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Abstract: Intelligent vehicles have significant potential to improve the worldwide traffic
situation with regard to both safety and efficiency. Commercial vehicles are an ideal application
of intelligent driver assistance systems because of their precisely defined operational limits and
professional drivers. For many driver assistance systems, a prediction of the future driving
cycle is necessary. This research presents an approach towards predicting the future velocity
profile using a gain scheduled driver model together with a longitudinal vehicle model. The
parameters of the driver model are estimated during vehicle operation using recursive least
squares identification. Assuming repeated operation of the vehicle on the same route, the driver
model is supplied with the desired velocity at a particular position and outputs the predicted
velocity trajectory. In a case study, the benefit of prediction is shown in a hybrid hydraulic truck

with predictive optimized energy management.
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1. INTRODUCTION

During the last decades, research in both academia and
industry has shown an ongoing interest in intelligent sys-
tems related to automotive applications, see Bishop [2000]
for an overview. An increase in vehicle safety was possible
through driver assistance systems such as electronic brak-
ing systems, adaptive cruise control systems or collision
avoidance systems. The current improvements regarding
vehicle efficiency are not only achieved through alternative
propulsion systems, but also through intelligent energy
management systems, e.g., in hybrid or electric vehicles
(Back et al. [2002], Hellstroem et al. [2007], Deppen et al.
[2011]). Many driver assistance systems require a pre-
diction of driver or vehicle behavior. Typical predictive
systems can be found in the field of powertrain manage-
ment systems, e.g., predictive shifting strategies (Mueller
et al. [2004]) or predictive energy distribution in hybrid
vehicles (Kessels and van den Bosch [2007], Kaszynski
and Sawodny [2011]). Predictive energy management has
many advantages over rule-based approaches that do not
incorporate any forecasting techniques. Including infor-
mation about the future driving cycle enables the in-
telligent vehicle to operate in the most efficient setting
while guaranteeing good drivability at the same time. A
large number of research projects therefore concentrates
on predictive controllers in passenger vehicles or trucks,
e.g. Back et al. [2002], Kaszynski and Sawodny [2011],
but only few approaches towards the problem of driving
cycle prediction have been reported (Hermes et al. [2009],
Bender et al. [2013]). One promising field for predictive
systems are commercial vehicles. These vehicles usually
operate within precisely defined operating conditions, i.e.
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they perform one typical task over and over again. Typical
examples are distribution vehicles, garbage trucks or city
buses. Additionally, these vehicles are characterized by
heavy weight and frequent stop-and-go behavior, which
makes them very promising candidates for hybridization
(see Wu et al. [2004], Baseley et al. [2007]). Since these
vehicles always operate in the same urban region, it is
possible to associate typical velocities with a particular
vehicle position as shown by Bender et al. [2013]. However,
learning complete velocity trajectories results in the need
for a large database and a high computational effort,
which is typically not applicable in standard electronic
control units (ECUs). In this work, velocity trajectory
prediction is achieved through a longitudinal vehicle model
in combination with an adaptive driver model. As an input
for the driver model, a target velocity associated with the
current vehicle position is supplied by a database that has
been built up during previous vehicle operations on the
same route. The driver model is based on the intelligent
driver model (Kesting et al. [2010]) with gear dependent
acceleration exponents. The prediction approach presented
within this work has the advantage of low complexity
and interpretable parameters. The driver model param-
eters can be identified from measurement data, but also
during vehicle operation using the recursive least squares
algorithm. The remainder of this paper is organized as
follows: Section 2 outlines the longitudinal dynamics of the
considered 7.5 t truck and the model of the vehicle with its
main components. Section 3 focuses on the development
of a prediction system consisting of a combined driver
and vehicle control loop, identification of its parameters
during vehicle operation and validating its capability of
predicting driver behavior. Section 4 provides simulation
results from a case study, namely a hybrid hydraulic truck
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with predictive energy management optimization. Final
conclusions and an outlook on future work are given in
Section 5.

