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Abstract: Asynchronous events (AE) occur during mechanical ventilation (MV) therapy when the 

patient’s breathing is not synchronised with the ventilator support. Frequent AE indicates sub-optimal 

ventilation therapy and may lead to further complications. Asynchrony Index (AI) gives the percentage of 

AEs as a percentage of total breaths, but is only assessed via manual scrutiny. Thus, there is a need to 

automate AE detection in real-time. A model-based approach using time-varying elastance to detect AEs is 

developed and retrospectively assessed in MV patients. Data from 14 mechanically ventilated respiratory 

failure patients, enrolled in an observational study in Christchurch Hospital, New Zealand were used to 

investigate the performance of the method. Patient data is sorted according to the ventilation mode used, 

and AI is calculated for each episode separately. The model-based approach accurately identifies AEs, and 

shown not to give false positive readings when compared to manual detection (gold standard). None of the 

ventilation modes give significantly different AI levels (P > 0.05). AI decreases when ventilation mode 

changes and increases overall time indicate worsen patient-ventilator interaction. The model-based method 

is able to successfully and accurately calculate AI. Real time use of this metric will enable patients with 

sub-optimal ventilator settings to be automatically identified for the first time and the settings adjusted as 

necessary, improving the efficacy of mechanical ventilation therapy, and providing a quantified metric to 

help guide MV care. 



1. INTRODUCTION 

A ventilation asynchronous event (AE) occurs when the 

patient’s breathing effort is not synchronised with mechanical 

ventilator’s breathing support. The frequent occurrence of 

AEs results in poor patient-ventilator interaction, leading to 

increase in work of breathing and other adverse effects (Chao 

et al., 1997, Sassoon and Foster, 2001, Dasta et al., 2005, 

Thille et al., 2006, Epstein, 2011). Asynchrony events can 

occur anytime during partially or fully controlled ventilation. 

However, it is more frequent during non-invasive ventilation 

or partially assisted modes where the patient is breathing 

spontaneously and the ventilator support is triggered by 

patient respiratory effort (Tobin et al., 2001, Vignaux et al., 

2009, Epstein, 2011).  

Currently, the standard method of evaluating patient-

ventilator interaction is through assessing the asynchrony 

index (AI). AI is a measure of the asynchronous events as a 

percentage of total number of breathing cycles (Chao et al., 

1997, Epstein, 2011, Colombo et al., 2011). However, AI is 

calculated retrospectively by detecting asynchrony events 

using manual inspection of the patient’s airway and/or 

oesophageal pressure and flow waveforms (Fabry et al., 

1995, Chao et al., 1997, Thille et al., 2006, Epstein, 2011, 

Colombo et al., 2011). This method is arduous and is not 

clinically practical to assess patient-ventilator interaction in 

real-time. Thus, the ability to identify asynchrony events in 

real-time could be a useful clinical marker of patient-

ventilator interaction. An increase in the total number of 

asynchrony events within a time frame could also indicate the 

need to change ventilation mode, or adjust sedation (Bennett 

and Hurford, 2011). 

One method that was proposed to automate asynchronous 

event detection is through spectral analysis of the airway flow 

profile (Gutierrez et al., 2011). However, this method focuses 

only at the airway flow profile and not the airway pressure 

changes, neglecting the matching of pressure and flow that 

defines AE (Colombo et al., 2011). Detecting asynchrony 

should include analysis of both pressure and flow.  

This research presents a model-based method to identify AEs 

using both airway pressure and flow in for MV patients. In 

particular, a time-varying respiratory elastance derived from 

a lung model describing the respiratory mechanics of a 

mechanically ventilated patient is used (Chiew et al., 2011). 

Quantifying breath-to-breath time-varying respiratory system 

elastance, has the ability to track AEs in real-time.  
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2. METHODOLOGY 

2.1  Study and Patients 

This observational study was carried out in the intensive care 

unit (ICU) of Christchurch Hospital, New Zealand. Patients 

requiring mechanical ventilation because of respiratory 

failure were eligible for the study. 14 patients were included 

for the study and had their airway pressure and flow profile 

recorded. 7 of the 14 patients included for the study had 

multiple episodes of data recorded.  The study and use of the 

data was approved by the New Zealand South Regional 

Ethics Committee. 

