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Abstract: A shared lane keeping assistance system supports the driver in the steering task.
In contrast to an autonomous system, the shared system works in parallel with the driver by
applying an additional torque on the steering wheel. This means the system and the driver
perform the steering task in cooperation. As the driver is still part of the control loop a
driver model is required to predict the steering behavior of the actual driver. In this paper
we introduce a new lateral steering model which is suited to characterize individual drivers.
This model describes, in contrast to other models, the neuromuscular system, limbs and its
control for a specific driver by using a set of dynamic primitives (so called movemes). These
movemes build a gray-box model for the neuromuscular system. The steering wheel angle is the
predicted output of the moveme model. In order to generate a steering angle trajectory suited
for the desired maneuver, the steering model switches between these movemes. Therefore, the
central component of the driver model is a framework which determines the optimal switching
sequence of the movemes. For this task an optimal control strategy is introduced. The approach
is validated using a simulation of an ISO-double lane change with movemes which were identified
from a set of real driver trajectories. The results show that the steering trajectories of the driver
model highly correspond with the recorded driver trajectories.

Keywords: driver model; driver behavior; shared control; human factors; human-centered
design.

1. INTRODUCTION

Unintended departure of the driving lane is one of the
most common traffic accident scenarios. In 2011 it was the
main cause for major traffic accidents with a percentage of
26.1% of all accidents in Germany Unger [2012]. Advanced
driver assistance systems (ADAS) for lane keeping support
can improve the lane keeping performance of drivers. See
e.g. Mulder et al. [2012]. This leads to the implication
that a wide introduction of these systems can significantly
reduce the amount of accidents. In the context of aircraft
automation (e.g. see Wiener and Curry [1980]), it is long
known that full automated systems, which remove the
driver from the control loop and force him into a super-
visory task, bear several problems. The driver is likely to
lose his situation awareness. Furthermore a degeneration
of the drivers manual control skills is expected. This can
lead to situations where the driver cannot resume manual
control adequately after an automation failure occurs.

Therefore, a shared control structure as introduced in
Flemisch et al. [2008], Mulder et al. [2012], Itoh et al.
[2012], Mars et al. [2014] is desirable for the design of a lane
keeping ADAS. Within certain limitations the driver and
the ADAS control the vehicle in cooperation and hence,
this class of systems has a shared control structure. For
the steering task such a structure can be achieved if both
- driver and ADAS - can apply a torque on the steering
wheel as depicted in Fig. 1.
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Fig. 1. Shared control structure between driver and ADAS
for the lateral steering task. (With steering wheel
SW, steering wheel angle δ, torque applied on the
steering wheel by the driver TDriver , torque applied
by the ADAS TADAS and the resulting torque TSW ,
vehicle state xv, reference of the driver xref,Driver and
reference of the ADAS xref,ADAS)

For a successful cooperation between ADAS and the driver
in the control loop depicted in Fig. 1 it is essential that the
system can predict the drivers steering behavior Flemisch
et al. [2008]. An individual driver model can be used as a
basis for a driver specific parameterized assistance system.
Some authors suggest that an ADAS should behave like
a copy of the driver Abbink et al. [2012] wherefore a
specific driver model is required. In long-term, if the future
steering behavior of the driver can be predicted, errant
interventions by the ADAS can be reduced.
Typically, only low fidelity general models are used in state
of the art systems. But for an individual prediction a driver
specific model is needed. Thereby it is also necessary to
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include the driver’s neuromuscular behavior and the limb
dynamics. To the best of our knowledge such a driver spe-
cific model structure, capable of predicting the real steer-
ing behavior of the specific driver, has not been presented
yet. Furthermore, the driver specific parameters of our new
model are easy to obtain compared to the parameter of
other driver models (e.g. Pick and Cole [2008]). Our model
focuses on the control level of the steering task. We assume
there are higher level inputs given which give information
about the future maneuver respectively the desired path.