2. VEHICLE MODEL

A mathematical model of the vehicle is needed both for the
prediction system and for simulation purposes. Within the
developed prediction algorithm, the vehicle model repre-
sents the plant of the feedback loop. Modeling of the ve-
hicle components was performed similar to previous work
(Guzzella and Sciarretta [2007], Kaszynski and Sawodny
[2011]). Note that for the developed prediction system, a
forward model is used, i.e., the simulation input is given
by a desired velocity and the simulation outputs are the
actual velocity trajectory together with the corresponding
signals for the current gear, the fuel consumption etc. As a
direct consequence, a driver model is needed as a controller
in order to generate the inputs necessary for the vehicle
model.

2.1 Longitudinal Dynamics

For our purposes, a restriction to the vehicle’s longitudinal
dynamics is sufficient. Prediction of the lateral behavior is
not part of this work and therefore not included in either
the vehicle or the driver model. The longitudinal dynamics
are given by

Ju = Tprop - Texta (1)
where J is the combined moment of inertia, w is the
circular frequency determined by the effective wheel radius

r and the vehicle velocity v,
v
w=—. 2
& (2)
Torop is the resulting propulsion torque caused by the
vehicle propulsion system. For the case of a conventional

diesel engine, the propulsion torque is given by

Tprop = Td,ugﬂdiff + Tbrakea (3)
where T is the torque provided by the diesel engine, p,
and pugig are the torque conversion ratios of the gearbox
and the differential, respectively, and Ti, ke is the torque
delivered by the brake. Toy¢ consists of external resistance

forces such as air drag and rolling resistance, see e.g.
Kaszynski and Sawodny [2011].

2.2 Vehicle Components

The diesel engine is modeled via a lookup-table and serves
as a source of torque Ty depending on the rotational speed
ng. The maximum diesel torque Ty max at time instant ¢
is given by

Td,max(tk) = fd(nd(tk)> (4>
We assume the vehicle to have either an automated or
a manual gearbox. Shifting is performed according to a
strategy that uses the current gear Gy, the current vehicle
velocity vx and the current diesel engine load to determine
the appropriate subsequent gear Gy41,

T,
Gr+1 = fa (Gkavka d’k> . (5)

Td,max,k
The intelligent truck is equipped with the standard CAN
bus interface for in-vehicle communication. Precise vehicle

localization can be achieved using differential satellite
positioning in combination with inertial sensors and sensor
fusion techniques.

3. PREDICTION SYSTEM

The prediction system provides the intelligent vehicle with
a prediction of the anticipated velocity trajectory, see
Fig. 1. In a first step, the final velocity desired by the
driver, Utarget, needs to be predicted. This is achieved
using the assumption that the vehicle is operated on the
same route repeatedly. Hence, typical target velocities can
be associated with a particular vehicle position. These
target values are stored in a database and used later for
prediction, when the vehicle arrives at the same position
again. The desired velocity is then used as an input for
a simulated control loop consisting of an adaptive driver
model and the above outlined vehicle model. The control
loop outputs a complete anticipated velocity trajectory
0(t) for the following acceleration process. Prediction can
be performed whenever the vehicle comes to a halt. In
the following, variables referring to prediction values are
indicated by a hat-superscript.

3.1 Prediction of the Desired Velocity

Many vehicles operate on the same route repeatedly, e.g.,
distribution vehicles or garbage trucks. These vehicles al-
ways reach similar velocities at particular locations. This
is due to environmental influences (road curvature, traffic
lights, speed limits, position of garbage containers) and
driver characteristics. Therefore, a database can be built
up that associates specific vehicle speeds with a particular
vehicle position given through GPS coordinates. Previous
work used this fact to iteratively learn and save complete
velocity trajectories (Bender et al. [2013]). However, this
approach resulted in high efforts regarding storage space
and computation, and is therefore not applicable in stan-
dard ECUs. Hence, in the presented approach we only
store a single value (the desired velocity) for every stopping
position. When the vehicle comes to a halt at the same
position repeatedly, the stored value is iteratively adapted
using weighted averaging (Bender et al. [2013]). Vehicle
stopping positions are defined by

O = {[a(te), y(te))" | v(te—1) > 0, v(tx) =0} (6)

Each stopping position O is associated with a particular
velocity reached during the acceleration process following
the halt at @,

Ut(;)rget = {maxv(t), te T(i)} . (7)

