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Abstract: In this study, the implementation of the sliding mode control method to fin loading systems 

which are utilized in performance tests of control actuation systems converting the flight commands into 

physical motion in autonomous aerial systems is investigated. For this purpose, the mathematical model 

of a hydraulically-actuated fin loading system designed to accomplish the mentioned objective is built 

and then the sliding mode control schemes involving both constant and varying sliding surfaces are 

constructed. Having completed the computer simulations upon these models under specified conditions, 
real-time performance tests are conducted using the experimental setup developed. As a result of the 

simulations and experiments, it is observed that the varying-surface sliding mode control approach 

exceeds other control methods examined in performance. 
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varying sliding surface. 



1. INTRODUCTION 

Fin loading systems (FLSs) which are developed to generate 

aerodynamic loads acting on the control actuation systems 

(CASs) of autonomous aerial systems such as guided 

munitions and unmanned aerial vehicles throughout their 

flight to the CASs on the ground are designed in either 
electromechanical or hydraulic manner depending on the 

amplitude and duration characteristics of the loads specified 

(Özakalın, 2010). Under the circumstances in which the 

amplitude of the loads are high and the duration of the 

operation is relatively long, hydraulically-actuated FLSs are 

preferred by considering their high bandwidth and low 

heating properties in addition to their high loading capacity.  

On the other hand, since the fin angle commands which are 

realized by the CASs upon which the external loads are 

applied behave as disturbances on the FLSs, it is required that 

robust control methods be utilized so as to minimize the 

diverting effects of these disturbances whose amplitude and 
direction vary randomly in time on the FLSs (Nam et al., 

2000). In this extent, norm-based robust control schemes 

such as H2 and H are proposed as well as the classical 
control algorithms based on PID (proportional plus integral 

plus derivative) and PI (proportional plus integral) control 

actions (Özakalın et al., 2010). 

In this study, the sliding mode control method which 

constitutes one of the robust control approaches is 

implemented on a hydraulically-actuated FLS considered. For 

this purpose, a classical control system based on the PID 

action is build in order to generate the hinge moment effect 

resulted from the aerodynamic loads on the fin connecting 

rod at the first attempt and then the sliding mode control 

algorithms are designed with constant and varying sliding 

surfaces (Bandyopadhyay et al., 2009, Park, 2000, and Piltan 
et al., 2011). The mentioned variation on the sliding surfaces 

is accomplished in two different ways: a linear form in time 

and fuzzy logic-based (Tokat et al., 2009 and Gökbilen, 

2006). Here, in order to remove or at least minimize the 

chattering effect originating from the nonlinear characteristic 

of the signum function used in the command signal of the 

sliding mode control, the saturation function and fuzzy 

transition function are considered. When these functions are 

designated, it is accounted to relinquish from the stability as 

minimum as possible in addition to diminishing the 

chattering effect. Having completed the computer simulations 

for all the control system algorithms established, the real-time 
experiments are conducted using the test setup developed. 

Thus, it is seen that the sliding mode control system with a 

varying sliding surface yields the most satisfactory results. 

2. DYNAMIC MODELING OF THE FIN LOADING 

SYSTEM 

The schematical representation of the considered FLS 

combined of four identical hydraulic actuation units is shown 

in Fig. 1 where p1 and p2 denote the pressure values of the 

hydraulic fluid in the inlet and outlet ports of the hydraulic 

cylinder, and pS and pR represent the pressure values of the 
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hydraulic fluid in the inlet of the fluid control valve and 

return line to the hydraulic fluid tank, respectively.  

 
Fig. 1. View of the hydraulically-actuated fin loading system. 

The dynamics of the servovalve as the flow control valve can 

be expressed by the forthcoming first-order transfer function:
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where x, I, Kv, and Tv denote the displacement of the 

servovalve control spool, control current to the servovalve, 
gain, and time constant of the valve, respectively. In 

modeling, the servovalve dynamics is ignored for the sake of 

simplifying the design process and thus it is assumed that the 

transfer function given in equation (1) is approximated by Kv 

The equation between the displacement of the valve control 

spool and load pressure can be expressed as

LpxL pcxcQ    (2)  

where QL, pL, cx, and cp are the volumetric flow rate, load 

pressure, valve gain and valve pressure coefficient.  

In equation (2), pL is defined as the difference between the 
pressures of the valve chambers, i.e. p1 and p2 as follows: 

21 pppL     (3) 

The flow rate from the valve to the hydraulic cylinder is 

   LlLpL pcp/VyAQ    2  (4) 

where Ap, V, , cl, y , Lp , and Lp  correspond to the 

cross-sectional area of the piston in the hydraulic cylinder 

perpendicular to the flow, volume of each of the two 

chambers divided by the piston inside the hydraulic cylinder, 

Bulk modulus, fluid leakage coefficient, linear velocity of the 

piston of the hydraulic cylinder along the motion axis, load 

pressure, and time derivative of the load pressure. 

