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Abstract: We propose a novel method for maximum-likelihood-based parameter inference
in nonlinear and/or non-Gaussian state space models. The method is an iterative procedure
with three steps. At each iteration a particle filter is used to estimate the value of the log-
likelihood function at the current parameter iterate. Using these log-likelihood estimates, a
surrogate objective function is created by utilizing a Gaussian process model. Finally, we use
a heuristic procedure to obtain a revised parameter iterate, providing an automatic trade-off
between exploration and exploitation of the surrogate model. The method is profiled on two
state space models with good performance both considering accuracy and computational cost.
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1. INTRODUCTION

We are interested in maximum likelihood-based (ML)
parameter inference in nonlinear and/or non-Gaussian
state space models (SSM). An SSM with latent states

x0:T , {xt}Tt=0 and measurements y1:T , {yt}Tt=1is defined
as

xt|xt−1 ∼ fθ(xt|xt−1), (1a)

yt|xt ∼ gθ(yt|xt), (1b)

where fθ(·) and gθ(·) denote known distributions parame-
trised by the unknown static parameter vector θ ∈ Θ ⊆
Rd. For simplicity, we assume that the initial state x0

is known. Let L(θ) , pθ(y1:T ) denote the likelihood of
y1:T for a given value of θ. In ML estimation, we wish to
estimate θ by solving the optimisation problem,

θ̂ML = argmax
θ∈Θ

L(θ) = argmax
θ∈Θ

`(θ), (2)

where `(θ) , logL(θ) denotes the log-likelihood function.
Extensive treatments on ML inference are found in e.g.
Ljung [1999] and Lehmann and Casella [1998].

The likelihood for a general SSM can be expressed as

L(θ) =

T∏
t=1

pθ(yt|y1:t−1), (3)

where pθ(yt|y1:t−1) denotes the one-step predictive density.
For a linear Gaussian models, these densities can be
computed exactly by using the Kalman filter. However,
for a nonlinear model the one-step predictive densities
are in general intractable. It is therefore also intractable
to evaluate the objective function in (2), which poses an
obvious difficulty in addressing the ML problem.
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Recently, ML estimation has been carried out in nonlinear
SSMs by the aid of Sequential Monte Carlo [Doucet and
Johansen, 2011]. This includes e.g. using gradient-based
search [Poyiadjis et al., 2011] and the Expectation Maximi-
sation (EM) algorithm [Schön et al., 2011, Lindsten, 2013].
However, some of these methods require computationally
costly particle smoothing to estimate the necessary quan-
tities, which can be a problem in some situations.

An alternative is to make use of the simultaneous pertur-
bation stochastic approximation (SPSA) algorithm [Spall,
1987], which uses a steepest ascent algorithm with a
stochastic approximation scheme to estimate the solution
to (2). The gradients are estimated using finite differences
with random perturbations. This results in that the algo-
rithm only needs to sample the likelihood function twice
at each iteration, independent of the dimension of the
problem. SPSA is used in combination with SMC in e.g.
Singh et al. [2011] and Ehrlich et al. [2012].

Another approach for maximum likelihood estimation is
based on approximate inference based on Laplace approx-
imations and moment matching. We do not consider these
methods any further in this paper and refer interested
readers to e.g. Bishop [2006], Khan et al. [2012] and Bell
[2000] for more information.

In this paper, we propose a novel algorithm for ML estima-
tion of static parameters in a nonlinear SSM. The method
combines particle filtering (PF) with Gaussian process
optimisation (GPO) [Jones, 2001, Boyle, 2007, Lizotte,
2008]. The latter is a method well-suited for optimisation
when it is costly to evaluate the objective function. The
resulting algorithm is efficient in the sense that it provides
accurate parameter estimates while making use of only a
small number of (costly) log-likelihood evaluations.
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2. MAXIMUM LIKELIHOOD ESTIMATION WITH A
SURROGATE COST FUNCTION

We now turn to our new procedure for ML estimation of
general nonlinear SSMs (1). We start by outlining the main
ideas of the procedure on a high level. The individual steps
of the algorithm are discussed in detail in the consecutive
sections. The algorithm is an iterative procedure, which
thus generates a sequence of iterates {θk}k≥0 for the model
parameters. Each iteration consists of three main steps:

(i) Given the current iterate θk, compute an estimate of
the objective function (i.e. the log-likelihood) for this

parameter value, denoted as ̂̀k ≈ `(θk).

