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Abstract: We propose an improved proposal distribution in the Particle Metropolis-Hastings
(PMH) algorithm for Bayesian parameter inference in nonlinear state space models. This
proposal incorporates second-order information about the parameter posterior distribution,
which can be extracted from the particle filter already used within the PMH algorithm.
The added information makes the proposal scale-invariant, simpler to tune and can possibly
also shorten the burn-in phase. The proposed algorithm has a computational cost which is
proportional to the number of particles, i.e. the same as the original marginal PMH algorithm.
Finally, we provide two numerical examples that illustrates some of the possible benefits of
adding the second-order information.
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1. INTRODUCTION

We are interested in Bayesian parameter inference in
nonlinear state space models (SSM). An SSM with latent

states x0:T , {xt}Tt=0 and measurements y1:T , {yt}Tt=1 is
defined as

xt|xt−1 ∼ fθ(xt|xt−1), (1a)

yt|xt ∼ gθ(yt|xt), (1b)

where fθ(·) and gθ(·) denote known distributions parame-
trised by the unknown static parameter vector θ ∈ Θ ⊆
Rd. We also assume that the initial state is distributed
according to x0 ∼ µ(x0). In Bayesian inference, we are
interested in computing the parameter posterior,

p(θ|y1:T ) =
pθ(y1:T )p(θ)

p(y1:T )
, (2)

where p(θ) denotes the prior distribution of the parameter.
Here, the likelihood function can be expressed as

pθ(y1:T ) = p(y1:T |θ) =

T∏
t=1

pθ(yt|y1:t−1). (3)

For nonlinear and/or non-Gaussian models, the one-step
predictive distribution pθ(yt|y1:t−1) is intractable and
therefore the parameter posterior is also intractable. How-
ever, these quantities can be estimated e.g. using Sequen-
tial Monte Carlo (SMC) [Doucet and Johansen, 2011],
Markov chain Monte Carlo (MCMC) [Robert and Casella,
1999] or a combination of the two. The latter solution is
referred to as particle MCMC (PMCMC) [Andrieu and
Roberts, 2009, Andrieu et al., 2010] and enables routine
Bayesian parameter inference in general SSMs (1).

? Supported by the project Probabilistic modeling of dynamical
systems (Contract number: 621-2013-5524) funded by the Swedish
Research Council.

Earlier work in the area of Bayesian parameter inference
includes e.g. Cappé et al. [2005], Ninness and Henriksen
[2010] and Peterka [1981]. PMCMC has earlier been used
for nonlinear inference in e.g. finance [Pitt et al., 2012],
social network analysis [Everitt, 2012] and system identi-
fication [Dahlin et al., 2013]. In the latter, we propose a
method using Particle Metropolis-Hastings (PMH) with
a proposal based on first-order information about the
posterior.

In this work, we improve the performance of the PMH
algorithm by also incorporating second-order information
into the proposal. This draws upon results presented
by Girolami and Calderhead [2011] for the Metropolis-
Hastings (MH) algorithm and can be seen as a particle
analogue to the manifold Metropolis Adjusted Langevin
Algorithm (mMALA).

By including the Hessian, the proposal is given the ability
to automatically adjust the step length during the run.
This has the benefit of shortening the burn-in period and
simplifies the tedious tuning, as the proposal is scale-
invariant. Note, that this is similar to a Newton-based
optimisation algorithm, which also enjoys the same invari-
ance.

Another improvement is the use of particle smoothers
with linear complexity for estimating the first-order and
second-order information. This greatly decreases the com-
putational cost of the algorithm compared to our earlier
work, which has a quadratic complexity in the number
of particles. The proposed method is illustrated on two
SSMs, which shows some of the possible benefits of using
the second-order proposal.
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2. CONSTRUCTING SECOND-ORDER PROPOSALS

As previously stated, direct computation of the param-
eter posterior distribution (2) is often intractable. In-
stead, we make use of the Metropolis-Hastings (MH) al-
gorithm [Metropolis et al., 1953, Hastings, 1970, Robert
and Casella, 1999] to sample from the posterior by the
use of a Markov chain with certain properties. The chain
is constructed so that its stationary distribution is the
posterior p(θ|y1:T ), from which we would like to sample.

