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Abstract: This paper presents a solution to on-board trajectory tracking control of quadrotors. The
proposed approach combines the standard hierarchical control paradigm that separates the control into
low-level motor control, mid-level attitude dynamics control, and a high-level trajectory tracking with
a model predictive control strategy. We use dynamic reduction of the attitude dynamics and dynamic
extension of the thrust control along with feedback linearisation to obtain a linear system of relative
degree three that models force controlled position and trajectory tracking for the quadrotor. Model
predictive control is then used on the feedback equivalent system and its control outputs are transformed
back into the inputs for the original system. The proposed structure leads to a low complexity model
predictive control algorithm that is implemented in real-time on an embedded hardware. Experimental
results on different position and trajectory tracking control are presented to illustrate the application of
the derived linear system and controllers.
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1. INTRODUCTION

Quadrotors are aerial vehicles with a four motor-rotor assembly
for generating lift and controllability. Their light weight, ease of
design and simple dynamics have increased their use in aerial
robotics research (Mahony et al. (2012)).

Model predictive control (MPC) refers to a set of controllers
that use a model to compute inputs from the current time to
a future time in order to optimise the behaviour of a model
along the input trajectory (Liu et al. (2011)). The predictive
nature of the control design makes it ideal for high performance
trajectory tracking. A key advantage of MPC is that it offers
the ability to design controllers with constraints while solving
an optimal control problem along the given trajectory. The
most significant issue in using MPC is associated with the
large computational costs that is incurred in a general nonlinear
MPC problem. This difficulty has tended to limit the real-time
application of MPC control for nonlinear systems with non-
trivial constraints to the process/chemical industry where the
time constants are slow enough that the underlying optimization
problem can be solved in real-time.

To address the issues associated with real-time MPC imple-
mentation, researchers have proposed the use of a low com-
putational Newton-type method and explicit MPC (Diehl et al.
(2005); Bemporad et al. (2002)). The Newton-type method
provides approximate solutions to the optimisation problem by
using approximate linearisations along optimal trajectories of
the nonlinear system without any guarantee of optimality (Diehl
et al. (2005)). Explicit MPC on the other hand is based on
computing control laws as piecewise affine functions of state
offline and then using some search algorithms (usually a KD-
tree search) in the online implementation (Bemporad et al.
(2002); Zeilinger et al. (2007); Liu et al. (2011)). Even with
pre-computed control, the computational load associated with
this approach is significant. Alternatively, MPC for a linearised
system with no constraints can be solved as an unconstrained
Linear Quadratic Regulator (LQR) problem and becomes com-

putationally viable. The translational dynamics of a quadrotor
are naturally a linear system and by assuming that the attitude
dynamics are fully controlled, linear MPC can be applied di-
rectly (Alexis et al. (2011); Mueller and D’Andrea (2013)).
The performance of such a system is inherently limited by the
bandwidth of the orientation dynamics and the linearisation
of the system changes with different flight conditions and the
approach must be combined with a gain scheduling algorithm.

Full nonlinear models of quadrotor aerodynamics have been
developed over the last fifteen years (Mahony et al. (2012);
Bangura and Mahony (2012); Huang et al. (2009); Pounds and
Mahony (2004); Hamel et al. (2002)). Recent results demon-
strate the fidelity of these models under a wide range of operat-
ing conditions (Omari et al. (2013)). Exact feedback linearisa-
tion, a problem that is closely related to the question of finding
differentially flat outputs for quadrotors is fundamental in gen-
erating the minimum jerk trajectory references that provide the
feedforward components of high-performance control in most
of the more impressive demonstrations of quadrotor acrobatics
(Mellinger et al. (2012); Lupashin and D’Andrea (2011)).

In most existing work, the control problem is split into a feed-
forward control, usually based on a linearisation or near lineari-
sation of the system dynamics, with high gain PID feedback to
regulate the desired trajectory tracking. There has been some
work on using the linearised model directly for feedback con-
trol design. In November 2013, (Achtelik et al. (2013)) applied
the concept of dynamic inversion to the nonlinear system and
obtained rotation rates outputs from a position controller. The
limitation of their approach however is that the system param-
eters need to be accurately known and no details on other flight
states such as hover and height control were provided.