State of the art online capable driver models used for
shared control such as Pick and Cole [2008] or Addink
and Mulder [2010] assume the neuromuscular dynamic to
be modeled by a dynamic model followed by the kinematic
model of the limbs and the attached human-machine-
interface. The former include well understood mechanisms
of the locomotion system as active muscle stiffness and
the reflex feedback loop (see Pick and Cole [2008] and
Droogendijk [2010]). In those driver models the driving
task is mainly performed by a leading controller that
calculates the control inputs for the car and commands
them to the neuromuscular dynamic. This results in the
structure of a driver model depicted in Fig. 2. The leading
controller is mainly assumed as a classical linear controller
like in Hess and Modjtahedzadeh [1990] or bases on
optimal control Keen and Cole [2006], MacAdam [1981].

LC NMS Limbs HMI Car

Maneuver

uδ δ

−−

Fig. 2. Structure of common biological inspired driver
models with leading controller LC, neuromuscular
system NMS, limb dynamics and human-machine-
interface HMI (Steering wheel angle δ, set-point from
leading controller uδ)

In the state of the art of driver models, less attention is
paid to how a human realizes its individual motion. There
exists strong evidence in neurobiology that humans realize
their subliminal motion by combining a finite set of indi-
vidual elementary building blocks called motor primitives.
See Mussa-Ivaldi and Solla [2004] and Hart and Giszter
[2010]. In this paper we therefore assume that humans
perform the lateral vehicle control task using a finite set
of motor primitives. This set of driver specific steering
primitives can be determined by analyzing recorded steer-
ing wheel trajectories. This leads to the new driver model
structure introduced in the next section.

2. MODEL STRUCTURE

According to previous work Flad et al. [2013] we name
the motor primitives “movemes”. Each moveme is defined
by an affine state space model. It is assumed that all
movemes have the same structure and only differ in their
parameterization. The differential equation is given by

ẋp (t) = Aixp (t) + bi, (1)

where Ai ∈ R
np×np , bi ∈ R

np , xp = (xp,1, ..., xp,np
)T

is the state vector of the movemes with the length np ∈

N
+. Thereby, the steering wheel angle is represented by

xp,1 = δ. The other elements of xp depends on the used
identification method. It is indeed also possible to use the
driver’s steering torque as basis for the movemes. The
index i refers to the specific parameter set of the moveme
i. The set of all movemes is given by I = {1, 2, ...,m}
where m is the number of available movemes. We assume
that the driver specific parameter set Ai and bi, ∀i ∈ I

of the movemes are identified from real steering wheel
trajectories and are known. These identification tasks can
be done using Diehm et al. [2013b]. In this paper we are
then confronted with the following question: For a given
maneuver, which moveme of the individual set has to be
chosen such that the car performs the maneuver.

To this end we introduce a switching vector ω (t) =
(ω1 (t) , ..., ωm (t)) ∈ W with W = {0, 1}

m
, that specifies

which moveme is active at time t. The generated trajectory
is given by

ẋp (t) =
m
∑

k=1

ωk (t) (Akxp (t) + bk) (2)

with
xp,1 (t) = δ (t)

and with the steering wheel angle δ (t). At each time, only
one of the movemes can be active, which results in

m
∑

k=1

ωk (t) = 1. (3)

This leads to the new driver model structure which is de-
picted in Fig. 3. By switching between different individual
movemes, the steering wheel is controlled and thus the
vehicle lateral dynamics. Considering the human driver,
the driving task is performed by higher human cognition
levels which control the neuromuscular system by switch-
ing between these movemes.

Switching
mechanism

Car

Moveme 1

Moveme 2

. . .

Moveme m

δ

Maneuver

Driver model

Fig. 3. Proposed driver model structure

In Flad et al. [2013] first experimental results of the
driver model are proposed which shows the validity of
the proposed structure. In this paper we focus on the
control aspects to model the switching mechanism and its
implementation.

