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Abstract: This paper considers the problem of attitude synchronization for a group of flexible
spacecraft based on distributed attitude cooperative control strategy. Based on the backstepping
design, non-smooth control, and the neighbor-based design rule, a distributed attitude control
law is constructed step by step. Under the proposed control law, it is shown that the attitude
synchronization is achieved asymptotically and the induced vibration by flexible appendages is
simultaneously suppressed.

1. INTRODUCTION

Distributed cooperative control of multi-agent systems has
been attracting a lot of interest in control community
recently because of its many advantages, such as greater
efficiency, higher robustness, and less communication re-
quirement Ren et al. (2007); Hong et al. (2006); Khoo et al.
(2009). As an important application area of distributed
control, the attitude cooperative control for spacecraft
formation has also gained certain progresses.

For a group of rigid spacecraft, in Lawton et al. (2002),
two kinds of distributed control strategies were designed
such that the attitude synchronization is achieved under a
ring communication graph. Later, this ring communication
topology graph was relaxed to be a more general case in
Ren et al. (2007). When the angular velocity is unmea-
surable, the attitude synchronization control problem was
also investigated in Lawton et al. (2002); Abdessameud
et al. (2009). For the attitude cooperative tracking con-
trol problem with a single leader or multiple leaders,
the distributed cooperative control laws were proposed in
Dimarogonas et al. (2009); Wu et al. (2009). Recently,
in order to enhance the convergence rate, precision, and
robustness against disturbances, the finite-time control
technique Bhat et al. (2000); Qian et al. (2005); Shen et al.
(2008) has been employed to design finite-time attitude
synchronization control algorithms Du et al. (2011); Meng
et al. (2010).

Note that all the preceding listed literature on attitude
cooperative control only concentrate on the rigid space-
craft. Nevertheless, with the development of the space
science technology, the structure of spacecraft will be more
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complex and usually carry some flexible appendages, such
as solar array, manipulator, etc. Compared with the rigid
spacecraft, the control problem of flexible spacecraft be-
comes more complicated since not only the attitude control
but also the vibration induced by the flexible appendages
are required to be handled, where the coupling nonlin-
earities with modal variable are the main obstructions.
Although for a single flexible spacecraft, many researchers
have developed different nonlinear control methods, such
as Gennaro (2003); Hu et al. (2010), to name just a few.
However, for the attitude cooperative control for multiple
flexible spacecraft, to the best our knowledge, there have
been no available results.

In this paper, we focus on solving the problem of attitude
synchronization for a group of flexible spacecraft. Based
on the backstepping design and non-smooth control, a
distritbuted attitude cooperative control law is explicitly
constructed in two steps. At the first step, the angular
velocity is regarded as a virtual control input and a
neighbor-based distributed control law is designed, where
the modal variables are first assumed to be measurable.
Then to address the problem of lack of modal variables
measurement, the virtual controller is redesigned together
with a modal observer. At the second step, for the dynamic
subsystem, a finite-time control law is designed for the
control torque such that the virtual angular velocity can
be tracked by the real velocity in a finite time.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Graph theory

Without loss of generality, n flexible spacecraft will be
considered in this paper. Let Γ = {1, · · · , n}. Each space-
craft is regarded as a node and the information exchange
among n spacecraft is denoted by a directed graph G(A) =
{V,E,A}. V = {vi, i = 1, · · · , n} is the set of nodes,
E ⊆ V × V is the set of edges and A = [aij ] ∈ Rn×n

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 9968



is the weighted adjacency matrix of the graph G(A) with
non-negative adjacency elements aij . If there is an edge
from node j to node i, i.e., (vj , vi) ∈ E, then aij > 0,
which means there exists an available information channel
from node j to node i. Moreover, we assume that aii = 0
for all i ∈ Γ. The set of neighbors of node i is denoted
by Ni = {j : (vj , vi) ∈ E}. The out-degree of node vi is
defined as degout(vi) = di =

∑n
j=1 aij =

∑
j∈Ni

aij . Then

the degree matrix of digraph G is D = diag{d1, · · · , dn}
and the Laplacian matrix of digraph G is L = D −A.