In this paper, we consider the question of implementing Model
predictive control (MPC) trajectory tracking control scheme in
real-time on an embedded computer for a quadrotor vehicle.
Although the computing resources available on embedded plat-
forms is improving extremely quickly, the underlying compu-
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tational costs of full nonlinear MPC control is prohibitive and a
key contribution of this paper is to design a feedback equivalent
linear system to which the MPC framework can be applied.
However, feedback linearisation of the full system dynamics is
highly complex (and potentially not robust) and leads to signifi-
cant computational costs associated with applying the feedback
transformation. To avoid this, we will use the natural high gain
nature of the attitude dynamics to avoid considering the full
system dynamics in the MPC stage of the design. The full
control design consists of four stages: Firstly, we apply a high
gain control to the attitude dynamics and assume that under this
control, the vehicle angular velocity tracks a desired reference
angular velocity accurately, a process known as dynamic reduc-
tion. In practice, there is only sufficient gain available to ensure
satisfactory stabilisation of an a-priori known trajectory and it
is necessary to add a feedforward term to the torque control to
anticipate the desired motion. This feedforward term is derived
from the MPC design loop in the final stage of the control as
discussed below. At the same time, applying dynamic reduction
of the attitude dynamics, we dynamically extend the thrust com-
mand by adding an integrator. This leads to a system of relative
degree three which incorporates the translational kinematics
and dynamics along with attitude kinematics in the nonlinear
system. The second stage of the control design applies feedback
linearisation to obtain an equivalent linear system. The state
transformation of the feedback linearisation is associated with
the natural thrust vectoring dynamics of the vehicle and the
resulting virtual inputs are directly mapped to the thrust inte-
grator input and the angular velocity reference for the high gain
loop. The third stage of the control design applies unconstrained
MPC to the resulting linear time-invariant system. The MPC
is undertaken on a receding horizon and is easily run on any
autopilot such as the PX4 hardware (PX4 Team (2013)). The
resulting control input is associated with an optimal forward
trajectory of the system model and this predicted trajectory is
then used to compute the optimal predicted angular velocity
trajectory using the full nonlinear model of the system. The
final stage of the control is to use the angular velocity and accel-
eration to generate the feedforward torque used in the dynamic
reduction of angular velocity and map the MPC control out-
puts into the reference angular velocities and integrator thrust
input to the dynamic reduction. Unlike previous solutions, our
solution solves for a general position and/or trajectory tracking
problem without separating and linearising the different flight
states such as hovering, translational and axial. Experimental
results are presented that demonstrate the effectiveness of the
concept.

The remainder of the paper is organised as follows: the non-
linear model for quadrotor dynamics is presented in Section 2;
the dynamic reduction and extension along with the feedback
linearisation is covered in Section 3. Section 4 outlines the ap-
plication of unconstrained MPC to the new system, and finally
experimental results are shown in Section 5.

2. NONLINEAR QUADROTOR MODEL

In this section, we present the nonlinear dynamic model for
quadrotors (see Figure 1). The model accounts for the linear
drag term and gyroscopic torques that result from rotating
rotor blades. From observing that the dominant drag effects
are linear, we derive a lumped parameter model of the drag
force which is independent of the attitude of the vehicle. Con-
sequently, it will be incorporated directly into the linearised
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Fig. 1. Schematic of a quadrotor with the different frames of
reference.

model and not compensated for in the feedback linearisation
presented in Section 3.

Let ζ = (x,y,z)> ∈ {A} denote the relative position of the body
frame {B} to the inertial frame {A} and v = (vx,vy,vz)

> ∈ {A}
denote the velocity of {B} with respect to {A} expressed in
{A}. The angular velocity of {B} with respect to {A} Ω =

(Ωx,Ωy,Ωz)
> ∈ {B} represents the rotation rates of the air-

frame measured in {B}. Let the orientation of {B} with respect
to {A} be R = ARB ∈ SO(3), then the kinematic equations are
given by (Hamel et al. (2002))

ζ̇ = v, (1a)
Ṙ = RΩ×. (1b)