3. SWITCHING MECHANISM

3.1 Basic Idea

In addition to the concept of primitives it is known
in neuroscience that humans apply optimality principles
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Fig. 4. Quantities of the single-track vehicle model

in their motion control Todorov [2004], Bhushan and
Shadmer [1999]. Thus motion control can be modeled
as an anticipatory open-loop optimal control problem.
Anticipatory behavior is also a basic principle for modeling
the steering task in traditional driver models Peng [2002].

We therefore model the switching mechanism by using the
concept of optimal preview control. We assume that the
driver has a mental model of his vehicle and the steering
task which includes a model of his internal neuromuscular
system (the moveme model of section 2). Based on these
models the driver determines the optimal open-loop se-
quence of movemes with respect to an objective function
and the given maneuver. Experimental results suggest that
drivers tend to use a fixed and finite preview time Ungoren
and Peng [2005], Ayres et al. [2001]. We include this in our
model by determining the movemes for a fixed preview
horizon. Godthelp [1988] states that there is a constant
switching between an error-neglecting strategy, where the
driver ignores minor path errors, and an error-correction
strategy, which is applied when the errors can still be
comfortably corrected. This behavior is also included in
our driver model.

3.2 Formalization

The mental model of the vehicle is modeled using a linear
single-track model (see Fig. 4). The dynamic of the vehicle
model is given by

ẋv(t) = Av(t)xv(t) + bv(t)δ(t) (4)

with the state vector

xv (t) =
(

β (t) , ψ̇ (t) , ψ (t) , y (t)
)T

the system matrix and input vector

Av =







(−Cf−Cr)/Mv (−Mv2−Cf lf+Crlr)/Mv2 0 0
(Crlr−Cf lf )/Jz

(−Cf l
2
f−Crl

2
r)/Jzv 0 0

0 1 0 0
v 0 v 0







bv =
1

is







Cf/Mv

(Cf lf )/Jz

0
0






,

where M is the vehicle mass, v is the velocity which
is assumed to be constant, Jz is the yaw inertia, is
the transmission ratio of the steering system and Cf
respectively Cr constants of the linearized tire models. ψ is
the yaw angle, β is the slip angle and y the lateral position
as depicted in Fig. 4. The model is suited for steering

maneuvers up to an lateral acceleration of 4m/s2 (see
Mitschke and Wallentowitz [2004]) and hence well suited
for our application.

The combination of the moveme model structure (2) and
the vehicle model (4) results in the state space model

ẋ (t) = f (x (t) ,ω (t) , t) (5)

with x = (xv,xp)
T

and f : R
4+np × W → R

4+np .
Due to (2) the model is nonlinear and non smooth. The
input for the combined systems is now the binary vector
ω (t) with m elements. According to our basic idea, the
trajectories of this vector should be determined optimal
according to the following objective function. The model
focuses on the control level, therefore explicit a-priori
reference trajectories of the maneuver are used to define
the maneuver. Hence the error

ey (t) = y (t)− yref (t) , (6)

between the predicted trajectory of the lateral position
y (t) and the given reference of the maneuver yref (t) and
the error of the yaw angle

eψ (t) = ψ (t)− ψref (t) (7)

is minimized.
Path planning is assumed to be performed in a higher level
of the driver model. But from the technical point of view
the path planning problem can also be included in the
switching framework and more abstract information like
street maps and the navigable space on the road can be
used as inputs for the optimization.
To include the aforementioned error-neglecting strategy
observed for real drivers Godthelp [1988], a function
N (ω (t) , t0, Ts) is proposed which counts the changes of
movemes. Changing the active moveme increases the value
of N . We introduce the objective function for the finite
preview horizon [t0, t0 + Ts] by

J(·) = qpN (ω (t) , t0, Ts) +

t0+Ts
∫

t0

e (t)
T
Qe (t) dt, (8)

e (t) =

(

eψ (t)
ey (t)

)

,Q =

(

qψ 0
0 qy

)

with some weighting factors qp, qψ , qy ∈ R
+. Ideally these

parameters are determined for the specific driver by solv-
ing the inverse optimal control problem. This is not dis-
cussed here.

