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Abstract:
This paper presents a novel control architecture for operational space control when the end effector
or the robotic chain is kinematically constrained. Particularly, we address kinematic control of robots
operating in the presence of obstacles such as point, plane, or barrier constraints imposed on a point
on the manipulator. The main advantage of the proposed approach is that we are able to control the
end-effector motion in the normal way using conventional operational space control schemes, and by
re-writing the Jacobian matrix we also guarantee that the constraints are satisfied. The most challenging
problem of obstacle avoidance of robotic manipulators is the extremely complex structure that arises
when the obstacles are mapped from the operational space to joint space. We solve this by first finding
a new set of velocity variables for a point on the robot in the vicinity of the obstacle, and on these
new variables we impose a structure which guarantees that the robot does not hit the obstacle. We then
find a mapping denoted the Constrained Jacobian Matrix from the joint variables to these new velocity
variables and use this mapping to find a trajectory in joint space for which the constraints are not violated.
We present for the first time the Constrained Jacobian Matrix which imposes a kinematic constraint on
the manipulator chain and show the efficiency of the approach through experiments on a real robot.

Keywords: Robotic Manipulators, Robot Kinematics, Jacobian Matrices, Redundant Manipulators.

1. INTRODUCTION

Efficient solutions to collision avoidance for complex kinematic
chains in the presence of obstacles of different shape and form
is an extremely challenging problem. The obstacles impose
constraints of different shape and dimension on one or several
points on the kinematic chain which results in very complex
kinematics when the constraints are taken into account. Partic-
ularly, the mapping from the joint velocities to the end-effector
velocities cannot be found in the standard way by the manipu-
lator Jacobian when constraints are present.

The main objective of robot control, whether the trajectory is
computer generated or given by an operator through a haptic
device, is to control the end-effector motion to achieve a certain
task or obtain a desired behavior. The control signal sent to
the robot is therefore often a joint velocity reference calculated
from the desired end-effector velocity by the inverse of the
Jacobian matrix. This mapping does not, however, take into
account the constraints imposed by obstacles in the robot’s
workspace. In this paper we thus propose a Constrained Jaco-
bian Matrix (CJM) that maps the joint velocities to the end-
effector velocities subject to the constraints imposed by the
obstacles. The Constrained Jacobian Matrix gives us a velocity

⋆ During this work, P. J. From and C. D. Pham were visiting the Department
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reference for the joints which guarantees that the constraints are
not violated.

In this paper we solve the constrained kinematics problem by
first defining a new set of velocity variables from the desired
end-effector velocity in such a way that the reduced dimension-
ality due to the constraints are cast into the velocity variables
by imposing a certain structure on these new variables. The
velocity variables define a motion of a point on the robot that
is close to the obstacle and the new structure guarantees that
the constraints imposed by the obstacle are obtained. Secondly,
we find the Jacobian matrix, denoted the Constrained Jacobian
Matrix, which maps the new velocity variables into the joint
velocities, and thus allows us to find a trajectory in joint space
for which the constraints are not violated. Finally the control is
obtained in the standard way by replacing the standard Jacobian
matrix with the Constrained Jacobian Matrix. Early results were
presented in From [2013]. In this paper we present for the
first time the Constrained Jacobian Matrix when the constraints
are imposed on a point on the kinematic chain and verify the
formulation empirically.

As the main control objective of the great majority of the
applications found in robotics is to obtain a desired behavior of
the tool, the control law needs to be defined in the operational
space. We thus require a framework which allows the control
law to be formulated in the end-effector frame and at the same
time satisfies the kinematic constraints defined in the inertial
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frame. The Constrained Jacobian Matrix allows us to derive
such a control law because it maps the joint velocities to the
end-effector velocities subject to the constraints imposed on the
robot.

