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Abstract: In this paper, global finite-time stabilization via output-feedback is investigated
for a class of stochastic nonlinear systems. By introducing a homogeneous observer, we design
an output-feedback control law by adding one power integrator technique and homogeneous
domination approach. Based on stochastic finite-time stability theorem, it is proved that the
closed-loop system is globally finite-time stable in probability. Moreover, a simulation example
is presented to demonstrate the effectiveness of the proposed design procedure.
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1. INTRODUCTION

In this paper, we consider the problem of finite-time
stabilization via output-feedback for a class of stochastic
nonlinear systems described by

dx(t) = Ax(t)dt+Bu(t)dt+ f(x(t))dt+ gT (x(t))dω,

y(t) = Cx(t) (1)

with

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 0 0

 , B =


0
0
...
0
1

 ,

C = [ 1 0 · · · 0 ] ,

f(x(t)) =


f1(x̄1(t))
f2(x̄2(t))

...
fn−1(x̄n−1(t))

fn(x̄n(t))

 ,

g(x(t)) = [g1(x̄1(t)), g2(x̄2(t)), · · · , gn(x̄n(t))] (2)

where x(t) = (x1(t), · · · , xn(t))
T ∈ Rn is the system

states, u(t), y(t) ∈ R are the control input and output,
respectively. x̄i(t) = (x1(t), · · · , xi(t)), i = 1, · · · , n,
are the state vectors. ω(t) is an r−dimensional standard
Wiener process defined on a probability space (Ω,z,zt, P )
with Ω being a sample space, z being a σ−field, zt
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being a filtration and P being a probability measure.
The drift terms fi(·) : Ri → R and the diffusion terms
gi(·) : Ri → Rr, i = 1, · · · , n, are Borel measurable,
continuous in system states and satisfy fi(0) = 0 and
gi(0) = 0.

In deterministic systems, finite-time stability and stabi-
lization have been an acute subject of research recently,
since finite-time stable systems might have not only faster
convergence but also better robustness and disturbance
rejection properties. Haimo gave a sufficient condition
for finite-time stability of continuous systems in Haimo
(1986). Based on the Lyapunov finite-time stability theo-
rem proposed in Bhat and Bernstein (2000), some con-
ditions for finite-time stability have been presented in
Moulay and Perruquetti (2006, 2008) and several problems
of finite-time stabilization have been discussed in Hong
et al. (2001); Li and Qian (2005); Zhai and Qian (2012);
Zhai (2014); Zhai et al. (2013). Specifically, the finite-
time stabilization for the double integrator systems was
achieved by coupling a finite-time convergent observer
with a finite-time control law in Hong et al. (2001). By
adopting homogeneous domination approach, the work
Li and Qian (2005) has constructed an output-feedback
controller to render the closed-loop system globally finite-
time stable.

On the other hand, stochastic modeling has come to play
an important role in many branches of science and in-
dustry. Due to the existence of the Hessian term, the
control problem for stochastic nonlinear systems is more
complex. In the literature, there exist several results on
global output-feedback stabilization in probability for s-
tochastic nonlinear systems, for example, Deng and Krstić
(1999); Zhai (2013); Zha et al. (2014) and the references
therein. However, the above-mentioned results require that
the closed-loop system satisfy the local Lipschitz condition
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in order to achieve asymptotic stabilization. According to
Mao (1997), it is known that only if at least one coefficient
does not satisfy the local Lipschitz condition, it is possible
to consider the finite-time stability in probability for a
class of stochastic nonlinear systems. Recently, based on
the stochastic finite-time stability theorem in Yin et al.
(2011), the work Khoo et al. (2013) has designed a con-
tinuous finite-time state-feedback controller for stochastic
nonlinear systems in strict-feedback form.

Motivated by Li and Qian (2005) and Khoo et al. (2013),
we consider the finite-time stabilization problem for a class
of stochastic nonlinear systems via output-feedback. To
tackle this problem, we first adopt adding one power inte-
grator technique and homogeneous domination approach
to design an output-feedback controller. Then, a theorem
is presented to analyze the existence and the finite-time
stability in probability of the solution to the stochastic
nonlinear systems.