Let T be the combined thrust or heave force generated by the
rotors, DT denote drag which we will discuss in more detail
later, and τ denote the torque generated by the rotors. The
dynamics of the quadrotor are given by

mv̇ = mge3−T Re3 +RDT , (2a)
IΩ̇ =−Ω×IΩ+Ga(Ω)+ τ, (2b)

where Ω× ∈ R3×3 is the skew symmetric matrix derived from
Ω ∈R3 such that Ω×w = Ω×w for all w ∈R3. The gyroscopic
effect Ga(Ω) in Equation 2b of the rotors is given by

Ga(Ω) :=−
4

∑
i=1

(−1)i
ϖiIr(Ω× e3), (3)

where ϖi is the angular velocity of the rotors, Ir is the moment
of inertia of the rotor blades and the factor (−1)i accounts for
direction of rotation of a given rotor. The total thrust magnitude,
T on the vehicle is the sum of the individual thrusts Ti of the
rotors

T =
4

∑
i=1

Ti.

The model used for drag is based on the development provided
in (Bangura and Mahony (2012)). The dominant drag effect
for a translating rotor vehicle is associated with a combination
of rotor blade flapping and induced drag. Both terms depend
linearly on the velocity of the vehicle. An effective lumped
parameter model is defined by

DT =
4

∑
i=1

Dri =−T KrR>v ∈ {B},

where

Kr =

c̄ −b̄ 0
b̄ c̄ 0
0 0 0

 , (4)
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0 ≤ b̄ << c̄ are the linear drag coefficients determined from
flight tests. In practice, the coupling term b̄ can be ignored
except in the case of heavy vehicles with very flexible rotors
(Omari et al. (2013)). In this case, one may write

T RKrR>v = T c̄v−T c̄Re3Vz,

where
Vz = e>3 R>v. (5)

If
T̄ = T +T c̄Vz, (6)

using this state transformation leads to the nonlinear system
model

ζ̇ = v, (7a)
mv̇ = mge3− T̄ Re3−T c̄v, (7b)

Ṙ = RΩ×, (7c)
IΩ̇ =−Ω×IΩ+Ga(Ω)+ τ. (7d)

Consider Table 1 which shows the sampling frequencies and
response times of the different subsystems of a quadrotor.
The response time of the motor-rotor subsystem is an order

Table 1. Sampling frequency and response time for
the different sublevels of a quadrotor.

System Frequency and Response Time
Motor/ESC 1000Hz, 0.05s
Attitude 200Hz, 0.5s
Position 50Hz, ≥1s

of magnitude faster than the response time of the attitude
subsystem, which in turn is at least twice as fast as the linear
translational dynamics. Therefore, there is a natural time scale
separation between the motor-rotor dynamics and the attitude
response and a lesser separation between the attitude dynamics
and the position response. Following this analysis, we propose a
hierarchical control structure with the motor-rotor thrust control
at the low-level, attitude dynamics control at the mid-level
and position control at the high-level. The proposed control
architecture for the full system is shown in Figure 2. In the
sequel, we will show the development of these controllers.

The required thrust for the individual motors is determined as
follows (Mahony et al. (2012); Hamel et al. (2002))1 1 1 1

l 0 −l 0
0 −l 0 l
κ −κ κ −κ


T1

T2
T3
T4

=

T
τx
τy
τz

 , (8)

where l is the length of each rotor from the centre of {B} and
κ is the thrust to torque ratio of the rotor blades. In controlling
thrust, we use the current static model for thrust expressed as a
function of the rotor speed to determine the rotor speed setpoint

Ti =CT0ϖ +CT ϖ
2, (9)

where ϖ is the rotor speed, CT0 and CT are the thrust constants
determined from static thrust tests. Rotor speed is controlled
using a high-gain proportional (Kϖ ) feedback coupled with a
feedforward term based on the motor-rotor open-loop voltage
response

va = v f f (ϖd)−Kϖ (ϖ −ϖd), (10)
where ϖd is the desired rotor speed obtained from Equation 9.
v f f (ϖd) is the feedforward voltage and is a function of ϖd
based on linear interpolation of the static thrust test results
(Bangura and Mahony (2012)). The setpoint voltage va is the
input to the electronic speed controller (ESC) implemented

+

-

Fig. 2. Proposed Control Scheme. The state x is measured using
VICON tracking system, Ω measurements are provided by
rate gyros on the autopilot and ϖ measurements on-board
the ESC. Using the R,v and T , the ∑ block converts the
MPC control outputs u and its derivative u̇ into a new T ,
and desired Ω̇ and Ω for the rate controller.

in practice using Pulse Width Modulation (PWM) of the bus
voltage. The local motor-rotor control is implemented at 1kHz
on the dedicated ESC hardware.

