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Abstract: A water wall system is one of the most important systems used in boilers of thermal power 
plants. In this study, we assume that an exact nonlinear water wall model is given. Then, from the 
viewpoint of controller design, we compare the effectiveness of two models, a linear model and a neural 
network model. The linear model is developed by linearizing a nonlinear model at an operating point. The 
neural network model is developed using simulation data from a nonlinear model. To compare the qualities 
of these two models, a PRBNS (Pseudo Random Binary Signal) is applied to each model, and the errors of 
the models are compared. In comparison to the nonlinear model, two models performed adequately. The 
neural network model achieved a better performance than the linear model.  
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1. INTRODUCTION 

Thermal power plants are designed to handle fluctuating load 
demands, while nuclear power plants handle the base 
electrical load. Therefore, thermal power plants need to 
operate efficiently to keep up with the load change (Miao, 
2011). One such method to achieve this is a good controller 
design based on a good quality model.  

A water wall system is one of the most important heat 
exchanger systems in thermal power plants (Lu, 2008). 
Generally, a water wall system is modeled using a nonlinear 
system, which poses a challenge for controller design and 
analysis (Bentarzi, 2011).  

However, most controllers were designed based on linear 
models. If the linear model is of a poor quality, the 
performance of the controller is also degraded (Moon, 2011). 
Thus, in order to overcome the nonlinearity of thermal power 
plants many control techniques are developed using neural 
network models (Draeger, 1995; Thibault, 1992; MacMurray, 
1992). 

In this study, we assume a nonlinear water wall model to 
represent the water wall system. Next, from the controller 
design perspectives, we compare the relative qualities of the 
two models, a linear model and a neural network model, with 
that of the nonlinear model. The linear model is developed by 
linearizing the nonlinear model at an operating point the 
neural network model is developed using simulation data from 
the  nonlinear model. To compare the qualities of the models, 
a Pseudo Random Binary Signal (PRBNS) is applied to the 
nonlinear model, linear model, and neural network model.  

2. WATER WALL MODELING 

2.1 A Nonlinear Water Wall Model 

In this paper, we consider a water wall model in a 600MW oil 
drum boiler-turbine systems as shown in Fig.1. The water 
wall is located between the circulating pump and the drum in 
the boiler. The circulating water in the water wall is heated in 
the furnace, and then poured into the drum.  

 

Fig. 1. Drum Boiler-Turbine Power Plant. 

In this paper, we assume a water wall system as a nonlinear 
model that was used by Usoro (1977) and Kwang Y. Lee 
(2007). The model holds the following assumptions about the 
water wall system. 

Assumption 1. Because mostly water is recirculated in the 
water wall system, the compression effect is ignored. 

Assumption 2. Effective masses of water, steam, and metal  
are lumped into the single quantities.  
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Mass balance equation, energy equilibrium equation, and 
thermal equilibrium equation can be defined based on boiler 
structure and physical principles. The description of the water 
wall system is as follows, 

Mass balance equation is given by:  

wrpsrwwwo +K=WW   (1) 

where, Wwwo : Massflow of water wall output, 

 Wrw : Massflow of recirculating water,  

 Kwrps : Massflow of recirculating pump. 

According to (Usoro, 1977), Kwrps accounts for recirculating 
pump leakages and seal injection. It is small and may be 
neglected. 

Energy equilibrium equation is given by: 

  wwmwwwgmwwmswwmwwme Q=QT
dt

d
KM   (2) 

where, Mwwme : Effective mass of water wall metal, 

 Kswwm : Specific heat of water wall metal,  

 Twwm : Temperature of water wall metal,  

 Qwwgm : Heat transfer rate of gas to metal,  

 Qwwmw : Heat transfer rate of metal to water. 

wwmswwm

drwdrwvww
mwwmwwme TK

HRK
+=KM




 (3) 

where, Kmwwm : Mass of water wall metal, 

 Kvww : Volume of water wall, 

 Rdrw : Density of drum water,  

 Hdrw : Enthalpy of drum water, 

 3drswwmuwwmwwwmw TT=KQ    (4) 

where, Kuwwmw : Constant with dimension of [W/K3 ]. 

 Tdrs : Temperature of drum steam, 

Thermal equilibrium equation of circulating water is given by: 

wwmwrpowwowwo  )=QH(HW    (5) 

where, Hrpo :Enthalpy of recirculating pump output, 

 Hwwo : Enthalpy of water wall output, 

The following constant values are used:  

Kmwwm=1063000, Kvww=2318.61, Kswwm=0.11, 
Kuwwmw=173.5205 

For equations (1)-(5), we define the inputs, the outputs, and 
the states as follows, 

Input : 

U=[u1,u2,u3,u4,u5,u6]
T=[Wrw,Hrpo,Rdrw, Hdrw,Tdrs,Qwwgm]T (6) 

Output : 

Y=[y1, y2, y3]
T=[Wwwo,  Hwwo,  Twwm]T  (7) 

State : 

X=[x]=[Twwm]   (8) 

Then, the nonlinear model of water wall system is represented 
in the following equation,  
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11 uy     (10) 
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xy 3    (12) 

From the above equations, we notice that the water wall 
system has severe nonlinearity.  

2.2 A Linear model of Water Wall System 

The nonlinear model, given by equations (9)-(12), is 
linearized using the first order Taylor approximation at an 
operating point. The operating point was selected so as to 
keep the power output steady at 500MW. Table 1 shows the 
operating point of 6 inputs, 3 outputs, and a state. 