Hence ω (t) is calculated by solving the following dynamic
optimization problem:

min
ω(t)



qpN (ω (t) , t0, Ts) +

t0+Ts
∫

t0

e (t)
T
Qe (t) dt



 (9a)

with respect to

ẋ (t) = f (x (t) ,ω (t) , t) , (9b)

x (t0) = x0, (9c)
m
∑

k=1

ωk (t) = 1, (9d)

ωk (t) ∈ {0, 1} ∀k ∈ I, (9e)

h (x (t)) ≤ 0. (9f)
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The constraint function h : Rnp+4 → R
nh is used to

specify constraints on the state trajectories. For example,
the function h is used to restrict the steering wheel angle
δ to its mechanical limitations.
Together with the moveme set and if (9) is solved it-
eratively at t0 + κTc based on the actual states with
κ ∈ N

+and Tc the control time Tc ≤ Ts, the individual
closed-loop driver model is completely determined.

4. SUB-OPTIMAL SWITCHING MECHANISM

Problem (9) is a constrained boolean dynamic optimiza-
tion problem as m input trajectories ω (t) ∈ {0, 1}m need
to be determined. Compared to other boolean problems
like the control of power converters as in Holderbaum
[2002] m is large. In addition the system equations are
nonlinear. To the best of the authors knowledge there
exists no method which can determine the exact solution
of the continuous problem (9) in finite time. Suboptimal
solutions are still very time consumptive as state of the
art algorithms scale up exponentially with m or requires a
numerical approximation of the gradient. For an overview
of optimal control for nonlinear integer problems see Sager
[2006], Kirches [2011]. We propose a new suboptimal solu-
tion which is online capable.

The trajectories ω (t) are time discretized with Tp, see
Fig. 5. This means the trajectories change only at fixed
time steps t = αTp with α ∈ N

+ and are constant
during the intervals between them. It is obvious that
with a sufficiently small Tp and a set of movemes, which
allows the adequate reconstruction of the required steering
wheel trajectory, a driving maneuver can be performed
within certain error bounds, when full enumeration is used
to solve the optimization problem (9). Nevertheless, the
calculation effort of a full enumeration algorithm scales
exponentially with m. It can hence not be used to solve
the given problem in a practical framework.

Therefore, we propose a Greedy based procedure instead.
This means we determine the optimal solution of ω (t)
for the first time interval [t0, t0 + Tp] without considering
the following intervals. The optimal solution is thereby
simply determined by directly simulating the system for
all m corresponding movemes. The solution of the n-
th interval [t0 + (n− 1)Tp, t0 + (n)Tp] is then calculated
based the result of the (n− 1)-th interval. This approach
does not regard switching costs in the objective function
as represented by the function N . Therefore, the concept
is applied to all possible combinations of discrete time
intervals for which the trajectories ω (t) are constant. For
illustration all possible combinations for the example in
Fig. 5 are depicted in Fig. 6. In the following the algorithm
is introduced in more detail.

At first the prediction horizon Ts of problem (9) is dis-
cretized into time intervals with the duration of Tp for
which the trajectories ω (t) are assumed to be constant
(see Fig. 5 for an example with Ts = 4Tp). Based on the
time discretization all possible combinations of time inter-
vals in which the trajectories are constant are determined.
This results in

nc = 2

⌈

Ts
Tp

⌉

−1

t
t0 t1 t2 t3 t4

Tp

Ts

Fig. 5. Time discretization of the prediction horizon for
the example Ts = 4Tp

T2,1 T2,2T1,1 T3,1 T3,2

T4,1 T4,2 T5,1 T5,2 T5,3 T6,1 T6,2 T6,3

T7,1 T7,2 T7,3 T8,1 T8,2 T8,3 T8,4

Fig. 6. All 8 possible combinations for the prediction
horizon of fig. 5

possible combinations. The ceiling function ⌈a⌉ is defined
by ⌈a⌉ = min {n ∈ Z|n ≥ a}. Thereby the combination k
consists of nk ∈ {1, ..., ⌈Ts/Tp⌉} time intervals [Tk,1, Tk,nk