(ii) Given the collection of tuples {θj , ̂̀j}kj=0 generated
up to the current iterate, create a model of the
(intractable) objective function `(θ).

(iii) Use the model as a surrogate for the objective func-
tion to generate a new iterate θk+1.

Note that the method requires only one estimation of the
log-likelihood function at each iteration. This is promising,
since it is typically computationally costly to estimate the
log-likelihood value and we therefore wish to keep the
number of such evaluations as low as possible.

For step (i), i.e. evaluating the log-likelihood function
for a given value of θ, we use a PF, resulting in a
(noisy) estimate of the objective function. This step is
discussed in Section 3. For steps (ii) and (iii), we apply the
GPO framework. First, we construct a surrogate for the
objective function by modelling it as a Gaussian process,
taking the information available in the previous iterates

{θj , ̂̀j}kj=0 into account. This is discussed in Section 4.

Then, we make use of a heuristic, referred to as an
acquisition rule, to find the next iterate θk+1 based on
the GP model. The acquisition rule is such that it favours
values of θ for which the model predicts a large value of the
objective function and/or where there is a high uncertainty
in the model. This is useful since it automatically results
in a trade-off between exploration and exploitation of the
model.

In this paper, we consider a simple numerical example
to illustrate the different steps of the algorithm during
the derivation. For this, the linear Gaussian state space
(LGSS) model,

xt+1|xt ∼ N (xt+1; θxt, 1) , (4a)

yt|xt ∼ N
(
yt;xt, 0.1

2
)
, (4b)

with Θ = [−1, 1] and parameter θ? = 0.5 is simulated for
T = 250 time steps. The complete algorithm is evaluated
in Section 6 on this model, as well as on a nonlinear SSM.

3. ESTIMATING THE LOG-LIKELIHOOD

We begin this section with a brief description of a PF. For
more general introductions, see e.g. Doucet and Johansen
[2011]. We then continue with discussing the specific
problem of likelihood estimation using the PF.

3.1 The particle filter

The PF is a sequential Monte Carlo method used to
approximate e.g. the intractable filtering distribution

pθ(xt|y1:t) for a general SSM (1). This is done by rep-

resenting it by a set of N weighted particles {x(i)
t , w

(i)
t }Ni=1

according to

p̂θ(dxt|y1:t) ,
N∑
i=1

w
(i)
t∑N

k=1 w
(k)
t

δ
x
(i)
t

(dxt),

where w
(i)
t and x

(i)
t denote the (unnormalised) weight and

state of particle i at time t, respectively. Here, δz(dxt)
denotes the Dirac measure located at the point z. These
approximations are generated sequentially in time t. Given
the particles at time t − 1, the PF proceeds to time t by:
(a) resampling, (b) propagation and (c) weighting.

In step (a), the particles are resampled with replace-
ment, using the probabilities given by their (normal-
ized) importance weights. This is done to rejuvenate
the particle system and to put emphasis on the most
probable particles. The result is an unweighted particle

system {x̃(i)
t−1, 1/N}Ni=1, targeting the same distribution

pθ(xt−1|y1:t−1).

In step (b), the particles are propagated to time t by

sampling from a proposal kernel x
(i)
t ∼ Rθ

(
xt|x̃(i)

t−1, yt
)

from i = 1 to N . Finally in Step (c), the particles are
assigned importance weights. This is done to account
for the discrepancy between the proposal and the target
densities. The importance weights are given by

w
(i)
t = Wθ(x

(i)
t , x̃

(i)
t−1) =

gθ(yt|x(i)
t )fθ(x

(i)
t |x̃

(i)
t−1)

Rθ

(
x

(i)
t |x̃

(i)
t−1, yt

) . (5)

In the sequel, we use the bootstrap PF which means
that new particles are proposed according to the state

dynamics, i.e. Rθ(·) = fθ(·) and w
(i)
t = gθ(yt|x(i)

t ).
Although more sophisticated alternatives exist, see e.g. the
fully-adapted PF introduced in Pitt and Shephard [1999].