3. DECOMPOSING AND SIMPLIFYING THE SYSTEM

Applying model predictive control (MPC) to the full nonlin-
ear dynamics of the quadrotor (Equation 7) is computationally
intractable on the embedded hardware typically available on
a quadrotor aerial robot. To simplify the system model, we
propose to exploit the natural high-gain and passive character-
istics of the attitude dynamics to dynamically reduce Equation
7d leaving the remaining dynamic Equations 7a, 7b and 7c to
be dealt with using MPC. We will show that the remaining
dynamics can be feedback linearised leading to a viable linear
MPC (LMPC) problem.

3.1 High Gain Control of Ω

Let Ωd = Ωd(t) be a desired reference angular velocity spec-
ified at time t by the MPC control along with the nonlinear
mapping associated with the feedback linearisation that will
be derived in this section. This reference signal is taken as the
desired setpoint for the high gain angular velocity control loop.
Since Ωd is obtained from an MPC algorithm, then it is associ-
ated with an optimal control Ωd(τ) on a time interval [t, t +T)
into the future. As will be shown in Section 4, the underlying
MPC problem is linear and the resulting control is well defined
and differentiable in forward time. The mapping from MPC
control to Ωd is differentiable and its Jacobian is full rank along
feasible trajectories of the quadrotor, and it follows that Ω̇d(t)
is well defined for all time and can be computed. Recalling
Equation 7d, we define a reference feedforward torque τd by

τd := IΩ̇d +(Ωd)×IΩ−Ga(Ωd), (11)

where Ω̇d is a feedforward term obtained from the trajectory.
Let Ω̃ = Ω−Ωd and let the feedback torque be

τ := τd−KΩΩ̃, (12)
where KΩ ∈ R3×3 is a positive definite matrix providing the
high-gain regulation.
Lemma 1. Consider the system Equation 7d with reference
signals Ωd and Ω̇d with control τ given by Equation 12 along
with Equation 11, then Ω̃→ 0 is globally exponentially stable
to zero.

Proof. Consider the Lyapunov function

V =
1
2

Ω̃
>IΩ̃
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and note that V is quadratic in the error Ω̃. The derivative of V
is

V̇ = Ω̃
>I ˙̃

Ω.

The error dynamics is given by

I ˙̃
Ω = IΩ̇− IΩ̇d . (13)

Substituting the system dynamics (Equation 7d) along with the
definition for the input torque τ , thus

V̇ = Ω̃
> (−Ω×IΩ+Ga(Ω)+ τd−KΩΩ̃− IΩ̇d

)
.

Substituting for τd ,

V̇ = Ω̃
> (−Ω×IΩ+Ga(Ω)−KΩΩ̃+(Ωd)×IΩ−Ga(Ωd)

)
.

Hence,
V̇ = Ω̃

> (−Ω̃×IΩ+Ga(Ω̃)−KΩΩ̃
)
.

Since Ω̃>Ω̃× =−Ω̃× Ω̃ = 0, then

V̇ =−Ω̃
>KΩΩ̃.

From Theorem 3.8 and Corollary 3.3 of (Khalil (1996)), it
follows that the error Ω̃ is globally asymptotically stable to
Ω̃ = 0. Moreover, since the Lyapunov function is quadratic and
its derivative is overbound by a negative quadratic i.e. for some
γ > 0, V̇ ≤ −γV ∀Ω̃, implies that Ω̃ is globally exponentially
stable to Ω̃ = 0 by the control law of Equation 12.

This controller forms the inner loop of the architecture shown
in Figure 2.

3.2 Feedback linearisation

This subsection shows how feedback linearisation can be ap-
plied to the nonlinear system to obtain a linear system for MPC
in Section 4.

