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Abstract: A new type of Chen-Fliess series is first introduced which depends on the input
and delayed versions of the input. It is then shown how a class of analytic differential delay
systems with a single delay and constant initial conditions has input-output maps representable
in terms of this new functional series. As in the classical case, the coefficients can be computed
by iterated Lie derivatives, but here the method is applied to an infinite dimensional embedding
of the original state space system. Finally, the more technical issue of series convergence is
addressed. Sufficient conditions are produced to guarantee convergence in both a local and
global sense.
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1. INTRODUCTION

A staple of linear control theory is the ability to describe
a given system in terms of either a state space realization
or an input-output map, e.g., a transfer function, and
to move easily back and forth between the two system
representations for the purposes of analysis and design.
For a control-affine nonlinear state space realization

ż = g0(z) +
m
∑

i=1

gi(z)ui, z(0) = z0 (1a)

y = h(z), (1b)

where the vector fields gi and output function h are ana-
lytic, the corresponding input-output map Fc : u 7→ y can
be described locally in the time domain by a functional
series known as a Chen-Fliess series, or equivalently, as
a Fliess operator (Fliess, 1981, 1983; Isidori, 1995). Such
an operator is parameterized by a noncommutative formal
power series, c, whose coefficients can be interpreted as
a generalization of system Markov parameters. Not every
Fliess operator is necessarily realizable by a finite dimen-
sional state space realization of the form (1), so in this way
the model class is more general. But when a realization
does exist, the generating series c can be computed in
terms of iterated Lie derivatives of h with respect to the
vector fields gi. The main advantage of using input-output
models, in both linear and nonlinear systems analysis, is
that they are independent of any state space coordinate
system or state space embedding. Therefore, it is often
easier in this setting to distinguish input-output invariants
from those system characteristics that are dependent on a
particular choice of state space coordinates.

An important class of state space models used in appli-
cations incorporates the presence of state delay in the
dynamics. Such delay differential systems have a wide
literature, especially on fundamental questions such as the
existence and uniqueness of solutions (Hale, 1977) and
on control theoretic concepts such as stability (Dugard &

Verriest, 1998). On the other hand, the problem of char-
acterizing the input-output map of a delay system beyond
the linear case (which can be treated in many cases by
traditional Laplace transform techniques (Richard, 2003))
appears not to have been addressed. So the purpose of
this paper is to take some initial steps in this direction.
Specifically, a type of Fliess operator is first introduced
which depends on the input and delayed versions of the
input. It is then shown how a class of analytic differential
delay systems with a single delay and constant initial
conditions has input-output maps representable at least
formally in terms of such a Fliess operator. As in the clas-
sical case, the coefficients can be computed by iterated Lie
derivatives, but here the method is applied to an infinite
dimensional embedding of the original state space system.
Finally, the more technical issue of series convergence is
addressed. Sufficient conditions are produced to guarantee
convergence in both a local and global sense. The paper is
concluded by suggesting how this set up could be extended
to handle the case where the initial conditions are not
constant.

2. FUNCTIONAL SERIES WITH DELAY

Consider a system with m inputs {u1, u2, . . . , um} de-
fined on [t0, t1] and a corresponding alphabet X(0) =
{x0(0), x1(0), . . . , xm(0)}, where the letter x0(0) will al-
ways refer to the constant input u0 = 1. This fictitious
input is useful for describing a nonhomogeneous system F ,
that is, a system where F [0] 6= 0. For a fixed T > 0 define
the delay operator σ : ui(t) 7→ ui(t − T ). For any integer
j ≥ 0 associate σjui with the i-th letter of the alphabet
X(j) = {x0(j), x1(j), . . . , xm(j)}. Define X = ∪j≥0X(j).
Any finite sequence of letters from X is called a word
over X. Let X∗ denote the free monoid comprised of all
words over X (including the empty word ∅) under the
catenation product. All formal power series in X with
coefficients in R

ℓ will be denoted by R
ℓ〈〈X〉〉. In partic-

ular, (c, η) represents the coefficient of c corresponding
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to the word η ∈ X∗. For each c ∈ R
ℓ〈〈X〉〉 the goal is

to formally associate an m-input, ℓ-output operator, Fc.
For a Lebesgue measurable function u : [t0, t1] → R

m,
define ‖u‖

p
= max{‖ui‖p : 1 ≤ i ≤ m}, where ‖ui‖p is

the usual Lp-norm for a measurable real-valued function,
ui, defined on [t0, t1]. Let Lm

p [t0, t1] denote the set of all
measurable functions defined on [t0, t1] having a finite ‖·‖

p

norm and Bm
p (R)[t0, t1] := {u ∈ Lm

p [t0, t1] : ‖u‖p ≤ R}.