Matching equations (2) and (4) yields the next equality:  

     xcyApccp/V xpLplL   2  (5) 

The piston dynamic can be expressed as follows: 

Lpppp pAFybym      (6) 

where mp, bp, Fp and y  stand for the piston mass, viscous 

friction coefficient between the piston and cylinder, force 

applied by piston to the fin and acceleration of the piston 

respectively. 

Using equation (6), pL and its first time derivative are 
obtained in the following manner: 

  ppppL A/Fybymp     (7) 

   ppppL A/Fybymp     (8) 

As JTp represents the mass moment of inertia of the half 

portion of the torquemeter put between the fin connecting rod 

and transmission rod to measure the amount of the torque 

applied on the fin connecting rod around the rotation axis of 

the fin connecting rod, Fp and its first time derivative can be 

determined as follows: 

 
Tpp JF   (9) 

 
Tpp JF   (10) 

The relationship between the angular displacement of the fin 
and linear displacement of the piston can be established from 

Fig. 1 along with its successive time derivatives using the 

small angle assumption in the following manner: 

 pLy   (11) 

 
pLy   (12) 

 
pLy   (13) 

 
pLy   (14) 

Substituting equations (9) through (14) into equations (7) and 
(8) give the forthcoming expressions: 

   pppppTpL A/LbLmJp     (15) 

   pppppTpL A/LbLmJp     (16) 

Inserting equations (12), (15), and (16) into equation (5) and 

arranging it, the differential equation describing the dynamic 

behaviour of the hydraulic FLS can be derived in the 

following manner (Özakalın, 2010 and Özakalın et al., 2010):

xcddd x   
123  (17) 

In the equation above, as    22
1 ppppppl LAA/Lbccd 

        pppTpplppp A/LmJccA/LbVd 22
2 2   , and 

   pppTp A/LmJVd 22
3   

Also in those equations, the small displacements of the 

system from the equilibrium conditions are symbolized by .   

Applying the Laplace transformation to equation (17) after 
simplifying it, the transfer function between the linear 

displacement of the valve control spool (x) and angular 

displacement of the transmission rod () is obtained as in 
equation (18): 
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Since the control variable of the considered system and 
output signal of the controller are the torque quantity on the 

fin connecting rod (T) and control voltage of the valve (V), 
respectively, regarding the relationship in equation (1) as 

well, the transfer function between V and T is found by 
multiplying the transfer function in equation (18) with the 

torquemeter constant (Ks) as follows: 

 
  sdsdsd

cKK

sV

sT xsv

1
2

2
3

3 





 (19) 

Transfer function in equation (19) can be modified with the 

definition of the electrical charge quantity (Q) as 

 
 

12
2

3 dsdsd

cKK

s/sV

sT xsv


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


    (20) 

  )s(Qs/sV      (21) 

Eventually, putting equation (21) into equation (20) produces 

the transfer function between Q and T as given below: 
 
 

12
2

3 dsdsd

cKK

sQ

sT xsv







       (22) 

3. CONTROL SYSTEM DESIGN FOR THE FIN 

LOADING SYSTEM 

In the scope of this study, three different control systems are 

designed in order for the FLS to produce the specified hinge 

moment quantities on the fin connecting rod at a desired 

accuracy level: 

i. Classical control system based on the PID action, 

ii. Sliding mode control system with a constant sliding 

surface, 

iii. Sliding mode control system with a varying sliding 
surface. 

3.1 Classical Control System based on the PID Action 

When the relevant previous studies are examined, it is 
observed that the third time derivative of the torque variable 

which is multiplied by the Bulk modulus as well does not 

affect the system response significantly. Thus, ignoring the 

servovalve dynamics for simplifying the controller design 

process and reducing the order of the system to two by 

disregarding the effect of the Bulk modulus, i.e. by skipping 

the term multiplied with the third order time derivative of the 

torque, for simplifying the controller design, the transfer 

function of the classical torque control system for which the 

hinge moment is selected as the control variable is 

determined according to the PID action by regarding the 

equation of motion in equation (17) as Td indicates the 
desired, i.e. reference, value of the hinge moment in the 
following fashion (Özakalın et al., 2010): 

 
 

 
 

 
 sD
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
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As Kp, Ki, and Kd denote the proportional, integral, and 
derivative gains of the controller, respectively, the following 

definitions are introduced in equation (23):  