The (ideal) MH algorithm is an iterative procedure where
two steps are carried out during each iteration: (i) sample
parameters from a proposal distribution, θ′′ ∼ q(θ′′|θ′),
where θ′ denotes the parameters from the previous state
of the Markov chain, and (ii) accept or reject the new
parameters with the acceptance probability,

α(θ′′, θ′) = 1 ∧ p(θ
′′)

p(θ′)

pθ′′(y1:T )

pθ′(y1:T )

q(θ′|θ′′)
q(θ′′|θ′)

, (4)

where we introduce the operator a ∧ b = min{a, b}.
Recall that the likelihood pθ(y1:T ) is intractable for the
general SSM (1). In Section 4, we discuss how to solve
this particular problem, while still making sure that the
Markov chain converges to the parameter posterior. This
is done by replacing the intractable likelihood with an
unbiased estimate resulting in an exact approximation of
the MH algorithm [Andrieu et al., 2010].

In this section, we construct a proposal that makes use
of the first-order and second-order information about
the posterior. After this, we discuss how to construct
estimators for the required intractable quantities using
SMC methods.

2.1 Laplace approximation of the log-posterior distribution

A proposal distribution can be constructed by using a
Laplace approximation [Robert and Casella, 1999] of the
log-posterior distribution. Consider a second-order Taylor
expansion of log p(θ′′|y1:T ) around θ′,

log p(θ′′|y1:T ) ≈ log p(θ′|y1:T )

+ (θ′′ − θ′)>∇ log p(θ|y1:T )
∣∣∣
θ=θ′

+
1

2
(θ′′ − θ′)>∇2 log p(θ|y1:T )

∣∣∣
θ=θ′

(θ′′ − θ′).

By taking the exponential of both sides and completing
the square, we obtain

p(θ′′|y1:T ) = N (θ′′; θ′ + GT (θ′),WT (θ′)), with

W−1T (θ′) , IT (θ′)−∇2 log π(θ)
∣∣
θ=θ′

,

GT (θ′) ,WT (θ′)
[
ST (θ′) +∇ log π(θ)

∣∣
θ=θ′

]
,

which is discussed in e.g. Robert and Casella [1999]. Here,

we introduced the notation ST (θ′) , ∇ log pθ(y1:T )|θ=θ′
and IT (θ′) , −∇2 log pθ(y1:T )|θ=θ′ for the gradient and
the negative Hessian of the log-likelihood, respectively.

In Robert and Casella [1999], the authors discard the
second-order information WT (θ) from the expression by
replacing it with a constant diagonal d × d-matrix. Here,
we instead keep the second-order information and guided
by the Laplace approximation, suggest the use of the
proposal,

q
(
θ′′|θ′,ST (θ′), IT (θ′)

)
= N

(
θ′′; θ′ +

Γ2

2
GT (θ′),Γ2WT (θ′)

)
, (5)

where Γ = diag(γ) denotes a diagonal matrix with γ being
a scalar or a d-vector with step-length(s). We use the
former in the second-order proposal because of its scale-
invariance property. In the zeroth-order and first-order
proposals (introduced below) a vector is often needed to
use different step-lengths for each parameter.

2.2 Properties of the proposal distribution

We refer to the expression in (5) as the second-order
proposal, since it makes use of both the gradient and the
Hessian in proposing new parameters. If the Hessian of
the log-posterior is replaced with a d× d-identity matrix,
WT (θ) ≡ Id, a first-order proposal is obtained. Lastly,
if the gradient is removed as well, GT (θ) ≡ 0, a zeroth-
order proposal is obtained. This proposal distribution is
equivalent to a Gaussian random walk proposal, which is
a common standard choice when using the MH algorithm.

We note in the passing that the second-order proposal has
a statistical and geometrical interpretation. The gradient
and the negative Hessian of the log-likelihood are often
referred to as the score function and the Fisher infor-
mation matrix, respectively. From such a perspective, the
proposal in (5) is shown in Girolami and Calderhead [2011]
to be a random walk on a Riemann manifold with constant
curvature using the information matrix as the metric.

The convergence of the first-order proposal is analysed
by Roberts and Rosenthal [1998] and under certain as-
sumptions it require O(d−1/3) steps to converge to the
stationary distribution. This is compared with O(d) steps
for the zeroth-order proposal. Therefore the first-order
proposal is more efficient as the number of parameters
d increases. To the best of the authors’ knowledge, no
analysis has been published for the second-order proposal.
However, numerical comparisons are presented in Section
5 which could support that the properties of the first-order
proposal also carries over the the second-order proposal.