Assume C[t0, t1] is the subset of continuous functions in
Lm
1 [t0, t1]. For each η ∈ X∗ define recursively the mapping

Eη : Lm
1 [t0, t1] → C[t0, t1] by first setting E∅[u] = 1, and

then letting

Exi(j)η̄[u](t) =

∫ t

t0

(σjui(τ))Eη̄[u](τ) dτ,

where xi(j) ∈ X(j) and η̄ ∈ X∗. It is assumed throughout
that ui(t) = ui(t)1(t− t0) for i = 1, 2, . . . ,m, where 1(t−
t0) denotes the unit step function which switches from zero
to unity at t = t0. The main class of input-output systems
under consideration in this paper is described below.

Definition 1. Given any c ∈ R
ℓ〈〈X〉〉 the corresponding

Fliess operator is the functional series

Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t), (2)

where t ∈ [t0, t1].

As will be seen shortly, many of the algebraic structures
associated with the finite alphabet version of this series,
like the shuffle algebra (Fliess, 1981), naturally extend in
this setting. Convergence conditions, on the other hand,
require an expanded treatment over what appears in the
classical case (Gray & Wang, 2002). Before pursuing that
topic, the relationship between this operator type and a
class of delay differential systems is developed.

3. ANALYTIC STATE SPACE SYSTEMS WITH
DELAY

Consider an n dimensional delay system

ż(t) =
m
∑

i=0

gi(z(t), σz(t))ui(t), z(t) = z0, t ≤ 0. (3a)

y(t) = h(z(t), σz(t), σ2z(t), . . .), (3b)

where each vector field gi is analytic and the output
function h is analytic. Associated with this system is the
augmented system

Ż(t) =

m,∞
∑

i,j=0

gi(j)(Z(t))σjui(t) (4a)

y(t) = h(Z(t)), (4b)

where
Z(t) = [zT (t) σzT (t) σ2zT (t) · · · ]T ,

gi(j) := ej+1 ⊗ σjgi, ei is an infinite column vector with a
one in the i-th position and zeros elsewhere, and ⊗ denotes
the Kronecker product. In this setting, the Lie derivative
of ϕ(Z) with respect to gi(j)(Z) is

Lgi(j)ϕ(Z) =
∂ϕ

∂Z
(Z)gi(j)(Z) =

∂ϕ

∂σjz
(Z)gi(σ

jz, σj+1z)

(cf. Oguchi, et al. (2002)). A main result of the paper is
given next.
Theorem 2. The state space system (3) has an input-
output mapping with a formal representation of the form
(2), where

(c, η) = Lgηh(Z0) = Lgi1(j1)
· · ·Lgik(jk)

h(Z0)

with η = xik(jk) · · ·xi1(j1) and Z0 = [zT0 zT0 · · · ]T .

The proof of this theorem requires a few preliminaries.
First, the R-vector space R〈〈X〉〉 forms a commutative and
associative R-algebra under the shuffle product, that is, the
R-bilinear mapping R〈〈X〉〉 × R〈〈X〉〉 → R〈〈X〉〉 uniquely
specified by the shuffle product of two words η = xi1(j1)η

′

and ξ = xi2(j2)ξ
′ defined iteratively by

η ⊔⊔ ξ = xi1(j1)(η
′
⊔⊔ ξ) + xi2(j2)(η ⊔⊔ ξ′)

and η ⊔⊔ ∅ = η (Fliess, 1981). The definition is extended
to R

ℓ〈〈X〉〉 in a componentwise fashion. A key property
in this case is the identity Eη[u]Eξ[u] = Fη ⊔⊔ ξ[u]. Such
products appear naturally in the nonlinear setting. For
example, if zl = Exil(jl)