 
  

sdsd

sKs/KKcKK
sG

dipxsv

o

1
2

2 


  (24) 

    xsvdip cKKsKKsKsN 2  (25) 

   
  xisvxpsv

xdsv

cKKKscKKK

scKKKdsdsD



 2
1

3
2   (26) 

The gains of the third order control system whose 

characteristic polynomial appears as in equation (26) can be 

designated by the pole placement in the complex plane so as 

to satisfy the predefined performance specifications. Hence, 
these gains are calculated by equating polynomial D(s) to the 

characteristic polynomial of the ideal third order control 

system [  sD3 ] as given below as a function of the desired 

bandwidth (c) and damping ratio (c) parameters of the 
control system (Özakalın et al., 2010):  
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


 (27) 

Equating equations (26) and (27) to each other, the controller 
gains come into the picture in the following manner: 

    xsvccp cKK/dK 2
212    (28) 

   xsvci cKK/dK 3
2  (29) 

    xsvccd cKK/ddK 1212    (30) 

3.2 Sliding Mode Control System with a Constant Sliding 
Surface 

Choosing variables T and T as the first and second state 
variables for the plant under consideration, that is, defining  

Tx 1  and Txx   12  and assigning the system input to 

be u=I, the plant dynamics can be written in the state-space 

form with the use of equation (17) in the following manner:  

21 xx   (31) 

  ucKKxd/dx xsv 2212
  (32) 

Rearranging equations (31) and (32) by introducing the 

system output as y=T, the error dynamics of the system can 
be formed as regarding the error parameter to be 

TTe d    as follows: 

u
d

cKK
x

d

d
xxxxxe xsv

ddd
2

2
2

1
12111    (33) 

The switching function for the sliding function (s) is 

designated as given below with  denotes the slope of “s”: 

ees                                                    (34) 

The Lyapunov function selected in the following manner can 
be used to guarantee the stability of the sliding mode control 

system to be designed:  

    221 s/sV   (35) 

In order for the sliding mode control system to be stable, the 

conditions V(s)>0 and   0sV   should be satisfied for s>0 
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as well as V(0)=0. While the first and third conditions are 

directly satisfied by equation (35), the second condition 

leads the control law which will be valid for the sliding 

mode control system to be determined as follows: 

   







 212

2

1
1

2 xxx
d

d
xssgn

cKK

d
u dd

xsv

   (36) 

where the term sgn() shows the signum function with  

stands for the positive control gain and x1d=Td. 

Also, as ts and s0 indicate the reaching time to the sliding 

surface and value of the sliding function defined in equation 

(19) at the beginning of the control process, the parameters λ 
and µ can be calculated from the next formulas: 

c   (37) 

st/s0  (38) 

3.3 Sliding Mode Control System with a Varying Sliding 

Surface 

In the sliding mode control method, the control law yields  a 

control signal whose amplitude and direction alter 

continuously to maintain the stability of the system 

throughout a planned operation. This causes the phenomenon 

called chattering. In order to remove this unfavourable 

situation, the use of the sliding mode control with a varying 

sliding surface is one of the proposed approaches (Tokat et 

al., 2009). In this manner, the sliding surface varies in 

accordance with the system response while trying to keep the 

stability of the system and thus the chattering is diminished. 

In the sliding mode control system with the varying sliding 

surface, λ and β are defined at the initiation of the process 

with the forthcoming linear functions as t indicates the time 

variable: 

  01   tt  (39) 

  01   tt  (40) 

Deciding on the coefficients 0, 1, 0, and 1 in equations 

(39) and (40), as per the definitions of the regions on the error 

(e) vs. error rate ( e ) plane given in Fig. 2, the situations 

listed below are taken into account (Bartoszewicz, 2007):  

i. Sliding surface has only rotation in regions II and IV 

which are called “stable regions” but no translation. 

Therefore,   0tβ  . 

ii. Sliding surface has only translation in regions I and III 

which are called “unstable regions” but no rotation. This 

condition leads   0λtλ  (constant). 

 

Fig. 2. Regions on the error-error rate plane 

Considering the conditions given above, the control law is 

obtained for the sliding mode control system with the varying 

sliding surface as follows: 

    

xsv

ddd

cKK

xxxssgndddx
u 111112212

 




 

 (41) 

In the second control algorithm with a varying sliding 

surface, parameters λ and β are specified by means of the 

fuzzy logic-based triangular membership functions unlike the 

preceding linear approach. In this second case, the control 

law formulated in equation (41) is used, too (Özakalın, 2010). 

4. COMPUTER SIMULATIONS AND TESTS 

In order for the control systems whose mathematical models 

are developed as explained above to be realized, the test setup 

consisting of a hydraulic actuator used as the actuator, speed 

reducer, and torquemeter is given in Fig. 3.  