T denotes the time interval corresponding to the velocity

profile occurring between vehicle stops O and @0 A

database update is performed after the vehicle has finished

its operation. After the first operation on a new route, the
database is initialized by

t(;)rget,o = U‘E;)rgetv

(_:)(i) —_e® v;—

0 = , Vi=1,..,N. (9)

N denotes the number of appeared acceleration intervals

T. After consecutive operations, the saved values are

0

Vi=1,..,N, (8)
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Fig. 1. Overall setup consisting of the adaptive drive cycle prediction system and the intelligent truck including predictive
assistance systems. Inputs to the prediction system are the vehicle velocity v(t), the current vehicle position
[z(t),y(t)] and initial conditions (gear, state of charge). The prediction system outputs the anticipated velocity
trajectory ©9(t). Note that prediction is performed once for each vehicle stop.

adapted whenever a similarity criterion based on the
stopping positions is satisfied,
NG)) (@)

~(J C " Varget,c + Vgarget . A () i
vt(g‘l)rgetw-l-l = gc+ 1 S if ||©® — @( ) < 0
, ~ () () Vi=1,...,N,

~ (4) c-0, +06 )
®cj+1: c+1 Vle,,M
(10)

Therein, N denotes the number of acceleration intervals
appearing in the last cycle and M denotes the number
of entries already included in the database. The subscript
¢ equals the number of previously identified acceleration
intervals that have been included for determining @t(i])rget7c.
If a new stopping position has appeared in the last cycle,
the database is extended similarly to the initialization
given by Egs. (8)-(9).

3.2 Driver Model

Driver models are a well investigated topic in automotive
research, see e.g. Hess and Modjtahedzadeh [1990] or
Ungoren and Peng [2005]. They can serve a variety of
purposes, e.g. the simulation of reference driving cycles
(Bender et al. [2013]) or the assessment of traffic flow
(Kesting et al. [2010]). Generally speaking, the driver
represents the controller in a feedback loop consisting of
the driver and the vehicle. Depending on the application
field of the driver model, different levels of complexity are
appropriate. In this work, the driver model needs to satisfy
the following requirements:

e small number of parameters for fast tuning

e good representation of longitudinal acceleration be-
havior in the 0-70 km/h interval

e capability for online adaptation of the model param-
eters

One of the first driver models was presented by Hess
and Modjtahedzadeh [1990]. This work follows a control
theoretic approach by modeling the driver as a controller
but primarily focuses on human steering behavior. A

variety of modeling approaches include preview elements,
e.g. MacAdam [1980]. Note that most driver models focus
on the lateral dynamics in order to simulate lane changing
or collision avoidance behavior, e.g. Moon and Choi [2011].
In contrast, the driver model presented here focuses on the
longitudinal vehicle behavior.

For our purpose, we modify the intelligent driver model
introduced by Kesting et al. [2010] to build a controller

o= - (12)']

This driver model shows good free-road acceleration be-
havior for both freeway and city traffic and has the ad-
vantage of only a single model parameter. However, the
nonlinearity of the vehicle model calls for different free ac-
celeration exponents § depending on the currently chosen
gear. This problem is addressed through the concept of
gain scheduling, see e.g. Astrém and Wittenmark [2008].
For each gear, a different § is applied, which results in a
total number of Ng parameters, where Ng is the number
of available gears. Note that gain scheduling results in a
switching controller

(11)

a(t;6y) i G=1
a(t;0y)  if G =2

U(t;0) =< . (12)
a(t;6q)  if G = Ng.

The input to the control loop consisting of driver and
vehicle model is given through

min(sargets VST ) if G:' =1
R ) min(¢argets VST, 5) ifG=2
Vdes (ta G) =
min(Vtarget, VSThg, —1.ng)s it G = Ne.
(13)
with vgr, , being shifting thresholds that indicate typical

velocities at which a change of gears usually takes place.
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Hence, the desired velocity is constructed of steps with
values depending on the predicted current gear G and the
predicted target velocity O¢arget. According to Eq. (11), the
controller variable always satisfies u € [0, 1]. Additionally,
we limit its rate of growth for more realistic behavior. The
control variable is then used to determine how much of
the maximum propulsion torque is applied to the vehicle
model during acceleration (Tbrake =0),

Tprop =g (t) . Tprop,max- (14)
Figure 2 illustrates the control loop consisting of the
vehicle and the adaptive driver model.