[u], l = 1, 2 and y = z1z2 then y =

Fxi1
(j1) ⊔⊔ xi2

(j2)[u]. Of central importance in this context

is Fliess’s fundamental formula (Fliess, 1981; Isidori, 1995;
Wang, 1990). Consider any set of real-valued functions vl,
l = 1, 2, . . . , n which can be written in the form

vl(t) =
∑

η∈X∗

Lgηλl(z0)Eη[u](t),

where λl : R
n → R, and the vector fields gi(j) are

all analytic on a neighborhood U of z0 ∈ R
n. If v =

[v1 v2 · · · vn] is composed with some h : U → R, which
is also analytic on U , then the fundamental formula says
that

(h ◦ v)(t) =
∑

η∈X∗

Lgη (h ◦ λ)(z0)Eη[u](t),

where λ = [λ1 λ2 · · · λn]. The proof of this identity
relies in large part on the shuffle algebra associated with
R〈〈X〉〉 (see Gray & Thitsa (2012) for a more general
discussion on this topic). The fact that X in the present
application is not finite, has no significant consequences
on these algebraic structures.

Proof of Theorem 2. It is first shown for any l =
1, 2, ..., n that

zl(t) =
∑

η∈X∗

Lgηe
T
l Z0Eη[u](t) (5)

formally satisfies the delay equation (3a). Taking the
derivative of (5) yields

żl(t) =

m,∞
∑

i,j=0





∑

η∈X∗

LgηLgi(j)e
T
l Z0Eη[u](t)



σjui(t)

=

m,∞
∑

i,j=0





∑

η∈X∗

Lgηe
T
l gi(j)(Z0)Eη[u](t)



σjui(t).

Applying Fliess’s fundamental formula gives

żl(t) =

m,∞
∑

i,j=0

eTl gxi(j)(Z(t))σjui(t)

=

m
∑

i=0

eTl gi(z(t), σz(t))ui(t).

Now employ Fliess’s fundamental formula a second time
to y = h(z, σz, σ2z, . . .), and the theorem is proved.

Example 3. Consider the scalar autonomous linear system

ż(t) = az(t− T ), z(t) = z0, t ≤ 0, y(t) = z(t).

When written in the form (4), g0(j)(Z) = aσj+1(z)ej+1,
j = 0, 1, . . .. Therefore, using Theorem 2 it follows that
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Table 1. Generating series coefficients for the
system in Example 4

η (c, η)

∅ Cz0

x0(0) C(A0 +A1)z0
x1(0) Cb

x2

0
(0) CA0(A0 +A1)z0

x0(0)x0(1) CA1(A0 +A1)z0
x0(0)x1(0) CA0b

x0(0)x1(1) CA1b

x3

0
(0) CA2

0
(A0 +A1)z0

x2

0
(0)x0(1) CA0A1(A0 +A1)z0

x0(0)x2

0
(1) CA1A0(A0 +A1)z0

x0(0)x0(1)x0(2) CA2

1
(A0 +A1)z0

x2

0
(0)x1(0) CA2

0
b

x2

0
(0)x1(1) CA0A1b

x0(0)x0(1)x1(1) CA1A0b

x0(0)x0(1)x1(2) CA2

1
b

y(t) =

∞
∑

k=0

akz0Ex0(0)x0(1)···x0(k−1)[u](t)

=
∞
∑

k=0

akz0
(t− (k − 1)T )k

k!
1(t− (k − 1)T )

=

⌊ t
T ⌋+1
∑

k=0

akz0
(t− (k − 1)T )k

k!
,

which is the same solution for every t ≥ 0 as that found
by the usual method of steps (Bellman & Cooke, 1963).

Example 4. Consider a linear SIMO delay system of di-
mension n

ż(t) = (A0 +A1σ)z(t) + bu(t), z(t) = z0, t ≤ 0

y(t) = Cz(t),

With g0(j)(Z) = ej+1 ⊗ (A0σ
jz + A1σ

j+1z) and g1(j) =
ej+1 ⊗ b for j ≥ 0, it follows from Theorem 2 that the
(nonzero) series coefficients are as given in Table 1.