Notations: R+ denotes the set of all nonnegative real
numbers, and Rn denotes the real n−dimensional space.
R+

odd =: {q ∈ R : q ≥ 0 is a ratio of two odd integers}. For
a given vector or matrix X, XT represents its transpose;
Tr{X} represents its trace when X is square; ∥ · ∥ denotes
the Euclidean norm of a vector X or the Frobenius norm
of a matrix X. Ci denotes the set of all functions with
continuous ith partial derivatives; K denotes the set of
all functions, R+ → R+, which are continuous, strictly
increasing and vanishing at zero; K∞ denotes the set of all
functions which are of class K and unbounded; a∧b means
the minimum of a and b.

2. PRELIMINARY RESULTS

Consider the following stochastic nonlinear system

dx(t) = f(x(t))dt+ gT (x(t))dω(t), x(0) = x0 ∈ Rn (3)

where x(t) ∈ Rn is the system state and ω(t) is an
r−dimensional standard Wiener process defined on a prob-
ability space (Ω,z,zt, P ). The Borel measurable functions
f : Rn → Rn and gT : Rn → Rn×r are continuous in x
that satisfy f(0) = 0 and g(0) = 0. In what follows, some
useful definitions and lemmas are presented which play
very important roles in this paper.

Lemma 1. (Skorokhod (1965)) Suppose that, f(x(t)) and
g(x(t)) are continuous with respect to their variables and
satisfy the linear growth condition:

∥f(x(t))∥2 + ∥g(x(t))∥2 ≤ K(1 + ∥x(t)∥2)
for K > 0. Then given any x0 independent of ω(t), (3) has
a continuous solution with probability one.

Definition 2. (Khoo et al. (2013)) The trivial solution of
(3) is said to be finite-time stable in probability if the
solution exists for any initial value x0 ∈ Rn, denoted by
x(t;x0). Moreover, the following statements hold:
(i) Finite-time attractiveness in probability: For every
initial value x0 ∈ Rn\{0}, the first hitting time τx0 =
inf{t;x(t;x0) = 0}, which is called the stochastic settling
time, is finite almost surely, that is, P{τx0 < ∞} = 1;
(ii) Stability in probability: For every pair of ε ∈ (0, 1)
and r > 0, there exists a δ = δ(ε, r) > 0 such that
P{∥x(t;x0)∥ < r,∀t ≥ 0} ≥ 1− ε, whenever ∥x0∥ < δ;
(iii) The solution x((t+ τx0);x0) is unique for t ≥ 0.

Definition 3. (Florchinger (1995)) For any given V (x(t)) ∈
C2 associated with stochastic system (3), the infinites-
imal generator L is defined as LV (x) = ∂V

∂x f(x) +
1
2Tr{g(x)

∂2V
∂x2 g

T (x)}, where 1
2Tr{g(x)

∂2V
∂x2 g

T (x)} is called
as the Hessian term of L.
Lemma 4. (Khoo et al. (2013)) For system (3), if there
exists a Lyapunov function V : Rn → R+, K∞ class
functions µ1 and µ2, positive real numbers c > 0 and
0 < γ < 1, such that for all x ∈ Rn and t ≥ 0,

µ1(∥x∥) ≤ V (x) ≤ µ2(∥x∥),
LV (x) ≤ −c · (V (x))γ (4)

then the trivial solution of (3) is finite-time attractive and
stable in probability.

Lemma 5. For x ∈ R, y ∈ R, and p ≥ 1, then

|x+ y|p ≤ 2p−1|xp + yp|,(
|x|+ |y|

) 1
p ≤ |x|

1
p + |y|

1
p ≤ 2

p−1
p
(
|x|+ |y|

) 1
p .

Moreover, if p ≥ 1 is an odd integer or a ratio of two odd
integers, then

|x− y|p ≤ 2p−1|xp − yp|,
|x

1
p − y

1
p | ≤ 21−

1
p |x− y|

1
p .

Lemma 6. Suppose c and d are two positive real numbers.
Given any positive number γ > 0, then

|x|c|y|d ≤ c

c+ d
γ|x|c+d +

d

c+ d
γ− c

d |y|c+d.

3. MAIN RESULTS

In this section, an output-feedback controller is designed
for system (1) under the following assumption.