].
During each of the intervals one of the m trajectories of
ω (t) is constantly 1 all others are equal to 0. For each
of the combinations k ∈ {1, ..., nc} the optimal sequence
of movemes is determined by using the Greedy principle.
Thereby the algorithm determines the optimal ω (t) for the
first time interval t ∈ Tk,1 based on the objective function
(8) and the actual state x (t0). To determine the optimal
solution the system is simulated for all m possibilities.
The optimal solution for the time interval Tk,n is then
determined based on the system state

x

(

t0 +

n−1
∑

i=1

Tk,i

)

which is obtained by propagating the state x (t0) with the
system equation (5) and the determined foregoing optimal
solution. When reaching the end of the prediction horizon
[t0, t0 + Ts] the objective function Jk is evaluated. Note
that the objective function now implicitly includes the
switching costs N (ω (t) , t0, Ts) because all nc combina-
tions are compared to select the optimal solution. The
flowchart of the algorithm is depicted in Fig. 7.

Lemma 1. The complexity of the proposed algorithm de-
picted in Fig. 7 scales only linearly with m.

Proof 1. Straight forward, according to the algorithm ncm
simulations for [t0, t0 + Ts] of the system (5) and calcula-
tions of the objective function have to be performed. As
Ts and nc are independent from m the algorithm scales
linearly with m.

The algorithm significantly reduces the required calcula-
tion time of the discretized problem and it is possible to
solve the problem online by using state of the art hardware.
It is obvious that the algorithm does not fulfill Bellman’s
principle and therefore does not guarantee that the global
optimal solution is determined. However the algorithm
guarantees, at least locally, an optimal solution. In some
circumstances the computing effort can be further reduced.
This will be discussed in the next section.
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... ...

... ...

determine all nc possible interval

combinations (compare Fig. 6)

k = 1, j = 1 k = nc, j = 1

compute ω (t)
for T1,j

compute ω (t)
for Tnc,j

no

yes

no

yes

j + 1 → j j + 1 → j

j = nk j = nk

calculate Jk for k = 1...nc, choose
optimal sequence argmin(Jk)

Fig. 7. Flowchart of the greedy based algorithm

4.1 Special Case

When the driver steering model considers only the error
of the vehicle trajectory at discrete time points for the
objective functions, the objective function simplifies to:

J =

t0+Ts
∫

t0

w (t) (ey (t))
2
dt. (10)

With w (t) a Dirac comb respectively a sampling function
defined by

w (t) = qy

∞
∑

k=−∞

ζ (t− kT ) (11)

and the Dirac delta function ζ. If we also assume that
T = Tp and Tp is small enough so that the dynamic
of the steering wheel angle in the interval [t0, t0 + Tp]
can be neglected, the optimization problem can be solved
significantly faster.
For the aforementioned assumptions J is a convex function
with respect to δi in [t0, t0 + Tp]. With the constant
steering wheel angle in the interval δi.
The resulting steering wheel angle δ (t0 + T ) at a specific
time point t0 + T that results by applying the moveme i
(ωi (t) = 1 for t ∈ [t0, t0 + T ]) can be calculated by D’Azzo
and Houpis [1975] with

xp (t0 + T ) = Φ (T )xp (t0) + h (T ) (12)

and

Φ (T ) = eAiT , h (T ) =

∞
∑

ν=1

Aν−1
i

T ν

ν!
bi.