2.2  Ventilator and Settings 

Patients were ventilated using a Puritan Bennett 840 (PB840) 

(Covidien, Boulder, CO, USA) under different ventilation 

modes as determined by attending clinicians. The modes of 

ventilation and period of data recording were not specified as 

they were patient-specific. In this study cohort, three 

ventilation modes were used: 1) Bi-Level pressure ventilation 

(BL), 2) Synchronised intermittent mandatory ventilation 

(SIMV) and 3) Spontaneous breathing (SPONT).  

2.3  Model-based Asynchrony Detection 

Asynchrony detection was carried out using the time-varying 

respiratory elastance parameter from the model described by 

Chiew et al (Chiew et al., 2011). This model was extended 

from a first order model and is defined as:  

Paw(t) = Edrs(t) × V(t) + Rrs × Q(t) + P0 (1) 

Where Paw is the airway pressure, t is time, Edrs is time-

varying elastance, V is tidal volume, Rrs is conducting airway 

resistance, Q is flow and P0 is the offset pressure or PEEP.  

For each breathing cycle, the inspiratory time (ti) is 

normalised to its maximum time for the inspiratory cycle, 

allowing fair comparison between each breathing cycle. The 

area under the curve of Edrs (AUCEdrs) for every breathing 

cycle is then calculated. When the AUCEdrs over a breath 

cycle was ±50% of the median within a 5 minutes window 

for the given patient, an AE was declared. Model-based 

declared asynchrony events are compared to matching of the 

patients’ airway pressure and flow curve through manual 

inspection (Colombo et al., 2011). The asynchrony index (AI) 

for each observation episode is calculated (AI = 100% × total 

AE/total breathing cycle per episode). 

2.4  Statistical Analysis 

The results are reported as median and interquartile range 

(IQR), where appropriate. Non-parametric Kruskal-Wallis 

one way analysis of variance (K-W ANOVA) test was used 

to assess the difference of location (median) of the 

distribution of the asynchrony index for each ventilation 

mode. P-values < 0.05 are considered statistically significant. 

3. RESULTS 

Table 1 shows the data analysed for the 14 patients included 

for the study. Several patients (Patients 2, 4, 6, 7, 8, 10 and 

11) had data in multiple episodes. Every recorded episode is 

also separated according to the ventilation mode for analysis. 

Table 2 and Fig. 1 shows the summary of analysis.  

Table 1. Asynchronous event analysis for each patient 
Patient Episodes Ventilation  Mode Time [minute] Breathing Cycles No. of AE* AI*(%) PEEP (cmH2O) 

1 
1 BL 15 265 7 2.6 15 
 SPONT 122 2699 34 1.3 15 

2 
1 SIMV 63 1112 142 12.8 12.5-25 (up to 45 during RM*) 

2 BL 1340 28007 2106 7.7 12.5 

3 1 SPONT 1000 11899 21 0.2 20 

4 
1 BL 455 7346 635 8.6 10 

2 BL 547 7394 2730 36.9 8-10 

5 1 SIMV 1442 22928 36 0.2 10 

6 
1 SPONT 783 16113 413 2.6 5 

2 SPONT 596 15126 1124 7.4 5 

7 

1 SPONT 934 23000 225 1.0 12.5 
 BL 838 20635 102 0.5 12.5-18  

2 BL 1378 34112 2511 7.4 12 

8 

1 SIMV 38 560 74 13.2 10 (up to 22 during RM) 
 BL 416 7251 116 1.6 15 (up to 22 during RM) 

 SIMV 346 5999 29 0.5 15 

2 BL 267 5367 56 1.0 12.5 
3 BL 470 9347 330 3.5 12.5 

9 

1 SIMV 29 500 155 31.0 10 

 SPONT 59 1041 554 53.2 10 
 SIMV 1263 23839 4306 18.1 10-15 (up to 37 during RM) 