Defining the control law in the end-effector frame allows us to
apply control schemes such as impedance and hybrid control
in the tool frame. Hybrid control in the end-effector space has
been studied in detail by many authors and lets the end-effector
space be divided into directions which require stiff control and
directions that require soft compliant control (Natale [2003],
Mason [1981], Craig and Raibert [1979], Abbati-Marescotti
et al. [1990], Bruyninckx and De Schutter [1996], Lipkin and
Duffy [1988]). One example in which hybrid or compliant con-
trol is required at the end effector and for which the kinematic
chain is constrained is Robotics-assisted Minimally Invasive
Surgery (RAMIS). The constraints imposed by the entry point
where the robot enters the human body require zero lateral
velocity in order to not damage the patient (Funda et al. [1996],
Li et al. [2005], Ortmaier and Hirzinger [2000], Locke and Patel
[2007], Lenarčič and Galletti [2004], Azimian et al. [2010]).
Other examples are robot manipulators in a cluttered environ-
ment or mobile manipulators for which the mobile base needs
to avoid hitting obstacles while following a desired trajectory
for the end effector.

The paper is organized as follows: In Section 3 and 4 we
present the overall idea of how the kinematics of a constrained
kinematic chain is calculated. The mathematical representation
of the different kinematic constraints are presented in Section 5
and the corresponding Jacobian matrices are found in Section 6.
A simple study case with constraints on the chain is presented
in Section 7 where we also show how the results from Sections
5 and 6 are used and how the calculations are carried out in
practice. The experimental results are presented in Section 8
and the relevant research and concluding remarks are presented
in Sections 2 and 9, respectively.

2. RELATED RESEARCH

The motion planning problem has been studied by several
researchers over the last decades and a wide variety of ap-
proaches have been developed to solve this problem. In general
the problem is quite different for mobile robots and robotic
manipulators. For mobile robots the motion planning problem
normally reduces to finding a point trajectory in a cluttered
environment. Even though the problem is easy to formulate it
has shown to be a difficult problem to solve and still remains
an active area of research. However, several results have been
obtained over the last three-four decades for efficient obstacle
avoidance of mobile robots. For robotic manipulators on the
other hand, the complex kinematics, the collision avoidance
of several bodies, and in particular the complex geometry of
the obstacles when mapped to the high-dimensional joint space
make motion planning extremely hard to solve.

Motion planning for vehicles and mobile robots is the prob-
lem of finding a continuous path from an initial to a final
position and orientation without colliding with objects in the
robot’s workspace. This problem is very simple to formulate,
but has turned out to be rather difficult to solve. The very first
attempts to solve this problem use the notion of configura-
tion space (Lozano-Perez [1983], Siciliano et al. [2011]) and
use roadmaps to connect the initial and final position through
collision-free paths. Generalized Veroni diagrams can be used

efficiently to solve this problem in an optimal manner in the
sense that the distance to the obstacles is minimized (ODun-
laing and Yap [1985]). Another early approach decomposes the
collision-free workspace into cells and then find a collision-
free path by connecting the cells so that a collision-free path
from the initial to the final position is found (Schwartz and
Sharir [1983a,b]). We refer to LaValle [2006], Canny [1988]
and Latombe [1991] for more details on motion planning of
mobile robots and vehicles.

In the case of robotic manipulators the problem of obsta-
cle avoidance is normally solved by introducing a potential
field pushing the manipulator away from the obstacle (Khatib
[1986]). Normally two types of potential fields are applied to
the robot: i) an attractive potential Ua that pushes the robot end
effector towards its desired position and a repulsive field Uri

that pushes each link of the robot and the robot end effector
away from the obstacles. The total potential field is given by

Ut = Ua +
∑

Uri (1)

which can be realized either as a joint torque

τt = −(JS
e (q))

T∆Ut(pe)−
∑

(JS
i (q))

T∆Ut(pi) (2)

or as joint velocity

q̇t = −(JS
e (q))

T∆Ut(pe)−
∑

(JS
i (q))

T∆Ut(pi) (3)

where pi for i = 1, . . . ,m are the points of the manipulator
that are checked for collision and JS

i is the Jacobian matrix
of the same points. The main advantage of Equation (2) is
smooth motion obtained as the forces are filtered through the
manipulator dynamics. Equation (3), on the other hand, has a
quicker response and responds quicker to trajectory errors or
moving objects.