3.8 Recursive Driver Identification

The various gains for the driver model need to be adapted
according to individual driver behavior. In order to allow
for online adaptation of the parameters, a recursive least
squares (RLS) approach was chosen due to its low compu-
tational requirements and continuous operation mode (see
e.g. Nelles [2001]). Combining the vehicle dynamics with
the driver model leads to

- (2

where the prediction variables v and Tprop,max have been
replaced with the variables corresponding to the actual
vehicle behavior. For the RLS framework to be applicable,
the parameter to be identified # needs to be in a linear
relationship with the measurement output y and the
regression vector ¢,

— Text- (15)

Tprop,max

y=10-¢. (16)
Hence, we modify Eq. (15) to obtain
JL + T (u(t)>
g1-r =) = 5 g (—2).  (r
8 ( Tprop,max ) 8 Vdes ( )

—~ ——
=y =0 =9

Both y and ¢ can be computed from available CAN bus

data and known vehicle parameters. In order to identify

the various parameters dg, the RLS equations

Pr_1¢k

L, = &5~ 7"F 18

TN PEpr—1 (18)

Or = Or—1 + L [yx — Orbr—1] (19)
1

P, = X (1 — Lror] pr—1 (20)

need to be applied for each gear separately. Therefore,
identification of the parameter dg can be performed as
long as the vehicle is operated in gear G. The latest
identification result will be used for initialization once the
same gear is chosen again. It is important to note that

(1) The desired vehicle speed 0qes is computed according
to Eq. (13) with 9iarge; assumed to be known from
previous operations at the same position.

(2) The identified driver parameters ¢ will be real-valued
as long as the computed maximum available propul-
sion torque is larger then the required propulsion
torque,

v
Tprop,max Z J; + Tcxt' (21)

G(t)

v

<
—

~
—

Daes(t; G) &1 > '.Ji
¥

tg(t;6)

Fig. 2. Control loop consisting of the adaptive driver model
and the vehicle model.

(3) In order to incorporate time variant driver behavior,
we choose a forgetting factor A = 0.99.

Figure 3 illustrates the performance of the developed
prediction system. The upper plot shows the actual vehicle
velocity (solid) together with the predicted vehicle velocity
(dotted) and the input to the driver model (dashed). The
simulated velocity was taken from vehicle measurements
on a testing track. It can be seen that the predicted and
actual trajectories are in good agreement. Gear shifting
points were particularly well predicted, as can be seen in
the middle plot. The lower plot shows the results of the
RLS identification. Since the vehicle is only operated in the
first four gears, only acceleration exponents for these gears
are shown. Note that the parameters are only adapted
once the associated gear is chosen. The parameter values
used for prediction are the values at the beginnings of the
gray areas. Note that the initial gear used for accelerating
(first or second gear within the shown example) is an
initial condition that needs to be supplied to the prediction
system.

4. CASE STUDY: HYBRID HYDRAULIC TRUCK

In order to further test the developed prediction system
and to assess its prediction performance, a case study
based on the model of a hybrid hydraulic vehicle was per-
formed. Such vehicles use an additional hydraulic propul-
sion system mainly consisting of an axial piston pump and
a hydraulic accumulator to save fuel. Whenever the vehicle
brakes, kinetic energy is converted into hydraulic energy
and then stored in the accumulator. During acceleration,
the pump is used as a motor to convert the hydraulic
energy back into kinetic energy. This results in fuel savings
and less exhaust emissions, see Baseley et al. [2007] or
Bender et al. [2013] for details of the considered vehicle.
Within the vehicle model, the propulsion torque given by
Eq. (3) is extended through an additional term which
results in

Tprop - (Td + ﬂl),ugﬂdiff + Tbrake (22)
with Tj, being the hydraulic torque contributed by the
axial piston unit. During hybrid vehicle operation, the
required propulsion torque needs to be distributed among
the two propulsion systems. The torque assigned to the
hyraulic system is given by

T,

. prop .

min <max <7 71h,min aTh,max 5 if u, = la
Haifr

0 otherwise.