10 

1 SIMV 1001 23714 2459 10.4 25 

2 SPONT 202 4500 2305 51.2 15 

 BL 273 6255 377 6.0 18 

11 

1 SPONT 214 2470 8 0.3 10 

 BL 953 17503 1388 7.9 12.5-14 

2 SIMV 340 7255 989 13.6 14 

12 1 SIMV 3132 69880 8348 12.0 15 

13 
1 BL 180 3300 686 20.8 15 

 SPONT 858 12483 647 5.2 12.5-15 

14 1 BL 1085 25034 1248 5.0 10 - 17 

*AE - Asynchronous Events, AI - Asynchrony Index, RM - Recruitment Manoeuvre
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Table 2. Summary of results 
Ventilation Modes Breathing Cycles  

Median [IQR] 

No. of AE 

Median [IQR] 

AI (%) 

Median [IQR] 

BL 7394 [6033-21735] 635 [113-1581] 6.1 [2.4-8.2] 

SIMV  7255 [974-23745] 155 [65-2921] 12.8 [7.9-14.8] 

SPONT 11899 [2641-15373] 413 [31-766] 2.6 [0.8-18.5] 

Note: No significant difference was found in the number of AI comparing each ventilation mode using automated model-based 

method. 

 

     

Fig. 1. Boxplot for total analysed breathing cycles (Left), total AEs (Middle) and AI (Right) for each ventilation mode. 

Figs. 2-4 are examples of model-based asynchrony detection 

(AUCEdrs) with respect to observation using airway pressure 

(Paw) and flow (Q) profile. Fig. 2 shows a section of Patient 5 

for Paw, Q and AUCEdrs when ventilated using SIMV volume 

controlled mode. A smooth and transient AUCEdrs is observed 

when there is no pressure and flow mismatch and thus no 

AEs.  

Fig. 3 shows the Paw, Q and AUCEdrs for Patient 11 episode 2 

when ventilated using BL. Occasional AUCEdrs spikes were 

observed indicating that asynchronous events may occur at 

any time throughout the ventilation period. Fig. 4 show the 

Paw, Q and AUCEdrs for Patient 1. At the time of data 

recording, Patient 1 was initially ventilated using BL and was 

changed to SPONT mode.  

 

 

Fig. 2. Section of Paw, Q and AUCEdrs for Patient 5 episode 1. There is no pressure and flow mismatch, resulting in a smooth 

and transient AUCEdrs. The red markers indicate the start of a breathing cycle. The dashed lines in AUCEdrs are the ±50% of the 

median AUCEdrs. No AUCEdrs exceed the ±50% AE boundary, indicating no AE. 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5631



 

 

     

 

 

Fig. 3. Section of Paw, Q and AUCEdrs for Patient 11 episode 2. Pressure and flow mismatch resulted in sudden change of 

AUCEdrs indicating an asynchrony event has occurred. The red markers indicate the start of a breathing cycle. The dashed lines 

in AUCEdrs are the ±50% of the median AUCEdrs. 5 AUCEdrs spikes exceeded ±50% AE boundary, indicating there were 5 AEs 

within this time frame. 

 

 

Fig. 4. Section of Paw, Q and AUCEdrs for Patient 1 when the ventilation mode is changed from BL to SPONT. The red markers 

indicate the start of a breathing cycle. The dashed lines in AUCEdrs are the ±50% of the median AUCEdrs. The median and 

±50% of AUCEdrs shifts when ventilation mode changes. There were 3 AUCEdrs exceeded the ±50% AE boundary during BL 

in this time frame. 

4. DISCUSSION 

4.1  AUCEdrs as an Asynchronous Event (AE) Marker 

Pressure and flow waveforms were manually scrutinised to 

identify AEs and compared to the results obtained using the 

model-based asynchrony detection method (AUCEdrs). Figs. 2 
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to 4 showed that every breathing cycle with pressure and 

flow mismatch corresponds to a spike in AUCEdrs.  The 

results showed that AUCEdrs can be used as an automated AE 

indicator using simple thresholds. 