Following on from Lemma 1, we will use the assumption
Ω = Ωd in the following derivation and treat Ω as an input.
Consequently only Equations 7a, 7b and 7c need to be consid-
ered. However, the new input Ωd and the thrust input T do not
have the same relative degree with respect to the position of the
vehicle. To address this, we dynamically extend the thrust T by
assigning a new input

Ṫ :=W. (14)
The variable T becomes an internal variable in the vehicle
control algorithm.

Following these simplifications, we consider the following sys-
tem

ζ̇ = v, (15a)
mv̇ = mge3− T̄ Re3−T c̄v, (15b)

Ṙ = RΩ×, (15c)
Ṫ =W (15d)

with inputs (Ω,W ). This is similar to work presented in (Achte-
lik et al. (2013)). The difference is that they considered the
roll and pitch attitude angles as non-controlled states. It will be
shown that including attitude enables us to do hovering flights
and prevents the vehicle from entering an infinite number of
flips or rotations when the distance to the goal is very large.

Note that Equation 15a is already linear. Consider Equation 15b
which can be rewritten as

mv̇ = mge3− T̄ Re3− (T c̄−mgc̄)v−mgc̄v. (16)
Let the exogenous force applied to the vehicle be defined by

F := mge3− T̄ Re3− (T c̄−mgc̄)v. (17)

Hence Equation 16 can be rewritten as

mv̇ = F−mgc̄v. (18)

These dynamics are linear and can be seen as a force-mass
system with velocity damping. To continue the feedback lin-
earisation process, we propose the following dynamics for F

Ḟ :=−βF +u, (19)

where β can be seen as a low-pass time constant on the evo-
lution of F . u is the “new” control input signal obtained from
the solution to the high-level model predictive controller (MPC)
and is explained in Section 4. The low-pass β is introduced to
model the limitations of the attitude response system in a natu-
ral manner so that the MPC control will be well conditioned.

The choice of dynamics, Equation 19, along with the input u
that will be provided by the MPC control define the physical
control inputs (Ω,W ) to the dynamics (Equation 15). Equa-
tion 17 is differentiated explicitly and set equal to the definition
of Ḟ in Equation19. Thus

−T̄ RΩ×e3− ˙̄T Re3− Ṫ c̄v− (T c̄−mgc̄) v̇ =−βF +u. (20)

From Equation 6,
˙̄T = Ṫ + Ṫ c̄Vz +T c̄V̇z. (21)

Substituting for v̇, T̄ and ˙̄T in Equation 20 yields

−
[
Ṫ (1+ c̄Vz)+T c̄V̇z

]
Re3− T̄ RΩ×e3− Ṫ c̄v−

(T c̄−mgc̄)
m

(F−mgc̄v) =−βF +u.
(22)

Expanding and collecting like terms, one obtains

−Ṫ (Re3 + c̄VzRe3 + c̄v)−T c̄V̇zRe3− (T +T c̄Vz)RΩ×e3

− (T c̄−mgc̄)
m

(F−mgc̄v) =−βF +u.

(23)

Noting that Ṙ> =−Ω×R>, then

V̇z =−e>3 Ω×R>v+ e>3 R>v̇,

and therefore,

T c̄V̇zRe3 = T c̄Re3

(
−e>3 Ω×R>v+ e>3 R>v̇

)
.

Thus expanding Equation 23

−Ṫ (Re3 + c̄VzRe3 + c̄v)−T c̄Re3

(
−e>3 Ω×R>v+ e>3 R>v̇

)
−(T +T c̄Vz)RΩ×e3−

(T c̄−mgc̄)
m

(F−mgc̄v) =−βF +u.

(24)

Also

e>3 Ω×R>v =−v>RΩ×e3.

Hence,

−Ṫ (Re3 + c̄VzRe3 + c̄v)−T c̄Re3

(
v>RΩ×e3 + e>3 R>v̇

)
−(T +T c̄Vz)RΩ×e3−

(T c̄−mgc̄)
m

(F−mgc̄v)

=−βF +u.

(25)

Therefore Equation 25 becomes
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−Ṫ
(
(1+ c̄e>3 R>v)Re3 + c̄v

)
−T
(

c̄v>Re3 +(1+ c̄e>3 R>v)
)

RΩ×e3

− (T c̄−mgc̄)
m

(F−mgc̄v)

−T c̄
[

e>3 R>
(

F−mgc̄v
m

)]
Re3 =−βF +u.