We see that the potential field in principle guarantees that the
robot does not hit the obstacles, as the artificial force pushes
the robot away from the obstacle with a higher force as the
distance to the obstacle reduces. Although the strength of the
potential field can be tuned, the formulation does not allow
for exact positioning of the robot with respect to the obstacles.
For more complex obstacles like holes and planes we need to
be able to position the robot more accurately in the presence
of the obstacle which calls for an analytical approach to the
problem. Furthermore, obstacles such as forcing a point to lie
between two planes are not solved very efficiently by potential
fields as they require two potential fields pushing in opposite
directions which may cause unstable and oscillating behavior.
When several forces are present these can also eliminate each
other and the robot can encounter local minima in which it gets
blocked.

3. SYSTEM OVERVIEW AND PROBLEM
FORMULATION

The system discussed in this paper consists of a redundant
robotic manipulator in the presence of obstacles. The redun-
dancy is obtained either by placing a standard manipulator on a
moving base, by utilizing a manipulator with a higher mobility
than the task space, or a combination of these. At some given
points in the Cartesian space we will require that the velocities
of the links are eliminated in certain directions to prevent the
robot from hitting an obstacle. The system setup together with
the most important configuration spaces used in this paper are
shown in Fig. 1. We denote the frame of the joint located before
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Robot Frame - Fa

Plane Constraint - Fc
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2 × S
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End-effector frame - Fe

S
2 × R

2 × S
1 × S
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End-effector frame - Fe

S
2 × R× S

1 × S
2

a
b

a

b

Fb

Fig. 1. Two examples of the constraints discussed in this paper:
on the left, a hole constraint which prevents any lateral
motion of a specific point on the manipulator chain; and on
the right, a plane constraint that restricts the linear motion
of a point to a given direction in the plane. The constrained
link is constrained at the point Fc which in turn results in
a reduced motion space at Fa. The motion spaces of the
different frames are subgroups of SE(3) defined by linear
motion R, circular motion S, and the sphere S2.

the constraint located at Fc in the chain by Fa and the joint that
is located after the constraint is denoted Fb. The desired end-
effector motion is given by the frame Fe. We will denote the
velocity variables in the following way

V
B,S
0e =

[

vex vey vez ωe
x ωe

y ωe
z

]T

(4)

and similarly for the other frames. V B,S
ij is thus the velocity in

body or spatial coordinates of a rigid body with frame Fj with
respect to the frame Fi. V B

ij is an element of the Lie algebra
se(3) of the Special Euclidean Group SE(3), and is found as
V B
ij = g−1

ij ġij where gij is the homogeneous transformation
matrix describing the location of Fj in Fi.

The problem considered consists of maintaining a stiff control
of zero velocity in certain directions in the presence of obstacles
while the end effector follows the desired trajectory. The objec-
tive is to obtain a formulation that allows us to control the end
effector using any of the conventional control schemes with-
out violating the constraints. The approach should thus allow
for control schemes such as trajectory following, impedance
control, or a combination of stiff and compliant control of the
end effector. Common for all these control schemes is that
a formulation which allows the controller to act on the end
effector variables directly is required, and not for example on
the joint variables.

4. CONSTRAINED KINEMATICS

The overall goal of this paper is to derive the motion of a
kinematic chain given a desired end-effector motion Fe and a
kinematic constraint at a point represented by Fc. In the next
sections we will find the admissible velocities at Fc for different
types of constraints and the corresponding admissible velocities
at the last joint prior to the constrained link, i.e., at Fa. In this
section we will present the overall idea of how these relations
are used to find the kinematics of a constrained kinematic chain.

