivity analysis is that the sensitivity vectors are 

dependent on the “true” parameter values that are not 

precisely known prior to estimation. This may result in 

identification of parameter subsets that are suboptimal, which 

can have a significant impact on the model’s prediction 

accuracy if the parameter uncertainty is large. While global 

sensitivity analysis can incorporate the parameter uncertainty, 

the results from global sensitivity analysis are non-trivial to 

interpret as they do not rely on the concept of sensitivity 

vectors.  
 

This paper uses a new approach to address challenges for 

parameter set selection under uncertainty by combining a 

hierarchical clustering method (Chu et al., 2008) and a 

dynamic optimization technique so as to quantify the effect of 

the uncertainty in the parameter space on the sensitivity 

vectors. A sensitivity cone is computed for each parameter, 

where all sensitivity vectors for different possible parameter 

values are contained within the cone. The parameters can 

then be clustered based upon their sensitivity cones, similar to 

what was done for sensitivity vectors (Dai et al., 2013), after 

a suitable measure has been defined. This approach is applied 

to a signal transduction pathway model as these models tend 

to contain a large number of parameters, many of which 

contain significant uncertainties and which cannot be 

estimated from available measurements. 
 

The paper is structured as follows: preliminaries are 

presented in Section 2. Section 3 discusses in detail the 

problem formulation and the solution approach. A scheme for 

parameter selection is then introduced based upon 

hierarchical clustering of sensitivity cones. A case study 

involving a large-scale signal transduction pathway model is 

presented in Section 4, and conclusions can be found in 

Section 5. 

 

2. PRELIMINARIES 
 

2.1 Sensitivity equations 
 

One form of dynamic systems containing n states, m 

parameters and l inputs can be represented as: 
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is the state vector, p ∈ R 
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is the parameter 

vector, and u ∈ R 
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1 
is the input vector. The sensitivity 

equation is derived by taking the derivative of Eq. (1) w.r.t. 

the parameters and by applying the chain rule. The resulting 

dynamic sensitivity equation for the state xj and the parameter 

pi is given by: 
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Here, sij is defined as the sensitivity of the state xj w.r.t. the 

parameter pi. The total number of sensitivity equations is 

m×n since i ∈ {1,…,m} and j ∈ {1,…,n}. The sensitivities 

can be calculated by integrating all of the ODEs 

simultaneously using an ODE solver. However, considering 
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the fact that the original model is independent of the 

sensitivity equations and that the sensitivity equations in Eq. 

(2) are independent for different pi, only 2n equations need be 

integrated at a time for one particular pi. After calculating the 

sensitivity variables using numerical integration, the 

sensitivity vector can be obtained by sampling at uniformly 

spaced time points t = (t1,t2,…,th)
T
, where   is the time step. 

The i-th column of the sensitivity matrix S represents the 

sensitivity vector of the output xj w.r.t. to the parameter pi.  
 
 

  [

   (  )     (  )

   
   (  )     (  )

] 

 

(3) 

 

 

The sensitivity matrix shown in Eq. (3) is normalized by 

dividing each sensitivity vector by (xj 
ss

/pi
0
)， where xj 

ss
  is 

the steady state value of the corresponding output and pi
0
 is 

the nominal value of the corresponding parameter. 

 

2.2 Hierarchical clustering 
 

Hierarchical clustering is a technique to group data based 

upon pairwise similarities of statistical properties (Karypis et 

al., 1999). Results from hierarchical clustering are commonly 

presented in a dendrogram. For parameter set selection, 

hierarchical clustering is used to reduce the parameter 

number for estimation by determining several groups of 

parameters that are pairwise indistinguishable (i.e. they 

cannot be uniquely estimated for a reasonable level of noise 

in the measurements). It is then possible to only consider one 

parameter per group for estimation. Hierarchical clustering is 

implemented using the following steps: 
 

1) Calculate the pairwise distance of the objects. For a data 

set containing m objects, there are m ( m-1) /2 pairs. 

2) Group the objects into a dendrogram based on the 

distance. 