(26)

From Equation 5, one has

v =VzRe3,v> =Vze>3 R>,
and this implies that

−W
(
(1+ c̄e>3 R>v)Re3 + c̄v

)
(27)

−T
(

c̄v>Re3 +(1+ c̄e>3 R>v)
)

RΩ×e3

− (T c̄−mgc̄)
m

(F−mgc̄v) −T c̄
[

e>3 R>
(

F−mgc̄v
m

)]
Re3

=−βF +u.

We define the following variables (γ,λ ∈ R3,η ∈ R)

γ := (1+ c̄e>3 R>v)Re3 + c̄v,

η :=−c̄v>Re3 +(1+ c̄e>3 R>v),

λ :=− (T c̄−mgc̄)
m

(F−mgc̄v)−T c̄
[

e>3 R>
(

F−mgc̄v
m

)]
Re3,

then Equation 27 becomes
−Wγ−T ηRΩ×e3 =−βF +u−λ . (28)

It should be noted that Equation 28 has solutions for all v and R
except when

T = 0,

c̄v =−(1+ c̄e>3 R>v)Re3,

c̄v>Re3 =−(1+ c̄e>3 R>v).
which is associated with the situation where the quadrotor is
in free fall or executing extreme acrobatic manoeuvres that can
never be approached in normal flight conditions. However, ac-
robatic manouvres can be chosen to avoid such a configuration
as it corresponds to a fundamental loss of controllability of the
vehicle.

With the state of the vehicle known, Equation 28 is solved to
obtain W,Ωx and Ωy. The final degree of freedom Ωz of the
rotation rate is set in order to match the evolution of the free
degree of freedom of the rotation around the e3 axis. These
are used as inputs (T = T +

∫
τ

0 Wdτ and Ωd) to the mid-level
controller proposed in Section 3.1.

Combining Equation 17 with Equations 1a, 18 and 19, the new
system is shown in Equation 29

ζ̇ = v, (29a)
mv̇ = F−mgc̄v, (29b)
Ḟ =−βF +u, (29c)
Ṫ =W. (29d)

The resulting system is linear and will be used in Section 4 for
the MPC design.

It remains to show how to generate the Ω̇d signal that is used
in the feedforward term for the angular velocity control. We
assume that from the MPC control in Section 4, we have both
the control u and its derivative u̇. This is reasonable since the

MPC problem is linear and the resulting control input is forward
differentiable. To do this, we must differentiate Equation 28 to
see the dependence on Ω̇. It is straightforward to see that one
obtains
−Ẇγ−T ηRΩ̇×e3 = f (γ, γ̇,λ , λ̇ ,η , η̇ ,F, Ḟ ,W,T,R, Ṙ,u, u̇).

(30)
Space constraints prevent us providing a full expression for the
function f in Equation 30. However, it is stratightforward to
verify that it depends on known quantitites. The resulting values
for Ẇ , Ω̇x and Ω̇y are then obtained by solving Equation 30 and
only the values for Ω̇x and Ω̇y are used. The value for Ω̇z is
assigned as desired. Typically either by setting Ω̇z = 0 or by
using a derivative of the actual trajectory from previous time
plus some desired goal for future time.

4. LINEAR MODEL PREDICTIVE CONTROL

To execute the high-level trajectory tracking with optimal con-
trol and online optimisation suggests the use of model predic-
tive control (MPC). This has the added advantage of providing
a set of lookahead points within a finite time horizon. Other
advantages of MPC are the ability to handle inputs/outputs
constraints, use of the plant model, robustness to modelling
errors and easy adaptation to changes in system dynamics.

Rearranging Equations 29a to 29c into the standard state space
format (ẋ = Ax+Bu), Equation 31 is obtained.ζ̇

v̇
Ḟ

=

0 1 0

0 −gc̄
1
m

0 0 −β

[ζ

v
F

]
+

[0
0
1

]
u. (31)

If one has the time derivative of the trajectory (ζ̇ , v̇), then
Fd in the desired state (ζd ,vd ,Fd) can be determined using
Equation 18.

In Section 5, it will be shown that the states
(
x = (ζ ,v,F)>

)
can be measured or estimated and therefore future states of the
vehicle are predictable.