3.2 Estimation of the likelihood

In order to use the PF for estimating the likelihood, we
start by writing the one-step predictive density as

pθ(yt|y1:t−1) =

∫
pθ(yt, xt|xt−1)pθ(xt−1|y1:t−1) dxt−1:t

=

∫
Wθ(xt, xt−1)Rθ(xt|xt−1, yt)pθ(xt−1|y1:t−1) dxt−1:t,

where we have multiplied and divided with the proposal
kernel Rθ(·). To approximate the integral, we note that

the (unweighted) particle pairs {x̃(i)
t−1, x

(i)
t }Ni=1 are approx-

imately drawn from Rθ(xt|xt−1, yt)pθ(xt−1|y1:t−1). Conse-
quently, we obtain the Monte Carlo approximation

pθ(yt|y1:t−1) ≈ 1

N

N∑
i=1

w
(i)
t .

By inserting this approximation into (3) we obtain the
particle estimate of the likelihood,

L̂(θ) =

T∏
t=1

(
1

N

N∑
i=1

w
(i)
t

)
.

This likelihood estimator has been studied extensively in
the SMC literature. The estimator is consistent and, in
fact, also unbiased for any N ≥ 1; see e.g. Pitt et al. [2012]
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Algorithm 1 PF for log-likelihood estimation
Inputs: An SSM (1), y1:T (obs.) and N (no. particles).

Output: ̂̀(θ) (est. of the log-likelihood).

1: Initialise particles x
(i)
0 for i = 1 to N .

2: for t = 1 to T do
3: Resample the particles with weights {w(i)

t−1}
N
i=1.

4: Propagate the particles using Rθ(·).
5: Compute (5) to obtain {w(i)

t }Ni=1.
6: end for
7: Compute (6) to obtain ̂̀(θ).

and Proposition 7.4.1 in Del Moral [2004]. Furthermore, a
central limit theorem holds,

√
N
[
L̂(θ)− L(θ)

]
d−→ N

(
0, ψ2(θ)

)
,

for some asymptotic variance ψ2(θ); see Proposition 9.4.1
in Del Moral [2004].

3.3 Estimation of the log-likelihood

However, working directly with the likelihood typically
results in numerical difficulties. To avoid problems with
numerical precision, we instead use an estimate of the log-
likelihood

̂̀(θ) = log L̂(θ) =

T∑
t=1

log

[
N∑
i=1

w
(i)
t

]
− T logN. (6)

The resulting complete algorithm for estimating the log-
likelihood using a PF is presented in Algorithm 1.

Note that, by taking the logarithm of L̂(θ), we introduce
a bias into the estimator. However, by the second-order
delta method [Casella and Berger, 2001], the asymptotic
normality carries over to the log-likelihood estimate,

√
N
[̂̀(θ)− `(θ)

]
d−→ N

(
0, γ2(θ)

)
, (7)

where γ(θ) = ψ(θ)/L(θ). Motivated by this, we make the
assumption that the log-likelihood estimates are Gaussian
distributed and centered around the true log-likelihood
value. That is, we can writề(θ) = `(θ) + z, z ∼ N (0, σ2

z). (8)

Similar normality assumptions have previously been used
by Pitt et al. [2012] and Doucet et al. [2012]. The unknown
variance σ2

z is treated as a free parameter that is estimated
on-the-fly as we run the proposed estimation algorithm.
That is, we do not have to estimate σ2

z by making any
initial test runs. We return to this in the sequel.

We validate the Gaussian assumption (8) using a small
numerical experiment to illustrate the bias and variance,
at a finite number of particles. We calculate 1 000 estimates
of the log-likelihood `(0.5) for the model in (4). This is
done by running Algorithm 1 independently 1 000 times
with N = 1 000 particles.