3) Determine a threshold cut-off value to partition the 

objects into different clusters.  
 

In step one, cosine similarity is usually used to measure the 

angle between vectors (Van der Laan et al., 2003). A larger 

angle implies a larger distance (less similarity) between two 

sensitivity vectors, and vice versa. As explained in Section 

2.1, each column of the sensitivity matrix represents the 

sensitivity vector for one corresponding parameter, and the 

sign of the direction of the sensitivity vector has no influence 

on parameter set selection. The distance between two 

sensitivity vectors is defined by modifying the cosine 

similarity, shown in the following equation, where w and v 

represent two different sensitivity vectors, and d is the 

defined cosine distance. 
 

1 cos 1
w v

d
w v




   


 (4) 

 

In step two, the data are clustered into a dendrogram based on 

the distance from step one.  Commonly used linkage criteria 

between two clusters include complete linkage clustering, 

where the longest distance between two clusters is found, and 

single linkage clustering, where the shortest distance is found. 

For parameter set selection, parameters need to be clustered 

into several groups such that the parameters within a group 

are pairwise indistinguishable. Therefore, the complete 

linkage criterion is preferred.  
 

A threshold cut-off value is determined in the last step. This 

value directly affects the number of clusters that the 

sensitivity vectors are partitioned into. As a rule of thumb, the 

cut-off value is chosen to be small enough so that any pair of 

sensitivity vectors within a cluster is sufficiently similar. 

 
2.3. Dynamic optimization 
 

Dynamic optimization refers to optimization problems that 

address time-varying systems. Generally, these problems seek 

to optimize an objective function by determining a group of 

input profiles that may change over time. It is worth noting 

that, for parameter estimation applications, the objective 

function is to minimize the fitting error and the parameters 

are assumed to be constant over time. The dynamic 

optimization problem is formulated as follows: 
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(7) 

 

Here, y is the objective function, u ( t ) is the input profile, p 

are the model parameters. Eq. (6) represents the dynamic 

system with states x and the known initial values x0. Path 

constraints and terminal constraints are denoted as Ψ and Ω, 

respectively. 
 

A simultaneous approach is commonly used to solve dynamic 

optimization problems (Dai et al., 2013; Vassiliadis et al., 

1994). The simultaneous approach parameterizes the input 

variables and also discretizes the dynamic system. The 

discretized system is then included as algebraic constraints in 

a nonlinear programming problem.  

 
3. PARAMETER SET SELECTION FOR DYNAMIC 

SYSTEMS UNDER UNCERTAINTY 
 

3.1 Visualization of effect of parameter uncertainty on 

sensitivity vectors 
 

As discussed in Section 2, sensitivity vectors can be clustered 

into different groups in a dendrogram based on the pairwise 

cosine distance. However, if parameter uncertainty is 

considered, the sensitivity vector generated from the 

sensitivity equation for each parameter will not be a single 

fixed vector but a group of vectors distributed around the 

nominal vector (shown in Fig. 1.a). A sensitivity cone can be 

defined which contains all possible sensitivity vectors 

corresponding to one parameter for different values of all 

parameters. Any vectors inside the sensitivity cone cannot be 

distinguished from each other due to uncertainty in the 

parameter values. Furthermore, vectors associated with 

different parameters may have sensitivity cones that overlap 

due to uncertainty (shown in Fig. 1.b). One inference is that 
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parameters whose sensitivity cones overlap should to be 

grouped into the same cluster. In order to capture the largest 

uncertainty for each parameter pi,  i 

max 
is defined in the 

following equation: 
 

   

   

0

0

max 1
max cos |  {1, ..., }

i i

i i

i

p p

p p

i m
 



  
 
 
 

s s

s s

 (8) 

 

Here, si (p0) and si (p) are the sensitivity vectors of the i-th 

parameter at the nominal values p0, and at other values p, 

chosen from the uncertainty range of all parameters, 

respectively. 