The main idea is to find the velocity V B
0a in terms of a set of

new velocity variables parametrized in such a way that these
variables can be chosen freely and at the same time guarantee
that the constraints at Fc are satisfied. This means that certain
directions in the velocity space are reduced from a higher to a
lower-dimensional space represented by new velocity variables
vi.

As our main objective is to follow a desired end-effector motion
V B
0e we need to find the mapping from V B

0e to the free variables,
i.e., V B

0a with the reduction in dimensionality represented by vi.
This is obtained in the following way:

(1) Define a desired end-effector velocity V B
0e .

(2) Given a constraint at Fc, define the velocities at this point
which satisfy the constraints, i.e., the velocities at the
previous joint Fa are given by
• the free variables {vax, v

a
y , v

a
z , ω

a
x, ω

a
y , ω

a
z}, and

• the constrained variables {v1, v2, v3, . . . }.
The free variables are the ones that can be chosen freely
and do not affect the constraint. The constraint variables
require a specific form and structure for the constraints
to be satisfied. We therefore replace some of the free
variables with the constraint variables which gives us
the required structure. These variables thus represent a
freedom, but in a space with reduced dimensionality that
satisfies the constraint. The constrained variables are thus
written in terms of the free variables v as

V B
0a = V B

0a(v). (5)

(3) Eliminate the redundant variables that arise as a result
of the reduced dimensionality and denote the minimal
representation of the velocity variables by V̄ B

0a .
(4) Find a mapping from the end-effector velocities V B

0e to the
new reduced velocity variables V̄ B

0a , which take the form

vam =

[

V̄ B
0a

q̇

]

=

[

constrained variables
free variables

joint velocities

]

. (6)

The mapping is given by the Constrained Jacobian Matrix
Jm
ea that gives the important relation V B

0e = Jm
eav

a
m,

i.e., the transformation from the new reduced velocity
variables vam to the desired end-effector velocities V B

0e .
The joint velocities represent the joints that are deter-

mined by the end-effector velocity V B
0e only and do not

depend on the constraints. These are typically the joints
that are situated between the constraint and the end ef-
fector. The free variables are the velocities of Fa that
do not depend on the constraint, but differently from the
joint velocities, they depend on the joints between the
base and the constraint. Finally, the constrained variables
are constraint dependent and give the velocity at Fa the
required structure so that the constraints are satisfied.

(5) From the new variables, find the robot velocity at Fa.

We note that there are two main steps. Firstly, we need to
find a suitable representation of the velocity variables, which
is discussed in Section 5. Secondly, we need to define the
Constrained Jacobian Matrix, which treated in Section 6.

5. CONSTRAINT KINEMATICS

In this section we derive the kinematics of the constraints.
This is used in the next section to derive the constrained
kinematics of the robotic manipulator in the velocity space, i.e.,
the Constrained Jacobian Matrix.

5.1 Plane Constraint

For a plane-shaped constraint we want to eliminate the velocity
at Fc in one direction. Lets assume that we allow no velocity
in the direction of vcy . As this can be written in terms of the
velocities at Fa (prior to the entry point) as
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vcy = vay − aωa
x (7)

the constraint vcy = 0 can be transformed to the frame Fa as

vay = aωa
x. (8)

We can now introduce a new variable v1 which describes the
one degree of freedom represented by (8). The constrained
variables vay and ωa

x then take the form

vay = v1 ωa
x =

1

a
v1 (9)

which forces a point Fc on the robot to avoid lateral motion in
the direction of the y-axis. The constrained velocity variables at
Fa can now be written as















vax
vay
vaz
ωa
x

ωa
y

ωa
z















=

















vax
v1
vaz
1

a
v1

ωa
y

ωa
z

















(10)

which have five degrees of freedom, as expected. We see that
we impose a certain structure on the velocities at Fa which
guarantees that the constraints are satisfied.