A path in directed graph G from vi1 to vik is a sequence of
vi1 , vi2 , · · · , vik of finite nodes starting with vi1 and ending
with vik such that (vil , vil+1

) ∈ E for l = 1, 2, · · · , k − 1.
The directed graph G is strongly connected if there is a
path between any two distinct vertices.

2.2 Flexible spacecraft attitude model

The model of flexible spacecraft attitude consists of two
parts: kinematic model and dynamic model. Based on the
quaternion Shuster (1993), the kinematic equation of i-th
spacecraft is described by

q̇i =
1

2
E(qi)ωi, i ∈ Γ = {1, · · · , n}, (1)

where qi = [qi,0, qi,1, qi,2, qi,3]
T = [qi,0, q

T
i,v]

T is unit

quaternion, ωi = [ωi,1, ωi,2, ωi,3]
T is the angular velocity

vector, and

E(qi) =

(
−qTi,v

−s(qi,v) + qi,0I3

)
,

where I3 denotes the 3×3 identity matrix and s(·) denotes
the skew matrix. The skew matrix is defined as

s(x) =

[
0 x3 −x2

−x3 0 x1
x2 −x1 0

]
for any x = [x1, x2, x3]

T ∈ R3, which satisfies ∥s(x)∥ =
∥x∥. In addition, the unit quaternion satisfies the con-
straint condition

q2i,0 + qTi,vqi,v = 1. (2)

From Gennaro (2003), the dynamic equation of i-th space-
craft is

Jiω̇i + δTi η̈i = s(ωi)(Jiωi + δTi η̇i) + τi,

η̈i + Ciη̇i +Kiηi = −δiω̇i i ∈ Γ, (3)

where Ji = JT
i is the positive definite inertia matrix,

τi = [τi,1, τi,2, τi,3]
T is the control torque vector, δi is the

coupling matrix between the rigid body and the flexible
attachments, ηi is the vector of the modal coordinate, Ci =
diag{2ξi,jωi,nj , j = 1, · · · , Ni} is the damping (diagonal)
matrix, Ki = diag{ωi,nj , j = 1, · · · , Ni} is the stiffness
matrix, Ni is the number of flexible attachment for i-th
spacecraft, ωi,nj is the natural frequencies and ξi,j is the
associated damping.

As that in Gennaro (2003), denote ψi = η̇i + δiωi and
Jm,i = Ji − δTi δi. The attitude equations (1) and (3) can
be rewritten as

q̇i =
1

2
E(qi)ωi, η̇i = ψi − δiωi,

ψ̇i = −(Ciψi +Kiηi − Ciδiωi),

Jm,iω̇i = s(ωi)(Jm,iωi + δTi ψi)

+ δTi (Ciψi +Kiηi − Ciδiωi) + τi, i ∈ Γ. (4)

2.3 Control objective

The goal of this paper is to design a distributed attitude
control law for the n flexible spacecraft such that all the
attitudes can reach consensus/synchronization and the
induced oscillations of the spacecraft flexible appendages
are damped out.

2.4 Useful lemma

Lemma 1. (Bhat et al. (2000)): Consider system ẋ =
f(x), f(0) = 0, x ∈ Rn, where f(·) : Rn → Rn is a
continuous function. Suppose there exists a continuous,
positive definite function V (x) : U → R defined on an

open neighborhood U of the origin such that V̇ (x) +
c(V (x))α ≤ 0 on U for some c > 0 and α ∈ (0, 1). Then the
origin is a finite-time stable equilibrium of system ẋ = f(x)

and the finite settling time T satisfies T ≤ V (x(0))1−α

c(1−α) .

If U = Rn and V is radially unbounded, the origin is a
globally finite-time stable equilibrium.