 
It can easily be seen that two sensitivity cones will not 

overlap when        12 >       1
max 

+      2     

max
, thus the corresponding 

parameters p1 and p2 can be distinguished as long as the cut-

off value is sufficiently small. In other words, if  12 ≤  1
max 

+ 2 

max
 , then the two sensitivity vectors may be colinear, and 

the two parameters cannot be distinguished no matter how 

small the cut-off value is. It should be noted that this 

condition is conservative and accounts for the worst possible 

situation. As the sum of   i   

max
 and     j     

max
 will always be used to 

compare with        i   j for different pair of parameters pi and pj, an 

effective angle i  j is defined in Eq. (9). The corresponding 

cosine distance between two sensitivity cones becomes 1- cos 

i  j. Hierarchical clustering is then performed based on the 

cosine distance of the effective angle between each pair of 

sensitivity cones. 
 

 m ax m ax
m ax , 0

ij ij ji
    

  

(9) 

 

This approach incorporates the parameter uncertainty of the 

parameter values into the parameter set selection procedure 

while retaining the existing methods for generating a local 

sensitivity matrix and performing hierarchical clustering. The 

next subsection will describe the numerical implementation 

of this approach.  

 

3.2 Problem formulation and computational solution 
 

For each specific parameter pi* (i* is a fixed index here), the 

cone angle  i* 

max
 can be calculated by solving the following 

dynamic optimization problem: 
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Here, y is the square of the cosine of the angle between the 

sensitivity vector and the corresponding nominal vector. The 

square is used instead of the absolute value so as to guarantee 

that the objective function will be continuously differentiable 

(a common requirement for NLP solvers). Eq. (11) is the 

original dynamic system and Eq. (12) represents the 

sensitivity equations of the output xj w.r.t. parameter pi*. In 

this problem, the input u is fixed and treated as a known 

parameter, while all the parameters p are perturbed to 

determine the maximum angle  i* 

max
. The perturbation range 

of p can be specified to reasonable values according to its 

physical meaning or prior knowledge. For m different 

parameters, there will be m different maximum angles  i* 

max
.  

 

The problem is formulated by discretizing the dynamic 

system with a 3-point Radau collocation method 

(Kameswaran et al., 2008) in AMPL and is solved with the 

interior-point nonlinear solver IPOPT (Wächter et al., 2006). 

 

3.3 Schematic for parameter set selection under uncertainty 
 

Table 1. Algorithm for Parameter Set Selection with Uncertainty 

Step 1. Calculate the normalized local sensitivity matrix at the 

nominal parameter values. 

Step 2. 

 

Fix parameters whose nominal sensitivity vectors have 

small lengths (e.g., less than 5% of the largest one) at their 

nominal values.  

Step 3. Calculate the angle i
max of each sensitivity cone 

associated with parameter pi that is not fixed at its nominal 

value in Step 2. 

Step 4. Cluster the parameters into a dendrogram by performing 

hierarchical clustering on the basis of the pairwise cosine 

distance between two cones 1-    cos    i j, where  i j = max {       

i      j -    i    

max -     j     

max}. 

Step 5. Choose a cut-off value (usually smaller than 0.05) to 

partition the parameters into n different clusters. 

Step 6. Select the parameters with the largest nominal sensitivity 

vectors of each of the n clusters as representatives from 

these clusters. These n parameters form the subset that 

needs to be estimated. 
 

 

Now that all the preliminaries have been introduced, and the 

technique for quantifying the effect of uncertainty on the 

sensitivity vectors has been discussed, the steps of the 

parameter set selection algorithm under uncertainty are 

summarized in Table 1. More details about the approach can 

be found in the literature (Dai et al., 2013).  
 

In Table 1, step 2 represents an optional preliminary 

screening procedure for reducing the parameter set, as 

parameters with small sensitivity vector lengths are unlikely 

to be chosen for estimation. Step 3 solves an optimization 

problem to compute the sensitivity cones of all parameters. 