Example 5. Consider the scalar bilinear delay system from
Hale (1977)

ż(t) = z(t) + z(t− T )u(t), z(t) = 1, t ≤ 0, y(t) = z(t).
(6)

Here

g0(j)(Z) = σjzej+1, g1(j)(Z) = σj+1zej+1, h(Z) = z.

The only nonzero coefficients of the corresponding Fliess
operator, Fc, are found to be

(c, x0(0)
n0x1(0)x0(1)

n1 · · ·x1(j − 1)x0(j)
nj ) = 1

for j ≥ 0, nj ≥ 0. Using the identity
∑

n≥0 xi(j)
n =

(1 − xi(j))
−1, the generating series can be written in the

rational form

c = (1− x0(0))
−1x1(0)(1− x0(1))

−1x1(1) · · ·

It is instructive to check the answer by directly construct-
ing (6) from the generating series c. Define the state

z = Fc =

∞
∑

j=0

∞
∑

n0···nj=0

Ex0(0)n0x1(0)x0(1)n1 ···x1(j−1)x0(j)
nj ,

which clearly satisfies the boundary condition z(0) = 1.
Using the identities:

d

dt
Exi(j)η[u](t) = ui(j)Eη[u](t)

σEη[u](t) = Eση[u](t),

where σ(xi1(j1) · · ·xik(jk)) := xi1(j1+1) · · ·xik(jk +1), it
follows that

ż = u0(0)

∞
∑

j=0

∞
∑

n0=0···nj=0

Ex0(0)n0x1(0)x0(1)n1 ···x1(j−1)x0(j)
nj

+ u1(0)

∞
∑

j=0

∞
∑

n0···nj=0

Ex0(1)n0x1(1)x0(2)n1 ···x1(j)x0(j+1)nj

= z + σ(z)u.

Example 6. Consider a variation of the previous example

ż(t) = z(t− T ) + z(t)u(t), z(t) = 1, t ≤ 0, y(t) = z(t).

Here, the vector fields of the realization in Z are reversed,
i.e.,

g0(j)(Z) = σj+1zej+1, g1(j)(Z) = σjzej+1, h(Z) = z,

and, therefore, the roles of x0 and x1 are interchanged
giving the rational generating series

c = (1− x1(0))
−1x0(0)(1− x1(1))

−1x0(1) · · ·

Of course, this example and the previous example are
identical when T = 0. It can be verified in this case that
c = (1− x0(0)− x1(0))

−1.

Example 7. Consider the scalar autonomous nonlinear de-
lay system

ż(t) = z2(t− T ), z(t) = 1, t ≤ 0, y(t) = z(t).

In this case,

g0(j)(Z) = (σj+1z)2ej+1, h(Z) = z.

The support of this sequence is again compute directly
from Theorem 2, but it is surprisingly complex. Brute force
calculations show that the fastest growing subseries is

(c, x0(0)x
2
0(1) · · ·x

2j

0 (j)) = 1! 2! · · · 2j !, j ≥ 0,

which will be shown shortly to determine its convergence
characteristics.

4. CONVERGENCE CONDITIONS

4.1 Local Convergence

Convergence issues are considered next. The following
theorem describes a sufficient condition under which (2)
converges in a local sense. That is, a bound on the size
of the input is imposed and the interval of convergence is
finite. The method can be viewed as a generalization of
the treatment for the non-delay case in Duffaut Espinosa
(2009); Duffaut Espinosa, et al. (2009).

Theorem 8. Suppose c ∈ R
ℓ〈〈X〉〉 is a series with coeffi-

cients that satisfy

|(c, η)| ≤ K

m,∞
∏

i,j=0

M
|η|xi(j)

ij |η|!, ∀η ∈ X∗ (7)

for some real numbers K,Mij ≥ 0, where |η|xi(j)
denotes

the number of times the letter xi(j) appears in η, and
|(c, η)| := maxi |(ci, η)|. Then the series (2) converges
absolutely and uniformly for any u ∈ Lm

1 [t0, t1] if

R := max{‖u‖1 , t1 − t0} <
1

∑m,⌊ t1−t0
T ⌋

i,j=0 Mij

. (8)

Proof. It is convenient to define a function ū ∈ Lm
1 [t0, t1]

with components ūi = |ui| so that
∣

∣Exi(j)[u](t)
∣

∣ ≤ max
i

Exi(0)[ū](t1) ≤ R
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for all i = 0, 1, . . . ,m; j = 0, 1, . . .; and t ∈ [t0, t1]. In which
case, it follows from (7) and the multinomial theorem that
for any fixed t ∈ [t0, t1]

∑

η∈X∗

|(c, η)Eη[u](t)|

≤
∞
∑

k=0

∑

η∈Xk

|(c, η)| |Eη[u](t)|

≤ K

∞
∑

k=0

k!
∑

rij≥0

|r|=k

∏

i,j

(

MijExi(j)[ū](t1)
)rij

rij !