Note that, the MH algorithm with the second-order pro-
posal depends on the likelihood, gradient and negative
Hessian, which for the general SSM (1) are intractable.
Therefore, we now continue with discussing SMC methods
which can be used to solve this problem.

3. ESTIMATING SECOND-ORDER PROPOSALS

SMC is a family of algorithms used to sample from a
sequence of probability distributions. A typical application
of SMC methods is to sample from the filtering and
smoothing distribution in SSMs. In this setting, we refer
to SMC methods as particle filters and particle smoothers,
respectively. Here, we limit ourselves to the auxiliary
particle filter (APF) [Pitt and Shephard, 1999] and the
fixed-lag (FL) particle smoother [Kitagawa and Sato,
2001]. For more information regarding SMC, see e.g.
Doucet and Johansen [2011] and Del Moral et al. [2006].
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3.1 Auxiliary particle filter

We use the APF to compute an estimate of the likelihood
and the latent states of the SSM (1). An APF targeting the
smoothing distribution pθ(x1:t|y1:t) generates a particle

system using N particles {x(i)1:t, w
(i)
t }Ni=1. This can be used

to estimate the smoothing distribution,

p̂θ(dx1:t|y1:t) ,
N∑
i=1

w
(i)
t∑N

k=1 w
(k)
t

δ
x
(i)
1:t

(dx1:t), (6)

where w
(i)
t and x

(i)
1:t denote the unnormalised weight and

the state trajectory of particle i from time 1 to t, respec-
tively. Here, δz(dx1:t) denotes the Dirac measure in the
point z. The particle system is generated sequentially by
the APF in two steps: (i) the sampling/propagation step,
and (ii) the weighting step.

In the first step, the particle system from the previous
time step t − 1 is resampled and propagated to generate
an unweighted particle system at time t. This can be seen
as sampling from a proposal kernel,

{a(i)t , x
(i)
t } ∼

wt−1∑N
k=1 w

(k)
t−1

Rθ(xt|xatt−1, yt), (7)

where we append the sampled particle to the trajectory

by x
(i)
1:t = {xa

(i)
t

1:t−1, x
(i)
t }. Here, a

(i)
t denotes the ancestor

index, i.e. the index of the particle at time t − 1, from

which x
(i)
t originates. Furthermore, Rθ(xt|xatt−1, yt) denotes

some propagation kernel from which we can sample a new
particle at time t given the ancestor particle at time t− 1.

In the second step, the particle weights are computed as

w
(i)
t = Wθ(x

(i)
t , x

a
(i)
t
t−1) ,

gθ(yt|x(i)t )fθ(x
(i)
t |x

a
(i)
t
t−1)

Rθ

(
x
(i)
t |x

a
(i)
t
t−1, yt

) . (8)

Hence, the particle system at time t can be estimated
recursively using the two steps in the APF.

3.2 Estimation of the likelihood

The likelihood for the general SSM (1) can be estimated
using the particle systems obtained from the APF. This is
done by first writing the one-step predictive density as

pθ(yt|y1:t−1) =

∫
gθ(yt|xt)fθ(xt|xt−1)pθ(xt−1|y1:t−1) dxt−1:t

=

∫
Wθ(xt, xt−1)Rθ(xt|xt−1, yt)pθ(xt−1|y1:t−1) dxt−1:t,

where we have multiplied and divided with the prop-
agation kernel Rθ(·). To approximate the integral, we
note that the (unweighted) particle pairs {xatt−1, xt} are
approximately drawn from Rθ(xt|xt−1, yt)pθ(xt−1|y1:t−1).
Consequently, we obtain the Monte Carlo approximation

pθ(yt|y1:t−1) ≈ 1

N

N∑
i=1

Wθ(x
(i)
t , x

a
(i)
t
t−1) =

1

N

N∑
i=1

w
(i)
t .

By inserting this approximation into (3) we obtain the
particle estimate of the likelihood,

pθ(y1:T ) =

T∏
t=1

(
1

N

N∑
i=1

w
(i)
t

)
. (9)

This likelihood estimator has been studied extensively
in the SMC literature. The estimator is consistent and
unbiased, see e.g. Pitt et al. [2012] and Proposition 7.4.1
in Del Moral [2004]. Remember, that the unbiasedness is
an essential property for the exact approximation of the
MH algorithm and therefore also for our algorithm.