Step 4 performs clustering on the basis of the cosine distance 

 
Fig. 1. Visualization of effect of uncertainty on the sensitivity 

vectors 
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of the effective angle between two cones which is defined in 

Eq. (9). An appropriately small cut-off value is chosen for 

partitioning the clusters in Step 5. In Step 6, the parameters 

with the largest nominal sensitivity vectors of each group are 

chosen as the representatives for these groups. These selected 

parameters form the parameter subset that should be 

estimated. 

 

4. CASE STUDY: TNF-α SIGNALING PATHWAY MODEL 
 

Modeling and analysis of intracellular signaling networks is 

an important area in systems biology. Signaling pathways 

initiate essential processes for regulating cell growth, division, 

apoptosis, or responses to environmental stimuli. These 

pathways include a large number of components, which 

detect, amplify, and integrate diverse external signals to 

generate responses, such as changes in enzyme activity or 

gene expression. It is infeasible to measure all the 

components in these pathways which limits the number of 

parameters that can be estimated. Therefore, the values of 

most of the kinetic parameters are taken directly from the 

literature and often contain a significant level of uncertainty. 
 

 
 

A TNF-α signaling pathway model (Huang et al., 2008) is 

used here to illustrate the selection of a subset of uncertain 

parameters for estimation using limited experimental data. 

This model consists of 37 state variables and 60 parameters. 

The TNF-α concentration is the input and the concentration 

of the transcription factor, NF-κB in the nucleus, is the only 

measured output. The mathematic model, the initial value of 

the state variables and the nominal values of the unknown 

parameters can be found in the literature (Huang et al., 2008). 
 

First, sensitivity equations are generated based on Eq. (2). 

Then, an extended model is formulated by combining the 

original signaling pathway model and the sensitivity 

equations. According to the experimental data (shown in Fig. 

2), the system reaches steady state after approximately 6 

hours, so the sensitivity vector is generated  by sampling the 

sensitivity variables from 0 to 6 hours with a step size of 1 

minute. The sensitivity vectors corresponding to different 

parameters compose the sensitivity matrix of the form in Eq. 

(3). After applying step 2 in Table 1, 18 parameters are left as 

the candidates for parameter clustering: p1, p3, p5, p6, p7, p9, 

p10, p14, p15, p19, p21, p22, p25, p27, p32, p40, p46, and p60.  
 

Assuming that there is no uncertainty, the parameters are 

grouped in a dendrogram, as shown in Fig. 3.a), using the 

complete linkage clustering. The parameters can be grouped 

into different numbers of clusters, based upon the cut-off 

value of the cosine distance. For example, if a cut-off value of 

0.1 is chosen, the parameters can be grouped into eight 

distinguishable clusters (from top to bottom) containing {p27}, 

    
Fig. 2. Simulation result of TNF-α signaling pathway model using 

estimated parameters determined by the presented approach. 
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Fig. 3. Hierarchical clustering of parameters of the TNF-α signaling 

pathway model including uncertainty. 
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{p46, p40}, {p25}, {p1}, {p22, p19, p14}, {p60}, {p32, p15, p10}, 

and {p21, p7, p9, p5, p6, p3}. The corresponding parameter 

subset that should be estimated is p27, p40, p25, p1, p19, p60, p32, 

and p21, since these are the parameters with the largest norms 

of the nominal sensitivity vectors in each of these eight 

clusters. If the cut-off value is increase to 0.5, the parameters 

can now only be grouped into three clusters containing {p27}, 

{p46, p40, p25, p1}, and {p22, p19, p14, p60, p32, p15, p10, p21, p7, p9, 

p5, p6, p3}, where p27, p1, and p60 should be estimated. 
 

 
The cluster number is also influenced by the uncertainty of 

the parameters. The larger the uncertainty, the shorter will be 

the cosine distance between pairs of sensitivity cones, thus 

fewer clusters can be partitioned using the same cut-off value. 