From Table 1, it was found that Patient 5 data was recorded 

for 1442 minutes when the patient was ventilated in SIMV. 

During this ventilation period, the model-based detect 

asynchronous event is only 36 out of 22928 breathing cycles. 

The low asynchronous breaths result in AI of only 0.2%. A 

section of consistent AUCEdrs for Patient 5 is shown Fig. 2. 

Comparatively, Patient 11 during episode 2 (Fig. 3) is also 

ventilated with SIMV but there are occasional AUCEdrs 

‘spikes’, resulting in a higher AI of 13%. This results shows 

that AE can occur at any time throughout the ventilation 

period. An occasional AE may be a patient coughing, or 

misfiring of the ventilator. These particular AEs are often 

masked by the total ventilation period and are neglected as a 

whole. However, an accumulation of these AEs or 

snowballing AEs may have adverse effect (Sassoon and 

Foster, 2001, Dasta et al., 2005, Epstein, 2011, Gutierrez et 

al., 2011) and it is important to have real time AE detection. 

4.2  Effect of Ventilator Settings on AUCEdrs and AEs 

Fig. 4 shows the Paw, Q and AUCEdrs for Patient 1 

transitioning from BL to SPONT. At the start of the data 

collection, Patient 1 had relatively little AE that slowly 

increased with time. The increasing occurrence of AE may be 

due to the patient regaining spontaneous breathing effort and 

thus starting to ‘fight’ the ventilator support. In this data, the 

ventilation mode is later changed to SPONT at time = 60 s. 

After BL is changed to SPONT, the incidents of AUCEdrs is 

reduced as shown in Fig. 4 after 60 s, resulting in consistent 

AUCEdrs profile. Overall, the AI was reduced from 2.6% to 

1.3% in changing modes (Table 1). This result is a positive 

indication of how AEs might be reduced by changing 

ventilation mode. 

Equally, as shown in Fig. 4, the peak airway pressure (PIP) 

during SPONT is ~25 cmH2O, lower than for BL with a PIP 

= ~33 cmH2O. In addition, the inspiratory time is lower, 

resulting in lower tidal volume. It is observed that the 

combination of both these reductions have resulted in lower 

AUCEdrs magnitude. AUCEdrs is a non-invasive model-based 

method to estimate respiratory system elastance. Thus, 

AUCEdrs not only captures AEs, but it can also be a useful 

metric to estimate respiratory system elastance in real time 

without additional clinical protocol.  

4.3  The Need of Real-Time AI Assessment 

Transition from BL to SPONT in Patient 1 resulted in 

reductions in AI, suggesting better patient-ventilator 

interaction. This reduction can also be observed in other 

patients with multiple ventilation mode in each data 

recording episode. In particular, 5 of 7 patients (Patients 1, 7, 

8, 10 and Patient 13) have shown decrease in AI, and 2 

patients (Patients 9 and 11) have increase in AI after 

changing the ventilation modes. Changing ventilation mode 

by attending clinicians to adapt to patients breathing is 

generally intended to improve patient-ventilator interaction 

and care. Thus, the main issue highlighted by this study is 

that there is no practical way to identify these AEs in real 

time. Clinicians thus lack the tools to objectively assess thus 

aspect of patient ventilator interaction. This lack of clinical 

diagnostic tools further exposes patients to the risk of 

prolonged ventilation and other adverse outcomes (Chao et 

al., 1997, Sassoon and Foster, 2001, Dasta et al., 2005, Thille 

et al., 2006, Epstein, 2011). 

Overall, this study has shown that the AUCEdrs metric can 

successfully identify AEs in ventilated patients, and thus 

determine the AI in an automated fashion. Currently, the AE 

and the AI can only be determined by manual inspection of 

the pressure waveforms, a tedious exercise that is not 

regularly performed. By making the AI an accessible metric 

for clinical use, this study has the potential to improve the 

efficacy of mechanical ventilation therapy. As well as 

providing quantitative feedback that can be examined over 

time to assess overall MV care. 