 

Fig. 3. Test setup for the hydraulically-actuated fin loading 

system (Özakalın, 2010). 

 Table 1. Numerical values used in the simulations 

Parameter Numerical Value 

JTp 2.04x10-3 kgm2  

mp 5 kg 

bp 400 Ns/m 

V 0.747x10-4 m3 

Ap 0.641x10-3 m2 

Lp 0.1 m 

 7x108 N/m2 

cx 0.667 m2/s 

cp 1.587x10-11 m3/Pa 

cl 8.11x10-13 m3/Pas 

Kv 510-5 m/V 

Tv 0.004 s 

Having performed the system identification works using the 

test setup shown in Fig. 2, the natural frequency and damping 

ratio values of the FLS whose dynamic behavior is described 

as in equation (22) are calculated to be 7.071 Hz and 0.349, 

respectively. The numerical values of the system parameters 

are determined as submitted in Table 1 so as to be used in 

computer simulations. Furthermore, the bandwidth (c) and 

damping ratio (c) parameters of the control system are 

considered to be 62.83 rad/s (=10 Hz) and 0.7, respectively. 

ΔT  
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In the real-time computer simulations and tests, the electrical 

current capacity of the driver of the CAS, sampling frequency 

of the control system, and duration of the computer 

simulations are chosen as 8 A, 2000 Hz, and 1 s, respectively 

(Özakalın, 2010). Here, since the expected settling time value 

as per the designated bandwidth quantity becomes smaller 

than 200 ms, the simulation duration is selected to be 1 s in 

order to increase the resolution of the results.  

In the end of the computer simulations carried out in the 

MATLAB SIMULINK environment and the tests 

conducted on the setup seen in Fig. 3., the settling time, 

average input (control) voltage of the servovalve, maximum 

overshoot, and steady state error values are presented in 

Table 2 and Table 3 versus the step input with the amplitude 

of 10 as the abbreviation SMC stand for the sliding mode 

control regarding all the PID-type control, sliding mode 

control with a constant sliding surface, sliding mode control 

with a linearly-varying sliding surface, and sliding mode 

control with a fuzzy logic-based varying sliding surface 

approaches such that they include all kinds of switching 

functions, namely the signum, hyperbolic, and fuzzy logic-

based switching functions. The responses of the sample 

control systems are acquired as given in Fig. 4, Fig. 5, Fig. 8, 

and Fig. 10, respectively where the signum function is taken 

as the switching function. The input voltage of the servovalve 

and the changes of the sliding surfaces are also submitted in 

Fig. 6, Fig. 7, and Fig. 9. The mentioned plots include both 

the simulations and tests as letters S and T denote the 

simulation and the test, respectively. Also, A and D indicate 

the actual and desired sliding surfaces, respectively. 

 

Table 2. Results of the computer simulations 
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Table 3. Results of the tests 
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Fig. 4. Response of the PID-type control system. 

 
Fig. 5. Response of the sliding mode control system with a 

constant sliding surface. 

 
Fig. 6. Output voltage of the servovalve for SMC system with 

a constant sliding surface, (a) simulation and (b) test. 
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Fig. 7. Change of the sliding surface for the SMC system 

with the constant sliding surface,  (a) simulation and (b) test. 

 
Fig. 8. Response of the sliding mode control system with the 

linearly-varying sliding surface. 

 
Fig. 9. Change of the sliding surface for the SMC system 

with the linearly-varying sliding surface, (a) simulation and 

(b) test. 

 
Fig. 10. Response of the sliding mode control system with the 

fuzzy logic-based sliding surface. 

5. DISCUSSION AND CONCLUSION 

When the sliding mode control systems are evaluated in 

overall, it is resulted that the settling time, average input 

voltage of the valve, maximum overshoot, and steady state 

error quantities attained with the use of the hyperbolic 

switching function are smaller compared to the signum- and 

fuzzy-logic-type switching functions and the worst steady 

state error values are encountered with the fuzzy-based-

varying sliding surface. In general, the results of sliding mode 

control variants in this study are superior to the PID-type 

control except the steady state error.  

In fact, the test results differ from the simulation data 

especially for the cases in which the sliding mode control 

with the fuzzy-based-varying sliding surface and the 

experimental measurements of the input voltage of the 

servovalve get lower than the simulation outputs. This is 

because the order of the system model used in the simulations 

is reduced two while the exact order order of the system is 

three. Also, the differences between the exact and theoretical 

values of the parameters contributes to these slight mismatch. 

As a result, it can be concluded that the sliding mode control 

system with the linearly-varying sliding surface can be more 

implementable than its alternative with the fuzzy-based-

varying-sliding surface in the physical world. 
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