Lemma 2. (Xiao et al. (2009)): If a directed graph G is
strongly connected, then there is a positive vector γ =
[γ1, · · · , γn]T ∈ Rn (i.e. γi > 0, i = 1, · · · , n) such that
γTL = 0, where L is the corresponding Laplacian matrix
L of graph G.

Lemma 3. (hardy et al. (1952)): For any x ∈ R, y ∈
R, c > 0, d > 0, |x|c|y|d ≤ c/(c+ d)|x|c+d+d/(c+ d)|y|c+d.

3. MAIN RESULTS

The controller design method is mainly based on the
backstepping design. Specifically speaking, the design pro-
cedure is divided into two steps:
i) For the kinematic subsystem and modal dynamics

q̇i =
1

2
E(qi)ωi, η̇i = ψi − δiωi,

ψ̇i = −(Ciψi +Kiηi − Ciδiωi), i ∈ Γ, (5)

considering ωi as the virtual input, a virtual angular
velocity ω∗

i is designed such that the attitudes of kinematic
subsystem achieve consensus.
ii) For the dynamic subsystem, a finite-time control law τi
is designed such that the virtual velocity can be tracked
by the real angular velocity in a finite time.

3.1 Virtual angular velocity design

In this subsection, the angular velocity ωi is regarded as a
virtual control input and is designed such that the attitude
synchronization can be achieved.

Lemma 4. For the subsystem (5), if the directed graph
G(A) is strongly connected and the virtual angular veloc-
ity is designed as

ω∗
i =− k1

∑
j∈Ni

aij

[
(qi,v − qj,v) + [(ψT

i Ci − 2ηTi Ki)δi]
T

− [(ψT
j Cj − 2ηTj Kj)δj ]

T
]
, i ∈ Γ, (6)

where k1 > 0, then the attitude synchronization can be
achieved asymptotically.

Proof. According to Lemma 2, if the directed graph G(A)
is strongly connected, there exists a positive column vector
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γ = [γ1, · · · , γn]T ∈ Rn such that γTL = 0. Consider the
following candidate Lyapunov function

V1 =
n∑

i=1

γiWi, Wi =
[
(2− 2qi,0) +

1

2
ψT
i ψi + ηTi Kiηi

+
1

2
(ψi + Ciηi)

T (ψi + Ciηi)
]
. (7)

Based on the definition of E(qi), the derivation ofWi along
system (5) is

Ẇi =− ηTi CiKiηi − ψT
i Ciψi

+ [qTi,v + (ψT
i Ci − 2ηTi Ki)δi]ωi. (8)

Denote

βi = qi,v + [(ψT
i Ci − 2ηTi Ki)δi]

T , (9)

which implies that ω∗
i = −k1

∑
j∈Ni

aij(βi − βj). By (7),

and substituting this virtual control law into (8) yields

V̇1 =−
n∑

i=1

γi(η
T
i CiKiηi + ψT

i Ciψi)

− k1

n∑
i=1

∑
j∈Ni

γiaij(β
T
i βi − βT

i βj)

=−
n∑

i=1

γi(η
T
i CiKiηi + ψT

i Ciψi)

− k1
2

n∑
i=1

γi
∑
j∈Ni

aij(β
T
i βi − βT

j βj)

− k1
2

n∑
i=1

γi
∑
j∈Ni

aij(βi − βj)
T (βi − βj). (10)

Define β = [βT
1 β1, · · · , βT

n βn]
T . By the definition of L,∑

j∈Ni
aij(β

T
i βi − βT

j βj) = (Lβ)i, where (Lβ)i denotes

the i-th element of vector Lβ. Since γTL = 0, then
n∑

i=1

γi
∑
j∈Ni

aij(β
T
i βi − βT

j βj) = γTLβ = 0. (11)

With this relation in mind, it follows from (10) that

V̇1 =−
n∑

i=1

γi(η
T
i CiKiηi + ψT

i Ciψi)

− k1
2

n∑
i=1

γi
∑
j∈Ni

aij(βi − βj)
T (βi − βj) ≤ 0. (12)