3.3 Estimation of the log-likelihood gradient

To estimate the gradient of the log-likelihood ST (θ) using
SMC methods, we employ Fisher’s identity [Fisher, 1925,
Cappé et al., 2005, Ninness et al., 2010],

∇ log pθ(y1:T ) = Eθ
[
∇ log pθ(x1:T , y1:T )

∣∣∣y1:T ] . (10)

For the general SSM (1), we have

pθ(x1:T , y1:T ) = µ(x0)

T∏
t=1

fθ(xt|xt−1)gθ(yt|xt), (11)

which inserted into (10) results in

∇ log pθ(y1:T ) =

T∑
t=1

∫
ξθ(xt−1:t)pθ(xt−1:t|y1:T ) dxt:t−1,

ξθ(xt−1:t) = ∇ log fθ(xt|xt−1) +∇ log gθ(yt|xt).
Hence, ∇ log pθ(y1:T ) depends on the intractable two-step
pθ(xt−1:t|y1:T ) smoothing distribution.

In Poyiadjis et al. [2011], this quantity is computed using
the APF directly or by using a forward smoother (FS)
[Del Moral et al., 2010]. The drawback of the first approach
is poor accuracy due to particle degeneracy. The second
approach is computationally costly as the FS algorithm
has a computational complexity of O(N2T ) compared to
O(NT ) for the APF.

In this paper, we instead make use of the FL-smoother
[Kitagawa and Sato, 2001, Olsson et al., 2008] which has
the same computational cost as the APF, but better accu-
racy. This follows from that the FL-smoother experience
less problems with particle degeneracy compared to the
APF. The FL-smoother relies on the assumption that the
SSM (1) is mixing fast. That is, we can use the approxima-
tion pθ(xt|y1:T ) ≈ pθ(xt|y1:κt), with κt = min{t + ∆, T}
and where ∆ denotes some lag. Hence, the smoothing dis-
tribution of xt is not strongly influenced by measurements
obtained after some time κt.

By marginalisation of (6) over x1:t−2 and xt+1:κt , we
obtain the empirical two-step smoothing distribution as

p̂θ(dxt−1:t|y1:κt) ,
N∑
i=1

w(i)
κt δx̃(i)

κt,t−1:t

( dxt−1:t), (12)

where we use the notation x̃
(i)
κt,t = x

a
(i)
κt,t

t . Here, we let

a
(i)
κt,t denote the ancestor index of particle x

(i)
κt at time t.

Inserting (11) and (12) into (10) gives the estimate of the
gradient

ŜT (θ) =

T∑
t=1

N∑
i=1

w(i)
κt ξθ(x̃

(i)
κt,t, x̃

(i)
κt,t−1). (13)

In Olsson et al. [2008], the statistical properties of the FL-
smoother are analysed. It is shown that the lag ∆? ∝ log T
minimises the mean squared error of the state estimates.
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It is also shown that the resulting estimates are biased and
this could be a significant problem in many applications.
However in our setting, the bias is later compensated for
by the accept/reject-procedure in the MH algorithm and
the invariance property is retained.

3.4 Estimation of the negative log-likelihood Hessian

The negative Hessian IT (θ) of the log-likelihood can be
estimated using SMC methods in combination with Louis’
identity [Louis, 1982, Cappé et al., 2005],

−∇2 log pθ(y1:T ) = [∇ log pθ(y1:T )]2

− Eθ
[
[∇ log pθ(x1:T , y1:T )]2|y1:T

]
− Eθ

[
∇2 log pθ(x1:T , y1:T )|y1:T

]
, (14)

where we introduce v2 = vv> for some vector v. Here, we
make use of the APF based smoother proposed in Poyiadjis
et al. [2011] for estimating IT (θ). Here, the FL-smoother
cannot be readily used for this problem as it cannot be
used to estimate the required distributions. Instead, we
can compute the negative Hessian using a recursive scheme
from t = 1 to T of the form

β̂θ(x
(i)
t ) = β̂θ(x̃

(i)
t,t−1) + ξθ(x

(i)
t , x̃

(i)
t,t−1), (15a)

η̂θ(x
(i)
t ) = η̂θ(x̃

(i)
t,t−1) + ζθ(x

(i)
t , x̃

(i)
t,t−1), (15b)

where we introduce the quantity

ζθ(xt−1:t) = ∇2 [log fθ(xt|xt−1) + log gθ(yt|xt)] .
The estimate of the negative Hessian is given by

ÎT (θ) =
[
ŜT (θ)

]2
−

N∑
i=1

w
(i)
t

[
β̂θ(x

(i)
t )2 + η̂θ(x

(i)
t )
]
. (16)

3.5 SMC algorithm

In Algorithm 1, we present the complete algorithm that
combines the APF and the FL-smoother to compute es-
timates of the gradient and negative Hessian. The pri-
mary outputs from this algorithm are the estimates of the
likelihood, the gradient and the negative Hessian given a
parameter θ.