5.2 Entry Hole

Assume a robotic chain that is inserted through a hole. This
add a 2-DoF constraint to the point of entry, represented by Fc,
which is a point on the link penetrating the hole. This is for
example the case in minimally invasive surgery where the robot
is to be inserted into the abdomen through a trocar.

Similarly with Section 5.1, we can incorporate these constraints
in the kinematics by introducing new variables v1 and v2 such
that

vax = v1 ωa
y = −

1

a
v1 (11)

vay = v2 ωa
x =

1

a
v2 (12)

which for any choice of v1 and v2 will result in zero lateral
velocity at the entry point. The constrained velocities can now
be given as















vax
vay
vaz
ωa
x

ωa
y

ωa
z















=





















v1
v2
vaz
1

a
v2

−
1

a
v1

ωa
z





















. (13)

The expressions are found similarly for other types of con-
straints.

6. CONSTRAINED JACOBIAN MATRIX

In this section we will find the relation between the desired end-
effector velocities and the corresponding joint velocities subject
to the constraints described in the previous section. Given the
end-effector velocity we want to find the free and constrained
velocity variables of the robot. We will find the Constrained
Jacobian Matrix Jm

ea which gives the relation V B
0e = Jm

eav
a
m

and the required velocities vam are found from the desired end-
effector velocities by the inverse of the Constrained Jacobian
Matrix.

The standard body Jacobian matrix gives the mapping from the
joint velocities to the end-effector velocities in body coordi-
nates and is given by (From et al. [2014])

JB
e =

[

X
†
1
X

†
2
· · · X†

n

]

(14)

=
[

Ad−1

g1e
X1

1 Ad−1

g2e
X2

2 · · · Xn
n

]

∈ R
n×6

where X i
i is the constant twist in frame Fi and Ad−1

gie
is

the Adjoint matrix that transforms X i
i from frame Fi to X

†
i

represented in the end-effector frame Fe. The body Jacobian
matrix can also be found for other links than the end effector, in
which case it is denoted JB

i which gives the velocities of link
i. Particularly, the Jacobian matrix that gives the velocity of the
link Fa located before the constraint is denoted JB

a .

In this section we will find the body Jacobian matrices, as
above, but subject to the constraints, i.e., we find the mapping
from the joint velocity variables to the respective links subject
to a constraint on the velocity at the constraint frame Fc. We
will see that for a large class of constraints the Constrained
Jacobian Matrix can be written in the form

J̄B
a =

[

∑

αiX
†
i

∑

αjX
†
j · · ·

∑

αkX
†
k

]

∈ R
m×6 (15)

for some (n − m)-dimensional constraint. Where the bar in
J̄B
a distinguishes the Constrained Jacobian Matrix from the

standard Jacobian JB
a . X†

i are the manipulator twists while αi

are configuration-dependent functions of the manipulator and
constraint kinematics. The form of the Constrained Jacobian
Matrix depends on the type of constraint. We will now look at
what the constrained Jacobian matrices look like for different
types of constraints.

6.1 Plane Constraint

Following the approach in From [2013] we see from (10)
that the Constrained Jacobian Matrix can be found by adding
columns two and four of the standard Jacobian, i.e.,

J̄B
a =

[

∑

αiX
†
i

∑

αjX
†
j · · ·

∑

αkX
†
k

]

=

[

X
†
1
X

†
2
+
1

a
X

†
4
X

†
3
X

†
5
X

†
6
X

†
7

]

∈ R
6×6. (16)

For a manipulator like the one in Fig. 1 with one joint after the
constraint the required expression is given by the expression
V B
0e = J̄B

a vam which is found as

V B
0e = Adgeb V

B
0b + V B

be (17)
with

Adgeb = Adg−1

be

=

[

RT

be −RT

bep̂be
0 RT

be

]