In Figure 1, we present the distribution of the error in
the estimates together with a QQ-plot. Both plots validate
that the estimates are approximatively distributed accord-
ing to a Gaussian distribution. Also a Lilliefors hypothesis
test [Lilliefors, 1967] does not reject the null hypothesis,
that the measurements are drawn from a Gaussian distri-
bution at significance level α = 0.05.
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Fig. 1. Left: the histogram and kernel density estimate (blue line) of
the estimation error of the log-likelihood in the LGSS model (4)
at θ = θ?. Right: the QQ-plot of the data with the theoretical
quantiles marked with the solid blue line.

4. MODELLING THE SURROGATE FUNCTION

From the previous, we consider a naive approach to solve
(2) by creating a grid of the parameter space and estimat-
ing the log-likelihood in each grid point. The parameter
estimate is then obtained as the grid point that maximises
the objective function. The problem here is that as the
dimension of the parameter space increases, an exponen-
tially increasing number of grid points is required to retain
the accuracy of the estimate.

Furthermore, using finite differences to compute the gra-
dient of the log-likelihood is problematic due to the noise
in (8). This problem can be mitigated by using a particle
smoother, as previously discussed in e.g. Poyiadjis et al.
[2011], but this is even more computationally expensive
than running the particle filter. Instead, we construct
a model of the noisy log-likelihood evaluations in Step
(ii). This model then serves as a surrogate for the actual
objective function.

4.1 Gaussian process model

In this paper, we use a GP for this purpose, as these
processes are possibly flexible enough to capture the over-
all structure of the log-likelihood for many SSMs. GPs
can be seen as a generalisation of the multivariate Gaus-
sian distribution and are commonly used as priors over
functions. In this view, the resulting posterior obtained
by conditioning upon some observations, describes the
functions that could have generated the observations. This
makes GPs a popular class of nonparameteric models used
for e.g. regression, classification and optimisation, see e.g.
Rasmussen and Williams [2006] and Murphy [2012].

In the following, we model the log-likelihood `(θ) as being
a priori distributed according to a GP. That is,

`(·) ∼ GP
(
m(·), κ(·, ·)

)
, (9)

where the process is fully described by the mean function
m(·) and the covariance function κ(·, ·).

4.2 Updating the model and the hyperparameters

To ease the presentation, we here consider a particular

iteration k of the GP and the PF. Let Dk = {θk, ̂̀k} =

{θj , ̂̀(θj)}kj=1 denote a set of iterates, where θk and ̂̀
k
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denote vectors obtained by stacking the k parameters and
noisy log-likelihood estimates, respectively.

It follows that the posterior distribution is given by

`(θ)|Dk ∼ N
(
µ(θ|Dk), σ2(θ|Dk) + σ2

z

)
, (10)

where µ(θ|Dk) and σ2(θ|Dk) denote the posterior mean
and variance given the iterates Dk, respectively. By stan-
dard results for the Gaussian distribution, we have

µ(θ|Dk) = m(θ) + κ(θ,θk)Γ−1
[̂̀
k −m(θ)

]
, (11a)

σ2(θ|Dk) = κ(θ, θ)− κ(θ,θk)Γ−1κ(θk, θ), (11b)

with Γ = κ(θk,θk) + σ2
zIk×k, and where Ik×k denotes

a k × k-identity matrix. Here we note that the posterior
distribution can be sequentially updated to save computa-
tions, see the aforementioned references for details.

In the GP model presented, we use some mean function
and covariance function that possibly depend on some
unknown hyperparameters. Also, we need to estimate the
unknown noise variance σ2

z in (8). For this, we adopt the
emperical Bayes (EB) procedure to estimate these quanti-
ties. This is done by numerically optimising the marginal
likelihood of the data with respect to the hyperparameters.

4.3 Example of log-likelihood modelling

We end this section by an example to illustrate the
usefulness of GPs in modelling the log-likelihood. In the
upper part of Figure 2, we show the posterior distribution
of the log-likelihood of the model in (4). The posterior
is estimated using three (left) and six (right) samples
of the log-likelihood drawn at some randomly selected
parameters. With information from only six samples, the
mean of the surrogate function passes close to the observed
iterates with a reasonable confidence interval.