Ty =

(23)
where T} min and T}, max are the minimum and maximum
available hydraulic torque. The remaining torque is as-
signed to the diesel engine and the brake, respectively.
Whether the hydraulic propulsion system is activated
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Fig. 3. Simulation results from the developed prediction system. In the upper two plots, the predicted and actual
trajectories for the velocity and the current gear are shown together with the desired velocities used as an input
for the driver model. The lower plot illustrates the RLS identification results for the free acceleration exponents.

(un, = 1) or deactivated (uyp = 0) is determined by the en-
ergy management strategy. For the nonpredictive baseline
strategy, the axial piston unit is used whenever possible,

un(t) = 1 . (24)

Additional fuel savings can be achieved through numerical
optimization of the activation phases,

Tp
i ies d 25
o in /0 qdies (T)dT (25)
s.t.
v(t) =9(7), T € [0,Tp], (26)

Egs. (_1)-(14)
Egs. (22)-(24),

with gajes(7) representing the instantaneous fuel consump-
tion given as a function of the current engine speed and the
engine torque, see Bender et al. [2013]. This optimization
problem requires the prediction of the velocity trajectory
v(7), which will be delivered by the above described predic-
tion system. For more details on the optimization problem
and additional constraints, see Kaszynski and Sawodny
[2011]. In the following, the hybrid hydraulic vehicle with
predictive energy management will be used to assess the
performance of the developed prediction system. Based on
nine variations of the OC bus cycle (see Bender et al.

[2013]), iterative learning of the target velocities corre-
sponding to a particular vehicle position was performed.
Then, a tenth variation of the reference cycle was used
for vehicle simulation. Table 1 summarizes the simulation
results: using the developed prediction system together
with the optimized energy management strategy resulted
in fuel savings of additional 4.3% compared to the hybrid
vehicle with baseline energy management. If the exact fu-
ture velocity trajectories were known, savings of additional
5.1% would have been possible. This means about 84% of
the overall savings potential were achieved using the pre-
sented prediction approach. Figure 4 shows two example
acceleration intervals from the performed simulation. The
predicted trajectory (dotted line) was used to determine
the optimal activation phases, which led to a variation
in shifting behavior (solid line) compared to the baseline
strategy (dashed line). For the shown acceleration interval,
two activation phases were determined. As a consequence,
shifting from third to fourth gear was performed about 3
seconds earlier as compared to the baseline strategy. Note
that the simulated vehicle is equipped with an automated
transmission, therefore instantaneous gear shifts without
any interruption of traction force could be assumed in
contrast to the testing vehicle mentioned in Section 3.
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Table 1. Fuel consumption savings for the
hybrid hydraulic vehicle (HHV).

Vehicle configuration Normalized consumption

Conventional vehicle 100%
HHYV, baseline strategy 83.5%
HHYV, predictive strategy 79.2%
HHV, cycle known 78.4%

L n
£ 40} |
g
=, Prediction Horizon
> 20| : |

......... Predicted
—— Actual / Optimized
%90 400 |- --. Baseline 430

Gear G

390 400 410 420 430

410 420 430
Time ¢t [s]

Fig. 4. Simulation results for the hybrid hydraulic vehicle
case study. During the shown acceleration interval,
the predictive strategy leads to the state of charge
(SOC) decreasing in two phases which results in
earlier shifting from third to fourth gear.

5. CONCLUSIONS

Driving cycle prediction is of interest in various trans-
portation applications with regard to safety and efficiency.
For many applications, the assumption of repeated vehicle
operation on the same route is valid, therefore typical
target velocities can be associated with a particular vehicle
position. Using the predicted target velocity as an input
for a control loop consisting of a driver model as controller
and a model of the considered vehicle as plant, the fu-
ture velocity trajectory can be predicted. The used driver
model with gear dependent acceleration exponents can be
identified during vehicle operation using RLS identification
and showed satisfactory prediction results. The developed
prediction system was used in a case study on predictive
energy management optimization in hybrid hydraulic vehi-
cles. The predictive strategy yielded additional fuel savings
compared to the non-predictive baseline energy manage-
ment. Further research in the context of this project will
focus on the implementation of the developed algorithms
in a hybrid testing vehicle. Additionally, traffic influence
will be taken into account.
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