For quadrotors, there exists a maximum thrust Timax produced
by each rotor, thus there is a maximum velocity vmax and
Ωmax. From vmax, Fmax can be determined. The constraint on
the rate of the thrust i.e. Wmax implies that Ḟmax exists and is
a function of the vehicle attitude (R) linked by Equation 17.
Hence through Equation 19, the instantaneous constraints on
the control input u can be obtained. Therefore, the state and
input constraints are dependent on R,T and v of the vehicle. To
the best knowledge of the authors, there is no published work
on the solution to the state and input constraints MPC problem
that are state dependent. However, a solution to the linearisation
of nonlinear MPC with state dependent input constraints has
been proposed in (Simon et al. (2013); Deng et al. (2009)). This
paper uses unconstrained inputs and states in order to have real-
time solution. In addition, these input constraints are dependent
on the maximum voltage of the battery through Equation 10 that
is two levels down in the hierarchy. This enables the complete
removal of the constraints on the MPC control input u and state
x thereby transforming the problem into an unconstrained MPC
problem.
Remark 1. If the time between two samples is ∆t, then the
discretised state and input matrices can be approximated using
Starred Transform and the result is Ad = In×n +A∆t ∈ Rn×n,
Bd = B∆t ∈ Rn×m.
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In the sequel, A ∈ Rn×n refers to Ad ∈ Rn×n and B ∈ Rn×m to
Bd ∈ Rn×m. n = 9 is the total number of states and m = 3 is the
total number of control inputs.

The model predictive control algorithm is outlined in the fol-
lowing texts

(1) At time t = k, measure x and R and estimate v.
(2) With current thrust input T and attitude R, determine F ,

hence the reduced states
(

x(k) = (ζ ,v,F)> ∈ X
)

.
(3) Use this as the initial value x(k|k) + x(k) to solve the

unconstrained optimal control problem (OCP).

V ∗(xk|k)= min
u∗(.)∈U

JN(x(k|k),u(.))+
N−1

∑
k=0

l (xu(k+ i|k),u(k)) ,

with soultion u∗(.) ∈ UN(x0) where N is the optimisation
horizon.

(4) Using Equation 28, determine W (hence T ) and Ωd and
Ω̇d from Equation 30 to be regulated by the controller
shown in Section 3.1.

(5) Using Equation 8, determine the thrust and use it as a
setpoint for the motor controller in Equation 10.

(6) Restart the entire process with x(k) = x(k|k+1).

If the desired state is xd , we propose the following incremental
cost

l (xu(k,x0),u(k)) = x>e Qxe +u>Pu. (32)

For which xe = x− xd , Q ∈ R9×9 and P ∈ R3×3 are positive
definite weighting matrices.

To solve the linear model predictive control (LMPC) OCP,
consider finding the optimal control u∗(k) at time t = k and
rewriting the incremental cost as

J(k)=
N−1

∑
i=0

[
xe(k+ i|k)>Qxe(k+ i|k)+u(k+ i|k)>Pu(k+ i|k)

]
.

(33)
With the discretised state equation, for a given set of control
inputs, one can generate the set of states xe(k)

xe(k|k) = xe(k)
xe(k+1|k) = Axe(k)+Bu(k|k)
xe(k+2|k) = A2xe(k)+ABu(k|k)+Bu(k+1|k)
xe(k+3|k) = A3xe(k)+A2Bu(k|k)+ABu(k+1|k)+

Bu(k+2|k)
...

xe(k+N−1|k) = AN−1xe(k)+AN−2Bu(k|k)+ . . .+

Bu(k+N−2|k).

Which can be written in compact form as

xe(k+ i|k) = Aixe(k)+Ciu(k), i = 0, . . . ,N−1

or

xe(k|k) = M xe(k)+C u(k),

with M =


1
A
A2

...
AN−1

and C =


0 0 0
B 0 . . . 0

AB B . . . 0
...

...
...

AN−2B AN−3B . . . B

 .

Fig. 3. Layout of the experimental setup showing timescale
separation of the various components of the control archi-
tecture. Due to thread priority scheduling and data packet
losses in the wireless communication link, the position
data arrives in the MPC controller at 16Hz which dictates
the frequency at which the MPC is run.