In our experience, the off-diagonal elements in the infor-
mation matrix are often difficult to estimate with good
accuracy. Therefore, we only use the diagonal elements
of the information matrix in the remainder of this work.
This retains the property that the second-order proposal
is scale-invariant, but without taking the curvature into
account. Also, this does not allow for any covariation in
the parameters proposed in the algorithm. That is, the
parameters are assumed to be independent, which could
lead to poor exploration of non-isotropic posteriors.

4. PARTICLE METROPOLIS-HASTINGS

From the previous development, we know how to estimate
the various quantities needed for using the MH algorithm
with the second-order proposal. Recall, that the exact
approximation of the MH algorithm guarantees that the
stationary distribution of the Markov chain remains the
parameter posterior, see Andrieu et al. [2010]. This result
only requires that the log-likelihood estimate is unbiased.

In fact, we are allowed to use the entire particle system
in the proposal, see Dahlin et al. [2013]. This opens

Algorithm 1 Sequential Monte Carlo for estimation of the
gradient and Hessian of the log-likelihood
Inputs: SSM (1), y1:T (observations), Rθ(·) (particle proposal), N
(no. particles) and ∆ (lag).

Outputs: p̂θ(y1:T ), ŜT (θ) and ÎT (θ) (est. of likelihood, gradient and
negative Hessian).

1: Initialise the particles x
(i)
0 for i = 1, . . . , N .

2: for t = 1 to T do
3: Sample (7) for i = 1, . . . , N .
4: Compute (8) for i = 1, . . . , N .
5: end for
6: Compute (9), (13) and (16) to obtain p̂θ(y1:T ), ŜT (θ) and ÎT (θ).

Algorithm 2 Second-order Particle Metropolis-Hastings for
Bayesian parameter inference in nonlinear SSMs
Inputs: Algorithm 1, M (no. PMH iterations), θ0 (initial parameter),
γ (proposal step length).
Output: θ = {θ1, . . . , θM} (samples from the parameter posterior).

1: Run Algorithm 1 to obtain p̂θ0 (y1:T ), ŜT (θ0) and ÎT (θ0).
2: for k = 1 to M do
3: Sample θ′ ∼ q(θ′|θk−1, ŜT (θk−1), ÎT (θk−1)) using (5).

4: Run Algorithm 1 to obtain p̂θ′ (y1:T ), ŜT (θ′) and ÎT (θ′).
5: Sample uk ∼ U [0, 1].
6: Compute (17) to obtain α(θ′, θk−1).
7: if uk < α(θ′, θk−1) then
8: {Accept the proposed parameter}
9: θk ← θ′ and p̂θk (y1:T )← p̂θ′ (y1:T ).

10: ŜT (θk)← ŜT (θ′) and ÎT (θk)← ÎT (θ′).
11: else
12: {Reject the proposed parameter}
13: θk ← θk−1 and p̂θk (y1:T )← p̂θk−1

(y1:T ).

14: ŜT (θk)← ŜT (θk−1) and ÎT (θk)← ÎT (θk−1).
15: end if
16: end for

up for using the second-order proposal, since we have
demonstrated that the gradient and Hessian information
can be computed using the particle system. Note, that
these estimates are biased, but this does not affect the
invariance property as this is compensated for by the
accept/reject mechanism.

Hence, we can use the MH algorithm together with Al-
gorithm 1 to form the final method in Algorithm 2. The
acceptance probability follows from (4) as

α(θ′′, θ′) = 1 ∧ p̂θ
′′(y1:T )

p̂θ′(y1:T )

p(θ′′)

p(θ′)

q
(
θ′|θ′′, ŜT (θ′′), ÎT (θ′′)

)
q
(
θ′′|θ′, ŜT (θ′), ÎT (θ′)

) .
(17)

This is the full PMH procedure that uses the second-order
proposal. The complexity of the algorithm is linear in the
number of particles N and in the number of iterations M .
The user-choices include the particle proposal kernel Rθ(·),
the lag ∆, the number of particles N and the number of
iterations M . Also, the step-sizes γ needs to be tuned for
each model, this is further discussed in the subsequent
section.