Assumption 7. There exist two positive constants a1 and
a2 such that for i = 1, · · · , n

|fi(x̄i)| ≤ a1(|x1|
ri+τ

r1 + · · ·+ |xi|
ri+τ

ri ),

∥gi(x̄i)∥ ≤ a2(|x1|
2ri+τ

2r1 + · · ·+ |xi|
2ri+τ

2ri ) (5)

with τ ∈ (− 1
n , 0) and a series of parameters

ri = 1 + (i− 1)τ, i = 1, · · · , n+ 1. (6)

For simplicity, we assume τ = −p/q with p being an even
integer and q being an odd integer. Based on this, ri will
be odd in both denominator and numerator.

Remark 8. In deterministic cases, the works Li and Qian
(2005); Zhai and Qian (2012) have dealt with the finite-
time output-feedback stabilization problem for a class of
nonlinear systems whose nonlinearities satisfy Assumption
7 with a2 = 0. Taking stochastic factors into consideration,
we impose lower-triangular homogeneous growth condi-
tions on diffusion terms as well, and therefore, Assumption
7 is a more general condition. However, the appearance of
Hessian term will bring much more nonlinearities. In what
follows, we will present how to handle these terms skillfully.

We can divide the design procedure into two steps. First of
all, by adopting adding one power integrator technique, we
can design an output-feedback controller for the nominal
system without perturbing nonlinearities. Next, based
on homogeneous domination approach, a scaled output-
feedback controller is constructed for system (1) and
the stability analysis is given to show the finite-time
stabilization in probability of the closed-loop system.
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3.1 Output-feedback Controller Design

In this subsection, an output-feedback stabilizer is de-
signed for the following nominal system in an iterative
way:

dz = Azdt+Bvdt,

y = Cz (7)

where the matrices A,B,C are defined in (2), z =
(z1, · · · , zn)T ∈ Rn and v ∈ R are the system states and
control input, respectively.

Initial Step: Define ξ1 = z
µ/r1
1 , µ ≥ 2max1≤j≤n{rj},

µ ∈ R+
odd, and choose the Lyapunov function V1(z1) =

r1
4µz

4µ/r1
1 . According to Definition 3, the infinitesimal gen-

erator L of V1 along the trajectory of (7) is

LV1(z1) = z
4µ−r1

r1
1 z2 = ξ

4µ−r1
µ

1 z2. (8)

Then, with the virtual controller defined as z∗2 = −β1ξ
r2/µ
1 ,

β1 ≥ n, it yields

LV1(z1) ≤ −nξ
4µ+τ

µ

1 + ξ
4µ−r1

µ

1 (z2 − z∗2). (9)

Inductive Step: Suppose at step k − 1, there exists a
Lyapunov function Vk−1(z1, · · · , zk−1) : Rk−1 → R, and a
set of virtual controllers z∗1 , · · · , z∗k defined by

z∗1 = 0, ξ1 = z
µ/r1
1 − z

∗µ/r1
1 ,

z∗i = −βi−1ξ
ri/µ
i−1 , ξi = z

µ/ri
i − z

∗µ/ri
i , i = 2, · · · , k

(10)

where β1, · · · , βk−1 are positive constants, such that

LVk−1 ≤− (n− k + 2)(ξ
4µ+τ

µ

1 + · · ·+ ξ
4µ+τ

µ

k−1 )

+ ξ
4µ−rk−1

µ

k−1 (zk − z∗k). (11)

Next, we will claim that (11) also holds at step k. To
prove this, one can construct the kth Lyapunov function
Vk(z1, · · · , zk) : Rk → R, as
Vk(z1, · · · , zk) = Vk−1(z1, · · · , zk−1) +Wk(z1, · · · , zk)

(12)

with Wk(z1, · · · , zk) =
∫ zk
z∗
k
(sµ/rk − z

∗µ/rk
k )

4µ−rk
µ ds. The

infinitesimal generator L of Vk along the trajectory of (7)
is

LVk ≤− (n− k + 2)
k−1∑
i=1

ξ
4µ+τ

µ

i + ξ
4µ−rk−1

µ

k−1 (zk − z∗k)