≤ K

∞
∑

k=0

Rkk!
∑

rij≥0

|r|=k

∏

i,j

M
rij
ij

rij !

≤ K
∞
∑

k=0






R

m,⌊ t1−t0
T ⌋

∑

i,j=0

Mij







k

,

where |r| :=
∑

i,j rij , and product is taken over all

0 ≤ i, j ≤ m,
⌊

t1−t0
T

⌋

corresponding to each letter xi(j)

that appears in a given word η ∈ Xk. The convergence
condition (8) follows directly from the last line.

It is natural to use the smallest possible set of growth
constants Mij satisfying (7) on the right-hand side of
(8). In which case, consistent with the non-delay theory
described in Thitsa & Gray (2012), it is tempting to
call the right-side the radius of convergence for the class
of systems having the same minimal growth constants.
But the appearance of t1 on both sides of this inequality
makes the significance of this definition not so obvious.
For example, for a fixed value of ‖u‖1 (which implicitly
depends on t1), it is not immediate that there even exists
a t1 satisfying (8). For a constant input u(t) = a ≥ 1 it is
clear that (8) reduces to

t1 − t0 <
1

∑m,⌊ t1−t0
T ⌋

i,j=0 aMij

. (9)

In which case, the smallest possible t1 satisfying (9) would
define the interval of convergence for this class of inputs.
The following corollary describes another interesting spe-
cial case.

Corollary 9. Suppose c ∈ R
ℓ〈〈X〉〉 is a series with coeffi-

cients that satisfy (7), where Mij = Mi for all j. Then
the series (2) converges absolutely and uniformly for any
u ∈ L1[t0, t1] satisfying

max{‖u‖1 , t1 − t0} <
1

(⌊

t1−t0
T

⌋

+ 1
)
∑m

i=0 Mi

.

Example 10. It is useful for comparison to begin with
the non-delay case since the convergence condition (8)
constitutes a refinement of the known results described
first in Gray & Wang (2002) and then improved upon in
Duffaut Espinosa (2009); Duffaut Espinosa, et al. (2009).
Setting Mij = 0 for j > 0 and defining Mi = Mi0, it is
immediate that a sufficient condition for convergence is

R := max{‖u‖1 , t1 − t0} <
1

∑m
i=0 Mi

(10)

and (7) reduces to

|(c, η)| ≤ KM
|η|x0
0 · · ·M

|η|xm
m |η|!, ∀η ∈ X∗

with X = {x0, x1, . . . , xm}. If M = Mi for all i =
0, 1, . . . ,m then this theory further reduces to exactly the
classical case, where the radius of convergence is defined
as 1/(m + 1)M . It is shown next that the bound in
(10) is determined by a specific series in the equivalence
class of series having the minimal growth constants Mi,
i = 0, 1, . . . ,m. So no larger bound than 1/

∑m
i=0 Mi is

possible. First consider the realization

żi = ui, zi(0) = 0, i = 0, 1, . . . ,m

h(z) =
K

1−
∑m

i=0 Mizi
.

It has the corresponding generating series

c̄ =
∑

η∈X∗

KM
|η|x0
0 · · ·M

|η|xm
m |η|! η.

By definition, u0 = 1. Setting ui = 1, i = 1, 2, . . . ,m gives
an output defined on exactly the interval [0, t∗), where
R = t∗ = 1/

∑m
i=0 Mi. The exact same conclusion can be

drawn from the minimal realization for Fc̄ : u 7→ y

ż = z2
m
∑

i=0

Miui, z(0) = K, h(z) = z.