5. NUMERICAL ILLUSTRATIONS

We continue by illustrating the method proposed in Al-
gorithm 2 for parameter estimation in nonlinear SSMs.
First, we consider a linear Gaussian state space (LGSS)
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Fig. 1. The trace plots (left) of the first 15 iterations and contour
plots of the parameter posterior estimates (right) from the three
proposals used in Algorithm 2 on the LGSS model in (18). The
dotted lines corresponds to the true parameters from which the
data were generated.

model and then a popular stochastic volatility model with
a nonlinear observation process.

We compare the three different variations of the proposal
in (5), i.e. zeroth-order, first-order and second-order. The
step length γ is selected individually for each method
such that the acceptance rate is about 40%. Also, we use
the same step length for all the parameters to simplify
calibration, i.e. γ is selected as a scalar.

5.1 Linear Gaussian state space model

Consider the LGSS model,

xt+1|xt ∼ N
(
xt+1; θ1xt, θ

2
2

)
, (18a)

yt|xt ∼ N
(
yt;xt, 0.1

2
)
, (18b)

with parameters θ? = {θ?1 , θ?2} = {0.5, 1.0}. We use
T = 250 time steps, N = 5 000 particles, M = 10 000
(discarding the first 5 000 iterations as burn-in) and the
bootstrap APF with Rθ(·) = fθ(·) and systematic resam-
pling. The fixed-lag is chosen as ∆ = 12. Here, we use im-
proper priors for the parameters, i.e. p(θ1) = U [−1, 1] and
p(θ2) = U [0,∞]. The step lengths are tuned as γ(0) = 0.04,
γ(1) = 0.065, γ(2) = 1.50, for the zeroth-order, first-order
and second-order proposals respectively.

In the left part of Figure 1, we present the trace plots
of the burn-in phase of the algorithms. We clearly see the
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Fig. 2. The trace plots (left) of the first 90 iterations and contour
plots of the parameter posterior estimates (right) from the three
proposals used in Algorithm 2 on the stochastic volatility model
in (19). The dotted lines corresponds to the true parameters
from which the data were generated.

advantage of using the second-order proposal, as it adjusts
its step size quickly to reach the neighbourhood of the true
parameters. The contour plots of the estimated parameter
posteriors are shown in the right part of Figure 1, where
we see that all proposals give similar parameter posterior
estimates.

5.2 Nonlinear stochastic volatility model

Consider the Hull-White stochastic volatility model [Hull
and White, 1987],

xt+1|xt ∼ N
(
xt+1; θ1xt, θ

2
2

)
, (19a)

yt|xt ∼ N
(
yt; 0, 0.652 exp(xt)

)
, (19b)

with parameters θ? = {θ?1 , θ?2} = {0.98, 0.16}. We use
the same settings and priors as for the LGSS example.
The step lengths are tuned as γ(0) = 0.05, γ(1) = 0.045,
γ(2) = 1.70, respectively.

In Figure 2, we present the burn-in trace plots and the
parameter posterior distributions for the three proposals.
The behaviours of the proposals are similar to the LGSS
example and using the second-order proposal again short-
ens the burn-in, but keeps a similar parameter posterior
estimate.
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6. CONCLUSIONS

We have proposed a novel algorithm based on PMH
and particle smoothing for Bayesian parameter inference
in nonlinear SSMs. The algorithm uses first-order and
second-order information in the proposal to improve the
performance of the vanilla PMH algorithm. The complex-
ity of the proposed algorithm is linear in the number of
particles, which makes it a practical alternative to other
smoothing-based inference algorithms.

We have seen examples illustrating that using the second-
order proposals shortens the burn-in phase. Also, the
second-order proposal is simpler to tune as it is scale-
invariant and automatically rescales the step length in
each direction. In the MH algorithm, it is known that
adding first-order information into the proposal improves
the performance in high dimensional problems. Hopefully,
similar results can be found for the second-order proposal
in the PMH framework.

Future work includes theoretical analysis of the conver-
gence rate and scaling properties of the algorithm. Also,
it would be interesting to explore the use of Hamiltonian
MCMC [Neal, 2010, Girolami and Calderhead, 2011] ideas
in this setting. This would potentially improve the mixing
of the Markov chain and could open up for the possibility
of solving problems with hundreds of parameters .

At http://users.isy.liu.se/en/rt/johda87/, we pro-
vide code and that can be used to reproduce some of the
numerical illustrations in this paper.
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