Furthermore, once two sensitivity cones overlap, the 

corresponding two parameters cannot be distinguished no 

matter how small the cut-off value is chosen. In this example, 

the largest angle of each sensitivity cone for two different 

uncertainty ranges is listed in Table 2, the cosine distance 

between each pair of sensitivity cones is calculated based on 

Eq. (4) and Eq. (9), and the dendrograms for different 

uncertainty ranges are shown in Fig. 3.b) and 3.c). It can be 

seen from Fig. 3 that an increase of the uncertainty results in 

the content of the dendrogram being pushed towards zero and 

the sensitivity cones start to overlap, resulting in clusters of 

indistinguishable parameters. For example, if 5% uncertainty 

is considered, the cosine distance between the sensitivity 

cones of p25, p1, p46, and p40 are 0. Thus, no matter how small 

the cut-off value is, these parameters cannot be partitioned 

into different groups. 
 

The D-optimality criterion, which is the most popular 

experimental design criterion, is used in this example to 

verify the performance of the parameter set selection. This 

criterion minimizes the volume of the confidence ellipsoid 

with an arbitrary fixed confidence level for a least-squares 

estimator. If no uncertainty is considered, then the criterion 

value is obtained by calculating the nominal sensitivity 

matrix. However, if a reasonable uncertainty range is 

considered, e.g., 1% or 5%, a Monte Carlo simulation is 

performed where 10,000 parameter sets are randomly chosen 

where the parameters are sampled to have values within the 

uncertainty range. The average criterion value is obtained 

from calculating the sensitivity matrix for these different 

parameter values. Therefore, the magnitude of the criterion 

value reflects the performance of the parameter selection for 

estimation. Since 18 parameters are considered for parameter 

set selection, there are a total number of 2
18

 - 1 different 

combinations of parameter subsets. It is obviously infeasible 

to compare all these possible combinations here.  
 

Instead, twenty different parameter subsets are listed in Table 

3 and compared to each other. Set #1 is selected from the 

literature (Huang et al., 2008). Set #2, #3, #4, and #5 are 

selected when the parameters are clustered based on the 

nominal sensitivity vectors and the cut-off value is chosen to 

be 0.5, 0.4, 0.2 and 0.1 respectively (shown in Fig. 3.a)). 

When the 5% uncertainty is considered, the parameters are 

clustered based upon the sensitivity cones shown in Fig. 3.c). 

If the cut-off value is 0.05, then the parameters are only 

partitioned into three clusters and three parameters are 

selected, each one a representative of a cluster, as is given by 

set #6. In order to study the effect of correlation among the 

parameters on the performance of parameter selection, two 

representatives (i.e., p19, p60 in set #7) from the same cluster, 

and three representatives (i.e., p19, p27, p60 in set #8) from the 

same cluster are selected. Set #9 and #10 are chosen as 

counter examples where the criterion values are large when 

there is no uncertainty considered, while the value decreases 

significantly even when only a small amount of uncertainty is 

considered. Set #10 to #20 are random combinations of four 

parameters selected from set #5. 
 

 
There are several trends that can be clearly seen when 

analyzing the data form Table 3. From set #2 to #5, it can be 

seen that the more parameter are selected, the worse 

estimation performance will get, no matter how small the 

uncertainty. Additionally, the average performance of sets of 

three parameters is better than that of the sets composed of 

four parameters, which can be found from set #11 to #20. 

From set #6 to #8, it can be seen that if more than one 

parameter is selected from the same cluster and no parameter 

is selected from other clusters, the performance will get 

significantly worse. From set #9 and #10, an interesting 

conclusion can be drawn as some parameter subsets will 

Table. 2. The largest angle (º) of the sensitivity cones for each 

parameter for two different uncertainty ranges. 

 p1 p3 p5 p6 p7 p9 p10 p14 p15 

1% 6.6 4.3 5.2 4.8 1.0 5.0 3.6 7.3 4.8 

5% 29.9 23.0 25.3 24.9 24.5 24.9 19.2 34.0 25.0 

 p19 p21 p22 p25 p27 p32 p40 p46 p60 

1% 4.3 2.2 4.9 6.3 9.1 5.0 5.0 5.0 1.4 

5% 22.8 15.1 23.2 29.4 45.4 26.0 24.1 24.1 6.1 

 