If H = C>Q̄C + P̄, S = C>Q̄M , G = M>Q̄M +Q with Q̄ =
Q 0 . . . 0

0
. . .

...
... Q 0
0 . . . 0 Q

 and P̄ =


P 0

P
. . .

0 P

 , then substituting for

xe(k+ i|k) in the incremental cost (Equation 33) and collecting
like terms yield (Maciejowski (2002))

J(k) = u>(k)Hu(k)+2x>e (k)S
>u(k)+ x>e (k)Gxe(k) (34)

For unconstrained optimisation,
∇uJ(k) = 0⇒ ∇uJ(k) = 2Hu(k)+2Sxe(k).

From which the optimal control input can be calculated as

u∗(k) =−H−1Sxe(k). (35)
This can be solved in real-time with the optimal control being
the first row of elements of u∗(k). With this u, and differenti-
ating to obtain u̇, Ḟ is obtained and subsequently the desired
inputs (T , Ω and Ω̇) to the mid-level controller presented in
Section 3.1.

5. FLIGHT TESTS AND RESULTS

In this section, we present experimental results for the quadro-
tor performing autonomous takeoff, hover, position control and
a “figure 8” trajectory tracking to illustrate applicability of the
proposed linear system and controllers.

The architecture for the experimental system setup is shown
in Figure 3. The VICON system provides measurements of
the position and attitude of the vehicle at 200Hz (Vicon Team
(2013)). The Robot Operating System (ROS) is used on the
ground station computer to access and transmit the position,
attitude and desired trajectory (ζd ,vd ,Fd)

> to the PX4 autopilot
encoded using MAVLink protocol through a UDP connection
to the quadrotor (Fernandez (2013); Meier (2013)). The MPC
then determines the desired T,Ω̇ and Ω that are sent to the
rotation rates controller. The output of this controller is the
desired thrusts from each motor-rotor system. These are then
sent to the ESCs using I2C protocol.

To control the free degree of freedom, yaw, we set the desired
yaw angle and use a proportional integral (PI) controller to
regulate it. The output of the controller is the desired yaw
rate. After careful tuning, the following MPC values were used
N = 5, β = 0.1 and c̄ = 0.01, P = I3×3,Q = I9×9
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Q1,1 = 150,Q1,4 = Q4,1 = 200,Q1,7 = Q7,1 = 1;

Q2,2 = 150,Q2,5 = Q5,2 = 200,Q2,8 = Q8,2 = 1;

Q3,3 = 1300,Q3,6 = Q6,3 = 500,Q3,9 = Q9,3 = 1.

The experimental results for the quadrotor doing takeoff, hover,
translational and tracking of a “figure 8” trajectory are shown
in Figure 4. The “figure 8” trajectory is defined by

x = 0.6cos
(

π

10
t
)
,y = 0.6sin

(
2

π

10
t
)
,z =−0.4,

ẋ =−0.06π sin
(

π

10
t
)
, ẏ = 0.12π cos

(
2

π

10
t
)
, ż = 0,

v̇x =−0.6
(

π

10

)2
cos
(

π

10
t
)
, v̇y =−2.4

(
π

10

)2
sin
(

2
π

10
t
)
,

v̇z = 0
where t is the time since the start of the trajectory.

As can be seen, the quadrotor is able to takeoff, hover, transition
to a new position and execute the desired “figure 8” trajectory
using the derived linear model and control law of Equation 35.
It should be noted that more weighting was placed on position
relative to velocity hence a better position tracking compared to
velocity.

6. CONCLUSIONS

In this paper, we have presented a solution to on-board trajec-
tory tracking for quadrotors that is based on the development
of a new linear model. The approach uses a hierarchical control
architecture with timescale separation of the different dynamic
levels of the quadrotor. From the full state nonlinear system,
using dynamic reduction of the attitude dynamics and dynamic
extension on the total thrust, feedback linearisation was applied
that led to the new linear system with reduced states and of
relative degree three. MPC was applied to the ensuing linear
system for tracking a trajectory at the high-level. The outputs
from the unconstrained MPC are the thrust and rotation rates
and angular acceleration that are regulated using a Lyapunov
based attitude dynamics controller. The control system along
with the new linear model have been implemented on a quadro-
tor and used in real-time to do position and trajectory tracking.
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