Table 1. The operating point 

Variables Operating value 

u1 (Wrw) 4596.1272 

u2 (Hrpo) 725.5982 

u3 (Rdrw) 33.5881 

u4 (Hdrw) 744.7551 

u5 (Tdrs) 1138.1153 

u6 (Qwwgm) 356915.0337 

y1 (Wwwo) 4600.4286 

y2 (Hwwo) 803.1653 

y3 (=x, Twwm) 1150.832 

Then, the first order approximation of equations (9)-(12) at 
the operating point is given by,   
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xy 3       (16) 

When all the variables are defined as deviations from the 
operation values in Table 1, the linear model is given by,  
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We notice that equation (17) is a simple first order system 
with a pole at s = -0.5031 and the overall system is stable 
without any oscillation mode. The transfer function matrix, 

)(sG , of equations (17)~(20) for the 6-input 3-output system 

is  given by,  
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2.3 Neural Network Model of Water Wall System 

Neural network has been widely applied in various fields 
because of its ability to learn arbitrary functions (Fausett, 
1994). In this study, water wall system is modeled using a 
perceptron network. 

Fig. 2 shows the training data from the nonlinear model 
represented by equations (9)-(12). In the figure, 6 inputs were 
generated by random signal. The training data is rearranged to 
reflect the water wall system dynamics as follows, 

)}(),1(),({)1( kUkYkYfkY    (22) 

where k is the discrete time step.  

Fig. 3 shows the structure of neural network used to train the 
water wall system. The input of perceptron is U(k), Y(k), Y(k-
1), and the number of input nodes is 12. The output of the 
neural network is Y(k+1), the number of output node is 3. The 
number of hidden layer nodes is determined to be 13. Fig. 4 
shows the reduction of mean square error while the neural 

network is being trained using the Matlab toolbox. Finally, the 
trained perceptron is used as a water wall model. 

 

 

 

 

Fig. 2. Training Data For Neural Network 

 

 

Fig. 3. Simulated Neural Network Configuration  
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Fig. 4. Mean Square Error reduction in training process 

 

3.  SIMULATIONS 

The qualities of two models are tested by simulation. First, a 
set of PRBNS inputs are designed to perturb the system. Then, 
the PRBNS inputs are applied to each of the three models, 
nonlinear model, linear model and neural network model 
independently. Fig. 5 shows the six PRBNS inputs used in the 
simulation.  

 

Fig. 5. Six PRBNS Inputs. 

Fig. 6 shows the output y1 of the three models, nonlinear, 
linear, and neural network. In Fig. 6, three outputs show 
almost similar response. This is because y1 is a linear system 
from (10), which is not a function of the state x. Therefore, the 
responses of the linear model and the nonlinear model are 
mathematically equivalent for y1. The y1 of the neural network 
also matches with that of the nonlinear model. This means 
that the neural network effectively describes the dynamics of 
y1. 

Fig. 7 shows the output y2 of the three models. In this case, y2 
of the neural network and the nonlinear model are almost 
similar. Although y2 of the linearized model shows a similar 
response to that of the nonlinear model, the undershoot 
responses shows some differences. Fig. 8 is a zoomed in 
version of Fig. 7. Fig. 8 shows a clear difference between the 
linear model and the neural network model. In this figure, the 

response of the neural network is almost the same with that of 
the nonlinear model. Fig. 9 shows the output y3 of the three 
models, and Fig. 10 is a zoomed in version of Fig. 9. For y3, 
the output of the neural network is almost similar to that of the 
nonlinear model, while the linear model exhibits some 
difference. 

Table 2 shows the absolute error for the linear and the neural 
network model. In the table, linear model exhibits better 
performance for y1, while neural network model exhibits 
better performance for y2 and y3. The better performance of 
the linear model for y1 can be attributed to y1 being a linear 
output.  

The outlet of the water wall is a mixture of water and steam, 
i.e. saturated condition. At that phase, assuming constant 
pressure, the temperature of the fluid is constant while the 
enthalpy may change as a function of water/steam ratio. This 
can be a major reason the temperature is modeled exactly 
while the enthalpy shows some undershoot. 

 

 

Fig. 6. y1 (WWWO, Mass flow of Water wall Output) 

 

Fig. 7. y2 (HWWO, Enthalpy of Water Wall Output) 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1449



 
 

     

 

 

Fig. 8.  An Enlargement of Fig. 7. 

 

Fig. 9. y3 (TWWM, Temperature of Water wall Metal) 

 

Fig. 10. An Enlargement of  Fig.9 

 

4. CONCLUSIONS 

In this paper, we presented a comparison between linear 
model and the neural network model for the water wall system 
in drum boiler-turbine power plant. A simple perceptron 
neural network model shows almost similar responses to those 
of the nonlinear model. Though there are some differences, 
linear model also shows similar performance in comparison to 
that of the nonlinear model. Since the linear model is valid 
near nominal operating point, the performance of the linear 

model will be worse at low power generation while the neural 
network preserves the nonlinearity of the plant. 

Because it is not easy to predict the control performance in 
design process, it is not clear that the quality of linear model 
is suitable for a controller design. If this model is used for part 
of the model of the boiler system describing the dynamics of 
energy flows, the mismatch in enthalpy needs to be 
considered. However, the presented model can be used for the 
temperature control problem. Similar analysis can be 
performed to heat exchangers placed in the superheater 
system since both the input and output are steam. In such case, 
both temperature and enthalpy may be equally sensitive to 
input variation. The control aspect of such heat exchanger is 
even greater. 
 

Table 2. Comparison between Linear and Neural Network 
model error 

 Linear  model   
(% to neural 

network model) 

Neural Network 
model 

y1 0 (0%) 0.0019 

y2 4.9218    
(29296%) 

0.0168 

y3 0.325         
(900%) 

0.0361 
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