Table 3. Different combinations of parameter subsets and the 

corresponding criterion values* 

# Parameter Subset 0% 5% 10% 20% 30% 

1 {    p5, p32, p60      } -58.2 -59.3 -59.9 -60.3 -61.9 

2 {    p1, p27, p60      } -23.5 -34.3 -34.8 -39.9 -42.4 

3 { p1, p19, p27, p60 } -51.66 -66.65 -66.96 -72.53 -75.51 

4 
{    p1,  p19,  p21, 

      p25, p27, p60    } 
-57.7 -90.2 -90.7 -97.2 -100.5 

5 
{p1, p19, p21, p25, 

  p27, p32, p40, p60} 
-171.7 -172.5 -174.2 -180.4 -188.3 

6 {    p1, p32, p60      } -39.2 -40.7 -40.9 -42.6 -46.2 

7 {    p1, p19, p60      } -45.4 -42.7 -43.6 -49.1 -51.8 

8 {    p19, p27, p60    } -38.8 -54.3 -55.3 -56.9 -59.0 

9 {    p25, p27, p60    } -16.6 -46.1 -46.6 -47.0 -49.5 

10 {    p21, p27, p60    } -24.1 -47.4 -47.8 -48.1 -50.54 

11 { p1, p27, p32, p40 } -78.2 -79.4 -80.7 -81.5 -85.6 

12 { p1, p27, p32, p60 } -59.3 -61.8 -62.8 -66.2 -69.8 

13 { p1, p27, p40, p60 } -60.9 -61.1 -61.7 -65.6 -69.0 

14 {p19, p27, p32, p40} -97.7 -98.5 -99.7 -100.6 -102.5 

15 {p19, p27, p32, p60} -80.1 -82.2 -82.5 -83.2 -86.4 

16 {p19, p27, p40, p60} -81.3 -81.5 -81.6 -82.6 -85.6 

17 {p25, p27, p32, p40} -88.7 -90.8 -90.1 -91.5 -92.9 

18 {p25, p27, p32, p60} -73.0 -73.4 -73.9 -74.3 -76.8 

19 {p25, p32, p40, p60} -82.1 -83.0 -83.8 -84.5 -86.2 

20 {p27, p32, p40, p60} -82.6 -84.0 -84.2 -85.9 -86.5 

* D-optimality criterion: max log10 (det (STS)), S is the normalized 

sensitivity matrix of the subset 
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exhibit a good estimation performance when there is no 

uncertainty, however, even if only a small amount of 

uncertainty is considered, then the performance will drop 

significantly. This phenomenon directly shows the 

importance of considering uncertainty when selecting 

parameter subsets for estimation. Sets #2 and #6 are 

highlighted in the table since they are the best two candidates 

that are chosen for parameter estimation. The parameter 

estimation result using set #6 can be seen in Fig. 2. It is 

important to note that there is likely no perfect parameter set 

for estimation of uncertain systems, especially since 

determination of an appropriate cut-off value is still a topic of 

current research; however, it is important to determine one or 

more potential sets of parameters which are good candidates 

for estimation and differentiate those from other sets which 

would clearly result in worse prediction accuracy. 

 

5. CONCLUSION 
 

This work applies an approach for parameter set selection 

under uncertainty to a signal transduction pathway model. 

The technique is based upon an extension of existing methods 

that cluster the parameters according to their sensitivity 

vectors. The extension is made by realizing that the 

sensitivity vectors can vary due to the parameter uncertainty 

and that a sensitivity cone can be defined, where all possible 

sensitivity vectors of a parameter computed for different 

parameter values lie within one sensitivity cone. Computation 

of the sensitivity cones is non-trivial, and a dynamic 

optimization formulation is presented for the computation. 

The effective angle between two sensitivity cones can then be 

used for clustering the sensitivity cones. This technique is 

used in a case study where the parameter subset determined 

by this approach exhibits good fitting and prediction accuracy 

for the investigated TNF-α signaling pathway model. 
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