Example 11. Now a delay version of the previous example
is considered. Define the series c̄ with coefficients

c̄ =
∑

η∈X∗

K

m,∞
∏

i,j=0

M
|η|xi(j)

ij |η|! η

=
∞
∑

k=0

K





m,∞
∑

i,j=0

Mijxi(j)





⊔⊔ k

.

With states Zi+jm+1 := Exi(j) for i = 0, 1, . . .m, j =
0, 1, . . ., Fc̄ is realized in the form of (4), where gi(j) =
ei+jm+1, h(Z) = K/(1−

∑m,∞
i,j≥0 MijZi+jm+1), and Z(0) =

0, or in the form of (3) with dimension m + 1 and
gi = ei+1, i = 0, 1, . . . ,m + 1; h(z, σz, σ2z, . . .) = K/(1 −
∑∞

j≥0[M0j · · ·Mmj ]σ
jz(t)); and z0 = 0. In either case, the

response to the unit step inputs ui = 1, i = 1, 2, . . . ,m is

y(t) =
K

1−
∑m,⌊ t

T ⌋
i,j=0 Mij(t− jT )

,

which has a singularity at t∗ > 0 if

m,⌊ t∗

T ⌋
∑

i,j=0

Mij(t
∗ − jT ) = 1. (11)

In the special case described in Corollary 9, (11) reduces
to

(⌊

t∗

T

⌋

+ 1

)(

t∗ −
T

2

⌊

t∗

T

⌋)

=
1

∑m
i=0 Mi

=: L. (12)

A plot of t∗ versus T when M0 = M1 = 1 is shown in
Fig. 1. When (12) is written in the form

t∗ =
1

2

⌊

t∗

T

⌋

T +
L

(⌊

t∗

T

⌋

+ 1
) ,

it is easy to see that t∗ as a function of T will be piecewise
linear with slopes that are integer multiples of 1/2 and
that t∗ = L = 0.5 whenever T > t∗.

The following theorem describes a stricter local growth
condition on a generating series that is available in some
applications.
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Fig. 1. Plot of t∗ versus T in Example 11

Theorem 12. Suppose c ∈ R
ℓ〈〈X〉〉 is a series with coeffi-

cients that satisfy

|(c, η)| ≤ K

m,∞
∏

i,j=0

M
|η|xi(j)

ij |η|xi(j)
!, ∀η ∈ X∗ (13)

for some real numbers K,Mij ≥ 0. Then the series (2)
converges absolutely and uniformly for any u ∈ Lm

1 [t0, t1]
such that

∣

∣Exi(j)[u](t)
∣

∣ ≤
1

Mij

(14)

with i = 0, 1, . . .m, 0 ≤ j ≤
⌊

t
T

⌋

, and t ∈ [t0, t1].

Proof. For any fixed t ∈ [t0, t1] it follows from (13) that
∑

η∈X∗

|(c, η)Eη[u](t)|

≤
∞
∑

k=0

∑

η∈Xk

|(c, η)| |Eη[u](t)|

≤ K

∞
∑

k=0

∑

rij≥0

|r|=k

∏

i,j

(

Mij

∣

∣Exi(j)[u](t)
∣

∣

)rij

= K

m,⌊ t
T ⌋

∏

i,j=0

∞
∑

rij=0

(

Mij

∣

∣Exi(j)[u](t)
∣

∣

)rij
,

which yields (14).

Example 13. Reconsider Example 7 where it is evident
that the coefficients of c satisfy the growth condition in
Theorem 12 with M0j = 1 for all j ≥ 0. Observe for every
T ≥ 0 that Ex0(j)(t) = t − jT < 1 on [0, 1). A MATLAB
simulation of the dynamical system gives outputs when
T = 0 and T = 0.1 as shown in Fig. 2. This confirms that
a solution exists on at least [0, 1) for every T ≥ 0.

Example 14. This example is a generalization of Exam-
ple 7. Consider an autonomous system with generating
series

c =

∞
∑

k=0

∑

rj≥0

|r|=k

∏

j

(M0jx0(j))
rjrj !.