5. ACQUISITION RULES

The remaining problem in the proposed algorithm is how
to select the parameters at which the log-likelihood should
be evaluated in step (iii). A simple choice would be to
consider a random sampling approach, which works well
when the dimension of the parameters is small. However,
when the dimension increases, we are faced with the curse-
of-dimensionality and independent sampling is inefficient.

As previously discussed, we instead use acquisition rules
that balances exploration and exploitation of the param-
eter space and makes use of the posterior distribution
obtained from the GP. These heuristics are well-studied
in GPO and simulation-based comparisons are presented
in e.g. Lizotte [2008]. In this paper, we follow their general
recommendations and use the expected improvement (EI)
from Jones [2001].

5.1 Expected improvement

Consider the predicted improvement defined as

I(θ) = max
{

0, `(θ)− µmax − ζ
}
, (12)

where ζ is a user-defined coefficient that balances explo-
ration and exploitation. Also, introduce the expected peak
of the log-likelihood function,
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Fig. 2. Upper: The surrogate function of the LGSS model (4) using
three (left) and six (right) uniform samples ”•”, respectively.
The solid line presents the value of the predictive mean function
with its 95% CI in blue and the dashed red line presents the
true likelihood. Lower: The corresponding EIs using ζ = 0.01.

µmax = max
θ∈θk

µ(θ|Dk), (13a)

over the previous iterates. Here, we again consider a
particular iteration k in the notation for brevity.

Finally, by using the posterior distribution obtained from
the GP, we can write the EI as

E[I(θ)|Dk] = σ(θ)
[
Z(θ)Φ

(
Z(θ)

)
+ φ

(
Z(θ)

)]
, with (14)

Z(θ) = σ−1(θ)
[
µ(θ)− µmax − ζ

]
,

where we drop the dependence on Dk for brevity. Here, Φ
and φ denote the CDF and PDF of the standard Gaussian
distribution, respectively. An acquisition rule follows by
the maximising argument

θk+1 = argmax
θ∈Θ

E
[
I(θ)|Dk

]
, (15)

i.e. we sample the likelihood in θk+1 during the next
iteration of the algorithm.

In the lower part of Figure 2, the expected improvements
are shown for the situation discussed in the previous
example. The two situations correspond to an exploitation
step (left) and an exploration step (right), respectively. In
the former, we sample in the neighbourhood of the current
predicted peak. In the latter, we sample in an area where
the uncertainty is large to determine if there is a peak in
that area.

From the expression in (14), we expect a high value of
EI for parameters where the variance σ(θ) is large. If also
the predictive mean µ(θ) is larger than µmax, then the EI
assumes even larger values for these parameters. This gives
the desired behaviour of the acquisition function discussed
previously.
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Algorithm 2 Particle-based parameter inference in nonlin-
ear SSMs using Gaussian process optimisation
Inputs: Algorithm 1, K (no. iterations) and θ1 (initial parameter).

Output: θ̂ (est. of the parameter).

1: Initialise the parameter estimate in θ1.
2: for k = 1 to K do
3: Sample ̂̀(θk) using Algorithm 1.
4: Compute (10) and (11) to obtain `(θ)|Dk.
5: Compute (13) to obtain µmax.
6: Compute (15) to obtain θk+1.
7: end for
8: Compute the maximiser µ(θ|DK) to obtain θ̂.

6. NUMERICAL ILLUSTRATIONS

Finally, we are ready to combine the methods discussed
in the previous three sections into the final algorithm and
it is presented in Algorithm 2. In the following, we use
an LGSS model and a nonlinear model to illustrate the
behaviour and the performance of the proposed algorithm.
We compare the proposed method in the latter model
with the SPSA algorithm [Spall, 1987]. This algorithm is
selected as it also only makes use of zero-order information
(the log-likelihood estimates) and is known to perform well
in many problems, see e.g. Spall [1998].

6.1 Implementation details

For the GP, we use a constant mean function and the
Matérn kernel with ν = 3/2. Note that, other choices of
mean functions and kernels (especially the combination
of kernels) can possibly improve the performance of the
algorithm. This is especially important in models where
the log-likelihood in non-isotropic.

The GPML toolbox [Rasmussen and Williams, 2006] is
used for estimation of the hyperparameters by EB and
for the computation of the predictive distribution in (10).
For the acquisition function, we use the EI with ζ = 0.01
following the recommendations in Lizotte [2008].