Note, the matrix Φ (T ) and the vector h (T ) can be
calculated offline and stored for each of the m movemes.
When δi for a time interval is calculated by using (12),
all m movemes can be sorted with respect to δi. Based on
this sorted list, an one dimensional search strategy can be
applied to determine the optimal ω (t) for a time interval
instead of directly simulate and compare all possibilities.
The flowchart of the hence so called fast search algorithm
is depicted in Fig. 8.

sort movemes w.r.t. δi
δ0 < ... < δi < ... < δm

j = ⌈m/2⌉ , ∆ = j

evaluate vehicle model (4) with δj

⌈∆/2⌉ → ∆

ey (t0 + Tp) < 0
min(m, j +∆) → j

max(1, j −∆) → j
no

Fig. 8. Flowchart of the fast search algorithm used to
determine a moveme for an interval [t0, t0 + T ]

Lemma 2. The fast search strategy reduces the compu-
tation complexity of the algorithm with respect to the
number of movemes m to ⌈log2 (m)⌉.

Proof 2. With the stored matrices the computation of the
steering wheel angle is fast compared to the other calcu-
lations and can be neglected. Therefore, the complexity of
the algorithm depends linearly on the required simulations
of the vehicle model that are necessary to determine the
optimal moveme in an interval. We denote the iteration
of the search loop in Fig. 8 with an index and name the
second last iteration l. The step length ∆l of the search
procedure is always 2. To get the slowest converging sce-
nario we assume ∆k to be odd in every step. The reduction
ratio ∆k/∆k+1 for an odd number ∆k is smaller than for an
even number. In this scenario starting backwards from l
the previous ∆l−k steps can be computed by

∆l−k = 2 · 2k −

n=k−1
∑

n=0

2n = 2k

(

2−

n=k−1
∑

n=0

2n−k

)

.

The term in brackets is between 1 and 2, so ∆l−k in step
l − k can be estimated by 2k ≤ ∆l−k ≤ 2k · 2. For k =
l → ∆0 = ⌈m/2⌉. Inserting m in the previous equation and
applying the log function yields l ≤ ⌈log2(m)− 1⌉ ≤ l+1.
With this an upper bound of the number of iterations for
the search algorithm can be estimated by ⌈log2(m)⌉.

5. RESULTS

We focus on the comparison of the two proposed algo-
rithms in this section. For a deeper evaluation of the
driver model itself and other scenarios see Flad et al.
[2013]. The programCarMaker (3.5.4) for Simulink by IPG
Automotive is used for all simulations. In the simulations a
validated nonlinear two-track model of a VW Golf GTD is
used. The parameter of the linear vehicle model are given
in Tab. 1. The calculations are done on a computer with
an Intel(R)Core(TM) i7-2600 3,40 GHz processor and 8
GB RAM.

Table 1. Parameters used for the linear single-
track vehicle model

M Jz Cf Cr lf lr is
Value 1634 1814 2400 2400 0.91 1.67 16

Unit kg kgm2 N/◦ N/◦ m m −
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Table 2. Time horizons and parameters of
the objective function used for the switching

controller

Parameter Ts Tc Tp qψ qy qp
Value 1.5s 0.3s 0.3s 1 0.2 0.1

100 120 140 160 180 200 220 240
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reference

greedy alg.

fast search alg.

pylon gates

Fig. 9. Lateral-position of ISO double lane-change

Table 3. Summary of the ISO double lane-
change results

Greedy based alg. Fast search alg.

Computing Time 9.58s 5.53s

RMSE y-position 0.15m 0.31m

Max. Error y-position 0.31m 0.55m

RMSE δ 15.9◦ 44.9◦

Max. Error δ 74.7◦ 172.1◦

Number of switches N 31 35

5.1 Parameters

Tc is set according to an usual average driver’s reaction
time. The lengths of the time horizons and the parameter
of the objective function are given in Tab. 2. For a detailed
introduction of the parameters please be referred to Flad
et al. [2013].