It has exactly the growth rate described by Theorem 12,
so it is possible to compute the interval of convergence
exactly. Observe
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Fig. 2. Outputs for the system in Examples 7 and 13 with
T = 0 (top) and T = 0.1 (bottom)

Fc[u](t) =

⌊ t
T ⌋
∏

j=0

∞
∑

rj=0

(

M0jEx0(j)[u](t)
)rj

=

⌊ t
T ⌋
∏

j=0

1

1−M0jEx0(j)(t)
,

which has the realization
g0(j)(Z) = 1, σjz(0) = 0, j ≥ 0

h(Z(t)) =

⌊ t
T ⌋
∏

j=0

1

1−M0jσjz(t)
.

In light of (14), convergence at a given t is assured if for
every 0 ≤ j ≤

⌊

t
T

⌋

∣

∣Ex0(j)[u](t)
∣

∣ = t− jT ≤
1

M0j

or, equivalently,

t ≤ min
0≤j≤⌊ t

T ⌋

{

1

M0j
+ jT

}

.

Take as a specific example M0j = 2j and T = 0.1 as shown
in Table 2. Then the interval of convergence is at least
[0, 0.425). But it is not difficult to see from the state space
realization that this is exactly the interval of convergence.
The MATLAB simulation shown in Fig. 3 also confirms
this conclusion.

4.2 Global Convergence

The final convergence result considered assumes the most
stringent growth condition for the generating series. But
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Table 2. Data to determine the interval of
convergence in Example 14

j 1

M0j
+ jT

0 1
1 0.6
2 0.45
3 0.425
4 0.4625
5 0.53125
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Fig. 3. Output response of system in Example 14

as a result, the corresponding Fliess operator is globally
convergent in that no upper bound is imposed on either
the norm of the input or the duration T .

Theorem 15. Suppose c ∈ R
ℓ〈〈X〉〉 is a series with coeffi-

cients that satisfy

|(c, η)| ≤ K

m,∞
∏

i,j=0

M
|η|xi(j)

ij , ∀η ∈ X∗

for some real numbers K,Mij ≥ 0. Then the series (2)
converges absolutely and uniformly on [t0, t0 + T ] for any
u ∈ Lm

1 [t0, t0 + T ] and T > 0.

Proof. Similar to the proofs of the other convergence
theorems, it follows directly for any fixed t ≥ t0 = 0 that

|Fc[t](t)| ≤ K

m,⌊ t
T ⌋

∏

i,j=0

∞
∑

rij=0

(

Mij

∣

∣Exi(j)[u](t)
∣

∣

)rij

rij !

= K

m,⌊ t
T ⌋

∏

i,j=0

exp(Mij

∣

∣Exi(j)[u](t)
∣

∣).

Clearly, the right-hand side of the above inequality is finite
for every t, which completes the proof.

Is it easily confirmed that the generating series in Exam-
ples 3-6 are all globally convergent, so Theorem 15 applies
in each case.

5. CONCLUSIONS AND FUTURE WORK

A new type of Chen-Fliess functional series was introduced
which depends on the input and delayed versions of the
input. It was then shown that a class of analytic differential
delay systems with a single delay and constant initial
conditions has input-output maps that can be written
in terms of such series. Sufficient conditions were given
to ensure convergence in both a local and global sense.
The following example demonstrates that the method will

not work for arbitrary time-varying initial conditions but
suggests what modifications might be needed in future
work to address such a generalization.
Example 16. Reconsider the system in Example 3 except
with initial condition z(t) = φ(t) for t ≤ 0. Using
Theorem 2 with Z0 = [φ(0) φ(−T ) φ(−2T ) · · · ] gives

y(t) =
∞
∑

k=0

akφ(−kT )Ex0(0)x0(1)···x0(k−1)[u](t)

=

⌊ t
T ⌋+1
∑

k=0

akφ(−kT )
(t− (k − 1)T )k

k!
, t ≥ 0.

For the initial condition φ(0) = 1 and φ(t) = 0, t < 0,
which defines Hale’s fundamental solution (Hale, 1977,
Section 1.5), this becomes y(t) = 1 and agrees with the
actual globally defined solution

y(t) =

⌊ t
T ⌋
∑

k=0

ak
(t− kT )k

k!
.

only over the initial interval [0, T ]. To recover this global
solution in the present context, it is necessary to treat φ
more like an input in that iterated integrals of φ need to be
computed. This necessitates the introduction of n addition
letters in X if the state space has dimension n.
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