The optimisation in (15) is non-convex and therefore
difficult to carry out in a global setting. Two common
approaches in GPO are to use multiple local search al-
gorithms in a Monte Carlo setting [Lizotte, 2008] or
using a global optimisation algorithm [Brochu et al.,
2010]. In this paper, we use the latter method with
the gradient-free DIRECT global optimisation algorithm
[Jones et al., 1993] and the implementation written by
Daniel E. Finkel, available from http://www4.ncsu.edu/

~ctk/Finkel_Direct/. A maximum of 500 iterations and
(cheap) evaluations of the surrogate function are used in
the DIRECT algorithm for each optimisation.

6.2 Linear Gaussian state space model

We begin with the LGSS model using one parameter in
(4), as this enables us to investigate the behaviour of
the proposed algorithm in detail. We use N = 1 000
particles, K = 50 iterations and the initial parameter
θ1 = −0.98. In Figure 3, we present the surrogate function
and the expected improvement at different iterations. The
algorithm converges rather quickly for this simple toy

example with the parameter estimate θ̂ = 0.48. As a
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Fig. 3. The surrogate model (solid line) and EI (green line)
at iterations {5, 10, 15, 50} for the LGSS model. The true
log-likelihood is presented as the dashed red line. The 95%
confidence of the surrogate function is marked by blue. ”•” and
”4” indicate samples from the log-likelihood and the maximum
of the EI obtained by the DIRECT alg.

comparison, the MLE obtained by the Kalman filter by
maximisation on a grid of parameter values is θMLE = 0.44.

6.3 Nonlinear stochastic volatility model

Consider the Hull-White stochastic volatility model [Hull
and White, 1987],

xt+1|xt ∼ N
(
xt+1; θ1xt, θ

2
2

)
, (16a)

yt|xt ∼ N
(
yt; 0, 0.72 exp(xt)

)
, (16b)

where the parameters are θ? = {θ?1 , θ?2} = {0.90, 0.20}.
We use Θ = Θ1 × Θ2 = [−1, 1] × [0, 2], T = 250 time
steps, N = 1 000 particles, K = 300 iterations and
the initial parameter θ1 = {0.5, 0.5}. We implement the
SPSA algorithm as suggested by Spall [1998] using the
recommended settings for the parameters α, γ and C. We
manually tune the parameters a = 0.03 and c = 0.04 to
achieve good performance for our problem.

The GPO algorithm again converges rather quickly after
about 50 evaluations of the log-likelihood and returns the

parameter estimate θ̂ = {0.896, 0.187}. The SPSA algo-
rithm converges slower and requires more than 200 evalu-
ations of the log-likelihood to reach the neighbourhood of
the true parameters. Even more iterations are required for
the estimates to stabilise. This shows, for this particular
example, that the GPO algorithm could be a competitive
choice for maximum likelihood estimation.

7. CONCLUSIONS

The results in the previous section indicate that the
proposed method does not require many estimates of the
intractable log-likelihood. This is due to the GP model
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Fig. 4. Upper: the log-likelihood model generated using the K iter-
ates with the est. parameters (red star). Lower: the estimates of
θ1 (left) and θ2 (right) using GPO (solid) and SPSA (dashed).
The true parameters are presented by dotted lines.

that captures the overall structure well and enables an
efficient sampling mechanism in the form of the acquisition
rule. With this and the comparison with SPSA in mind, we
hope that this algorithm shall turn out to be a competitive
alternative to more advanced algorithms.

Important future work includes benchmarking of the pro-
posed method, alternative acquisition rules and investigat-
ing possibilities for bias-compensation of the log-likelihood
estimate. Also, the Gaussian process models can be useful
as an alternative to compute the gradient (score function)
and negative Hessian (the observed information matrix) of
the log-likelihood. Estimating the latter is an important
problem in e.g. nonlinear input design, and this approach
could decrease the variance in such estimates.

At http://users.isy.liu.se/en/rt/johda87/, we pro-
vide source code to reproduce some of the numerical illus-
trations in this paper.
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