By LaSalle’s invariance principle, and noticing that γi > 0,
it can be concluded that V̇1(t) → 0 as t → ∞, which
implies that (ηi, ψi,

∑
j∈Ni

aij(βi − βj)
T (βi − βj)) → 0 as

t→ ∞. Since aij > 0 if j ∈ Ni, then we have for all i ∈ Γ,
βi − βj → 0, ∀j ∈ Ni, as t → ∞. Since the graph G(A)
is strong connected, then there exists a path between any
two distinct agents. As a matter of fact, βi − βj → 0 as
t→ ∞ for all i, j ∈ Γ. Based on the definition of βi, it can
be further concluded that qi,v − qj,v → 0 as t→ ∞ for all
i, j ∈ Γ. In addition, by noticing the constraint condition
(2), qi,v = qj,v implies that qi,0 = qj,0 or qi,0 = −qj,0.
Since quaternions (qi,0, q

T
i,v)

T and (−qi,0, qTi,v)T represent
the same rotation in the physical space Shuster (1993), the
attitude synchronization is achieved asymptotically. 2

3.2 Control law design
In this section, based on the idea of backstepping design, a
control law for τi is designed to achieve attitude consensus,
which is presented in the following theorem.

Theorem 1. For the multiple flexible spacecraft systems
(1) and (3), if the directed graph G(A) is strongly con-
nected and the control torque τi is designed as

τi =− s(ωi)(Jm,iωi + δTi ψi)− δTi (Ciψi +Kiηi − Ciδiωi)

+ Jm,iω̇
∗
i − k2sign(ωi − ω∗

i ) · |ωi − ω∗
i |α, i ∈ Γ, (13)

then the attitude synchronization can be achieved asymp-
totically, where k1 > 0, k2 > 0, 0 < α < 1.

Proof. Define
ei = ωi − ω∗

i , i ∈ Γ,

as the angular velocity tracking error. It follows from (4)
that

Jm,iėi =s(ωi)(Jm,iωi + δTi ψi) + δTi (Ciψi +Kiηi
− Ciδiωi) + τi − Jm,iω̇

∗
i . (14)

Substituting the control law (13) into (14) yields

Jm,iėi = −k2sign(ei)|ei|α. (15)

Since Jm,i is positive definite matrix, choose Lyapunov
function:

Ui =
1

2
eiJm,iei (16)

which leads to

U̇i = −k2|ei|1+α ≤ −k2
( 2

λmax(Jm,i)

) 1+α
2

U
1+α
2

i (17)

Hence, it follows from Lemma 1 that ei will converge
to zero in a finite time T . After the time instant T ,
ωi will equivalent to ω∗

i . As a result, it follows from
Lemma 4 that the attitude synchronization will be reached
asymptotically after the time T .

Next, we will consider the system states at the interval
[0, T ] and prove that the global boundedness of the system
states of closed-loop system (4) with (13) at this interval.

To achieve this objective, by (7) and (16), choose Lya-
punov function

V2 = V1 +
n∑

i=1

γiUi. (18)

According to (8) and (17), we obtain

V̇2 =−
n∑

i=1

γi(η
T
i CiKiηi + ψT

i Ciψi)

− k1
2

n∑
i=1

γi
∑
j∈Ni

aij(βi − βj)
T (βi − βj)

+

n∑
i=1

γi[q
T
i,v + (ψT

i Ci − 2ηTi Ki)δi](ωi − ω∗
i )

− k2

n∑
i=1

γi|ei|1+α

≤−
n∑

i=1

γi(η
T
i CiKiηi + ψT

i Ciψi)− k2

n∑
i=1

γi|ei|1+α

+
n∑

i=1

γi[q
T
i,v + (ψT

i Ci − 2ηTi Ki)δi]ei. (19)
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Since system (15) is globally asymptotically stable, ei is
globally bounded, which implies that there is a positive
constant li < +∞ such that ∥ei∥ ≤ li. Note that the
parameter matrices Ci,Ki and δi are bounded. Hence,
With this fact and the condition (2) in mind, from Lemma
3 we have