The used moveme database consists of m = 71 movemes.
np was chosen to 2. The parameters are identified using five
test-runs of the ISO double lane-change maneuver with a
fixed speed of 30 km/h. These are performed by a driver on
a fixed frame driving simulator. Thereby the steering wheel
trajectory is recorded and the movemes are calculated
by the identification algorithm described in Diehm et al.
[2013a,b]. The identification algorithm returns 71 different
movemes for all five test-runs.

5.2 Simulation of ISO double lane-change

We use one of the five recorded real driver trajectories
as a reference to test our switching controller. The used
ISO double lane-change reference trajectory is also one of
the trajectories used to identify the movemes. Full enu-
meration requires approximately 200 billion simulations
of the system each of 1.5s simulation time. Hence full
enumeration is not applicable. Fig. 9 shows the lateral po-
sition of the car during the lane-change maneuver when the

100 120 140 160 180 200 220 240
−250
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e
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reference
greedy alg.
fast search alg.

Fig. 10. Steering wheel angle. Time steps where switches
of movemes occur are marked with crosses and circles

proposed driver model is used as steering controller. The
greedy based algorithm which uses the objective function
(8) is depicted, as well as the fast search algorithm which
uses the objective function of the special case in section 4.1
with included switching costs. Fig. 10 shows the steering
wheel angle trajectories corresponding to Fig. 9. Switches
of ω (t) are marked with crosses for the greedy, respectively
circles for the fast search algorithm. Additionally the re-
sults of the simulation are summarized in Tab. 3. Because
of the limitation of fixed moveme switching times αTp with
α ∈ N

+ it is not possible for the switching controller
to reconstruct the human reference trajectories exactly.
As the fast search algorithm only solves a simplified op-
timal control problem, the result shows more deviations
from the reference. There is a significant deviation to the
reference steering angle trajectory as this algorithm does
not consider the yaw error eψ (t). For the straight road
leading to the lane change the error of the steering wheel
angle with respect to the reference is below 1.5◦ for the
greedy based and 10◦ for the fast search algorithm. Over-
all the model in combination with the greedy algorithm
succeeds in reflecting the human behavior. At some point
the model deviate appreciably from the reference steering
angle. Naturally the accuracy of the model is higher if it is
used to predict the steering angle for a future time interval
based on the correct initial steering angle Flad et al. [2013].
Also the parameters of the switching mechanism (horizons,
objective function etc.) have been selected based on refer-
ence data and are not specific for the present driver. The
model precision can be further increased if these specific
parameters are identified.
The computing time in Tab. 3 includes the time overhead
the system amongst other minor things needs to calculate
the nonlinear vehicle model TOH ≈ 2.5s. The lane-change
maneuver lasts 35s. The average computation time to
solve the optimal control problem once using the fast
search algorithm is about 30ms. Based on Matlab code
the fast search algorithm is about three times faster than
the greedy algorithm.
While the greedy algorithms yields superior results with
respect to the control task and reflects the human behavior
better the fast search has a significant better performance
regarding the calculation time.
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6. CONCLUSION

The driver steering model proposed in this article com-
bines different important neurobiological aspects. First
the driver movement is modeled using motor primitives.
Second, these elementary movements are combined with
the idea that motion control should be modeled as an op-
timal control problem. Third, the steering model includes
an error-neglecting strategy of the driver. These ideas
result in a mathematical driver model used to describe
an individual driver. From the control theoretical point of
view the driver model is described as an optimal dynamic
integer control problem. Using state of the art techniques
this problem cannot be solved online. We proposed a new
numeric algorithm which solves the problem within an
acceptable computation effort. The driver model output
shows a high similarity with the recorded reference steering
behavior of the real driver. The new model is thus capable
to predict the steering behavior of an individual driver
online.
In future research it is planned to apply the model to
improve shared control steering assistance systems.
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