=















1 0 0 0 l7cq7 l7sq7
0 cq7 sq7 −l7 0 0
0 −sq7 cq7 0 0 0
0 0 0 1 0 0
0 0 0 0 cq7 sq7
0 0 0 0 −sq7 cq7















(18)

V B
0b =















1 0 0 0 (a+ b) 0
0 1 0 −(a+ b) 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1































vax
v1
vaz
1

a
v1

ωa
y

ωa
z

















(19)
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V B
be =















0
−l7
0
1
0
0















q̇7. (20)

so that V B
0e = J̄B

a vam can be written as

V B
0e =





















1 0 0 β1 + l7cq7 l7sq7 0
0 α1 sq7 0 0 −l7

0
b

a
sq7 cq7 0 0 0

0
1

a
0 0 0 1

0 0 0 cq7 sq7 0
0 0 0 −sq7 cq7 0



































vax
v1
vaz
ωa
y

ωa
z

q̇7















(21)

where we have defined α1 = − b
a
cos q7−

1

a
l7 and β1 = (a+b).

The new velocity variables are then found from the inverse of
this expression as

vam = (J̄B
a )−1V B

0e . (22)

6.2 Entry Hole

Similarly, the Constrained Jacobian Matrix can be found as

J̄B
a =

[

X
†
1
−
1

a
X

†
5
X

†
2
+
1

a
X

†
4
X

†
3
X

†
6
X

†
7
X

†
8

]

∈ R
6×6

(23)

for a hole-shaped constraint. We have

V B
0e = Adgeb V

B
0b + V B

be (24)

which for a robot like the one in Fig. 1 with two joints after the
constraint gives

Adgeb = Adg
−1

be

=

[

RT

be −RT

bep̂be
0 RT

be

]

=















1 0 0 0 l7cq7 l7sq7
0 cq78 sq78 −l7cq8 0 0
0 −sq78 cq78 l7sq8 0 0
0 0 0 1 0 0
0 0 0 0 cq78 sq78
0 0 0 0 −sq78 cq78















(25)

V B
0b =















1 0 0 0 (a+ b) 0
0 1 0 −(a+ b) 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



































v1
v2
vaz
1

a
v2

−
1

a
v1

ωa
z





















(26)

V B
be =















0 0
−l7cq8 0
l7sq8 0
1 1
0 0
0 0















[

q̇7
q̇8

]

(27)

The expression V B
0e = J̄B

a vam is found as















vex
vey
vez
ωe
x

ωe
y

ωe
z















=


















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Here we have definedα1 = 1

a
(b+l7cq7), β1 = 1

a
(bcq78+l7cq8)

and β2 = 1

a
(bsq78 + l7sq8).

7. CASE STUDY - HOLE CONSTRAINT ON THE CHAIN

We will see how the calculations are carried out through a
simple example.

Assume a robotic manipulators as the one pictured to the left
in Fig. 1 with 6 degrees of freedom before and another 2
degrees of freedom after the constraint. Assume further that the
constraint is a hole, i.e., a 2-DoF constraint given by (13). The
kinematic relations are then found as follows:

(1) The end-effector velocity is given by V B
0e .

(2) The lateral velocities at Fc are required to be zero, which
for our choice of reference frame gives vcx = vcy = 0. The
corresponding velocities at Fa are then found as
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(3) The reduced variables are then found by eliminating the
dependent variables ωa

x and ωa
y :

V̄ B
0a =


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
. (30)

(4) The mapping from the end-effector velocities to these new
velocity variables can now be found as
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(31)
We see that we have found a mapping from the 6-DoF
end-effector space to the another 6-DoF space represented
by a 6-DoF manipulator, a 2-DoF wrist and a 2-DoF hole
constraint.

This is suitable for workspace control and at the same
time guarantees that the entry point velocity constraints
are satisfied.

(5) Finally the robot velocities are found from Equations (11-
12) as
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(32)

and the corresponding joint velocities are found from the
manipulator Jacobian in the standard way and fed to the
controller together with the joint velocities found in point
(4).