[qTi,v + (ψT
i Ci − 2ηTi Ki)δi]ei

≤∥qi,v∥li + ∥ψT
i C

1/2
i ∥ · ∥C1/2

i ∥li

+ 2∥ηTi (CiKi)
1/2∥ · ∥Kiδi∥

∥(CiKi)1/2∥
li

≤li +
1

2
ψT
i Ciψi +

1

2
∥Ci∥2l2i +

1

2
ηTi CiKiηi +

∥Kiδi∥2

2∥CiKi∥
l2i

=:
1

2
ψT
i Ciψi +

1

2
ηTi CiKiηi + di, (20)

for a positive constant di. Substituting (20) into (19) yields

V̇2 ≤−
n∑

i=1

1

2
γi(η

T
i CiKiηi + ψT

i Ciψi)

− k2

n∑
i=1

γi|ei|1+α +

n∑
i=1

γidi. (21)

Clearly, when
∑n

i=1
1
2γi(η

T
i CiKiηi + ψT

i Ciψi) +

k2
∑n

i=1 γi|ei|1+α >
∑n

i=1 γidi, then V̇2 < 0. Thus, the
state (ηi, ψi, ei) is globally bounded. With this fact in
mind, and noticing the constraint condition on quaternion
(i.e. ∥qi∥ = 1), it can be concluded that the trajectory
of system (4) with (13) is globally bounded. The proof is
completed. 2

Remark 1. The control law proposed in Theorem 1 is
distributed, i.e. the feedback information is only based
on the neighbors and itself. The advantage of distributed
control law lies in its greater efficiency, higher robustness,
and less communication requirement Ren et al. (2007).

Example. Consider a team with four identical flexible
spacecraft described by (1) and (3). The information
exchange topology among spacecraft is shown in Fig. 1.
The weights of the directed edges are: a13 = a21 = a34 =
a42 = 0.5. The model parameters are given as:

Ji =

(
14 3 4
3 18 0
4 0 12

)
, δi =

 2.45637 1.27814 2.15629
−1.25619 0.91756 −1.67264
1.11687 2.48901 −0.83674
1.23637 −2.6581 −1.12503

 ,

ωi,41 = 1.0973, ωi,42 = 1.2761, ωi,43 = 1.6538, ωi,44 =
2.2893, ξi,1 = 0.056, ξi,2 = 0.086, ξi,3 = 0.08, ξi,4 =
0.025, i = 1, · · · , 4. Let the control gains of control law

Fig. 1. The information exchange among four spacecraft.

(13) be k1 = 0.3, k2 = 15. The initial conditions are
selected as:

q1(0) = [0.9274− 0.1, 0.2, 0.3]T , ω1(0) = [0.1,−0.35, 0.5]T ,

q2(0) = [−0.9274,−0.2,−0.3, 0.1]T , ω2(0) = [−0.0, 0.1,−1.0]T ,

q3(0) = [0.6856, 0.1, 0.6, 0.4]T , ω3(0) = [−0.2,−0.3, 0.0]T ,

q4(0) = [−0.8421, 0.5, 0.03,−0.2]T , ω4(0) = [0.4, 0.13, 0.25]T ,

ηi(0) = [0, 0, 0, 0]T , ψi(0) = δωi(0), i = 1, 2, 3, 4.

The control torques are limited not to exceed 25 N.m. The
response curves of the closed-loop system (1)-(3) with (13)
are shown in Figs. 2-4. It can be found that the attitudes
of each spacecraft converge to the same attitudes, i.e. the
attitude synchronization can be achieved asymptotically.

4. CONCLUSION

This paper have discussed the attitude synchronization
problem for a group of flexible spacecraft. By using
the backstepping control and graph theory, a distributed
attitude cooperative control law is proposed. Rigorous
proof has shown that the attitude synchronization can be
achieved asymptotically and the vibrations are damped
out at the same time. Further work will be focused on the
study of the robustness problem with model uncertainties.
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