4.4  Clinical Implications  

MV settings, in particular breath triggering and breathing 

frequency, affect the quality of patient-ventilator interaction. 

However, this interaction is also highly dependent of the 

patient disease state and amount of sedation used. More 

severely ill patients will often be administered higher 

sedation dose to reduce the work of breathing and aid 

recovery. These patients will be fully ventilated and have 

relatively little spontaneous breathing effort, resulting in 

lower AI. However, regardless of the mode, this approach 

can detect AEs as shown in Table 1, and as noted, may serve 

as an objective, quantified measure of when to change mode 

or MV approach. 

The summary of asynchrony index for BL, SIMV and 

SPONT is shown in Fig. 1 (Right). The K-W ANOVA test 

showed that there were no significant difference in the 

location of the AI distribution when comparing these three 

tested ventilation mode (P > 0.05). In this study, it was found 

that no ventilation mode is universally ‘better’ in terms of 

preventing or reducing asynchrony events. In addition, this 

study focuses on investigating a physiological relevant 

method to detect asynchronous events automatically. Thus, 

concluding a ventilation mode that will result in higher or 

lower AI is not the intention of this observational study. 

Furthermore, the patients’ variability and disease progression 

during mechanical ventilation was not able to provide clearly 

information to distinguish which ventilation mode is better in 

reducing asynchronous events.  

4.5  Study Limitations 

An important consideration in the development of any new 

metric is the incidence of false positive readings. The model-

based AE detection proposed in this study incorporates an 

arbitrary time frame of 5 minutes for to assess the AEs. This 

arbitrary time frames thus limits the overall accuracy of 

proposed metric. For example, within a 5 minute window, 

60% of the analysed breathing cycles had AUCEdrs exceeding 

±50% of the median AUCEdrs and are ‘true AEs’. However, 

this model will instead declared 40% of the breathing cycles 
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as ‘false AEs’ because the median AUCEdrs is now shifted 

towards the true AEs. However, these extreme cases are 

unlikely to happen and will still indicate high numbers of AE 

and AI. Equally, the sudden change of overall AUCEdrs may 

also be contributed by the change of patient’s disease state 

and variability.  

AUCEdrs is area under the curve for normalised time-varying 

elastance and is effectively the respiratory system elastance at 

each breathing cycle. Carlucci et al. reported that the 

incidence of asynchronous events has no relation to the any 

parameters of respiratory mechanics (Carlucci et al., 2013) 

which somehow contradicts to the finding of this research. 

However, the results reported by Carlucci focuses patients’ 

overall respiratory mechanics and not breath-to-breath 

respiratory mechanics evaluation. Thus, the AE detection 

proposed by this research remains viable and valid. Results 

have shown that a breathing cycle that has a ±50% difference 

of the median AUCEdrs correspond to a breathing cycle with 

significant pressure and flow mismatch, suggesting an 

asynchronous breathing cycle. 

Another limitation of this study is that this is an observational 

study and there were no specific protocol or ventilator setting 

required during data collection. Patients’ airway pressure and 

flow data were recorded at any time during MV once they 

meet the inclusion criteria. Thus, there is no specific clinical 

trend, or related outcome that can be drawn for this analysis. 

However, as pointed out in discussion section, AE can occur 

at any time during mechanical ventilation. Thus, an 

observational study without a specific protocol further 

demonstrates the ability of the model-based method to 

capture AEs at any time during MV. 

5. CONCLUSION 

The proposed AUCEdrs metric can be reliably used as a 

measure of AI for both fully controlled ventilation and 

spontaneously breathing patients. Investigation of the effect 

of ventilation mode on the AI has shown that no mode is 

significantly better or worse than another in terms of AI. 

However, changing the ventilator settings may improve or 

worsen patient-ventilator interaction. Thus, monitoring of the 

AI trend over time could be used as a clinical marker to 

assess patient-specific patient-ventilator interaction at 

different ventilation settings. The ability of this real time 

metric will help clinicians to ensure that the ventilator 

settings chosen are optimal for the patient, and to improve the 

efficacy of mechanical ventilation therapy. 
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