7.1 Singularity Avoidance

We cannot, in general, guarantee that there exists a set of
joint velocities vam which generates the desired end-effector
velocities V B

0e . For instance, if the Constrained Jacobian Matrix
J̄B
a is singular, the end-effector motion cannot be generated.

The damped least square (DLS) method to avoid singularities
for the manipulator Jacobian JB

a can be written as (Siciliano
et al. [2011]).

V B
0e =

(

JB
a

)T
(

JB
a

(

JB
a

)T
+ λ2I

)−1

q̇. (33)

We can use the same idea to avoid singularities in the CJM.
Assume that we want to minimize the cost function

f(vam) =
∥

∥J̄B
a vam − V B

0e

∥

∥+ λ2 ‖vam‖ (34)
We can rewrite this as
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∥
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(35)
Our DLS has the same form as for the standard approach,
but the interpretation is somewhat different. We restrict the
velocities in the new variables vam while following the desired
end effector trajectory V B

0e as tightly as possible, which differs
from the standard formulation which restrict the joint velocities
directly. We thus avoid the singularities that arise as a result
of the constraints imposed on the chain, and not the kinematic
singularities of the robot arm itself.

8. EXPERIMENTS

To verify the proposed theory a simple setup with a manipulator
was used.

8.1 Experimental Setup

To verify this theory, we control a manipulator by a haptic
device. A standard 6-DoF Phantom haptic device from Sensable
was used to control a Motoman DIA-10, which is a dual-arm
robot. Each arm on the Motoman DIA-10 has 7 axes of motion
and a ”human-like” structure. The robot also has a 1-DoF base.
We want the robot end effector to follow the reference, so
workspace control is required. The time delay is minimal and
not treated in this paper. The control is, however, implemented
so that it is robust with respect to time delays.

Fig. 2. The robot and the constraint
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Fig. 3. Velocity along x and y axis at the constraint point

8.2 Experimental Results

The end effector of the Motoman is to follow the reference from
the master without violating the constraint. We use one arm of
the Motoman and the base so the arm has 8 degrees of freedom.
We apply the hole constraint on link 6. So we have 6 degrees
of freedom before the constraint and 2 degrees of freedom after
the constraint.

The velocities at the constraint are shown in Fig. 3. We can see
the velocities vcx and vcy along x− and y−axes, respectively,
that are, except for the noise, very close to zero, which shows
that the entry point constraint is satisfied.

In Fig. 4, we see how well the actual velocities at the end
effector follow the desired velocities. From Fig. 3 and Fig. 4, we
can conclude that our manipulator satisfies the constraint while
the end effector still follow the desired values. The variances
of the velocities at the constraint and the end effector are
calculated to approximately 2.10−6 so we conclude that this
is noise in both cases.

An illustration of the robot showing overlaid images is shown
in Fig. 2. We see that for a single point on the arm there is no
motion in the direction of the x− and y− axes. A video of the
experiments can also be found by following the following link:
http://youtu.be/BiLiiD1MR6o.

9. CONCLUSION

This paper solves the constrained motion problem for a robotic
manipulator by mapping the end-effector velocities to the joint
velocities in such a way that the constraints are guaranteed to
be satisfied. We solve this at a kinematic level, i.e., we force the
velocities in certain directions to vanish in order to avoid hitting
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Fig. 4. Linear velocities at the end effector

obstacles. The reduced dimensionality due to the constraints
are cast into a reduced velocity space by introducing a new set
of velocity variables. The Jacobian is rewritten so that it finds
the mapping to the new velocity variables instead of the joint
velocities, and as a result the constraints are always satisfied.
This mapping is denoted the Constrained Jacobian Matrix and
presents us with a solution to the inverse kinematics problem
for constrained manipulators. Experimental results show the
efficiency of the approach.
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