+ ξ
4µ−rk

µ

k zk+1 +
k−1∑
i=1

∂Wk

∂zi
zi+1

≤− (n− k + 2)

k−1∑
i=1

ξ
4µ+τ

µ

i + ξ
4µ−rk−1

µ

k−1 (zk − z∗k)

+
k−1∑
i=1

∂Wk

∂zi
zi+1 + ξ

4µ−rk
µ

k z∗k+1

+ ξ
4µ−rk

µ

k (zk+1 − z∗k+1). (13)

It follows from Lemmas 5 and 6 that

|ξ
4µ−rk−1

µ

k−1 (zk − z∗k)| ≤ 21−
rk
µ |ξk−1|

4µ−rk−1
µ |ξk|

rk
µ

≤ 1

2
ξ

4µ+τ
µ

k−1 + c1ξ
4µ+τ

µ

k (14)

where c1 is a positive constant. To estimate the third term
in (13), the following proposition is introduced whose proof
is similar to the one in Li and Qian (2005) and therefore
is omitted here.

Proposition 9. There exists a positive constant c2 such
that∣∣∣ k−1∑

i=1

∂Wk

∂zi
zi+1

∣∣∣ ≤ k−2∑
i=1

ξ
4µ+τ

µ

i +
1

2
ξ

4µ+τ
µ

k−1 + c2ξ
4µ+τ

µ

k . (15)

Substituting (14) and (15) into (13), it yields

LVk ≤− (n− k + 1)

k∑
i=1

ξ
4µ+τ

µ

i + (c1 + c2)ξ
4µ+τ

µ

k

+ ξ
4µ−rk

µ

k (zk+1 − z∗k+1) + ξ
4µ−rk

µ

k z∗k+1. (16)

Obviously, the virtual controller of the form

z∗k+1 = −βkξ
rk+1/µ
k , βk ≥ n− k + 1 + c1 + c2 (17)

leads to

LVk ≤− (n− k + 1)
k∑

i=1

ξ
4µ+τ

µ

i + ξ
4µ−rk

µ

k (zk+1 − z∗k+1).

(18)

This completes the inductive proof.

Last Step: Based on the inductive argument above, one
can conclude that (18) holds for k = n with a series of
virtual controllers defined as (10). Hence, by choosing the
Lyapunov function Vn(z)

Vn(z) = Vn−1(z1, · · · , zn−1) +Wn(z),

Wn(z) =

∫ zn

z∗
n

(sµ/rn − z∗µ/rnn )
4µ−rn

µ ds (19)

and a virtual controller

z∗n+1 =− βn

(
z

µ
rn
n + β

µ
rn
n−1

(
z

µ
rn−1

n−1 + · · ·+ β
µ
r3
2 (z

µ
r2
2

+ β
µ
r2
1 zµ1 )

)) rn+1
µ

(20)

one can deduce that

LVn ≤ −
n∑

k=1

ξ
4µ+τ

µ

k + ξ
4µ−rn

µ
n (v − z∗n+1) (21)

with a positive constant βn.

Since z2, · · · , zn are unmeasurable, a homogeneous observ-
er is constructed for system (7), which is generalized in the
following Lemma.

Lemma 10. For system (7), there exist positive constants
l1, · · · , ln−1, such that the following homogeneous output-
feedback stabilizer

˙̂ηk =− lk−1ẑk,

ẑk =(η̂k + lk−1ẑk−1)
rk

rk−1 , k = 2, · · · , n, (22)

v(ẑ) =− βn

(
ẑ

µ
rn
n + β

µ
rn
n−1

(
ẑ

µ
rn−1

n−1 + · · ·+ β
µ
r3
2 (ẑ

µ
r2
2

+ β
µ
r2
1 zµ1 )

)) rn+1
µ

(23)

with ẑ1 = z1 and ẑ = (z1, ẑ2, · · · , ẑn)T , renders the closed-
loop system (7)-(22)-(23) globally finite-time stable.

Proof : For k = 2, · · · , n, let ek = (zk − ẑk)
µ
rk and choose
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Tk =

∫ z
(4µ−rk−1)/rk
k

γ
(4µ−rk−1)/rk−1
k

(
s

rk−1
4µ−rk−1 − γk

)
ds (24)

where γk = η̂k + lk−1zk−1. Hence, along the trajectory of
(7)-(22)-(23), one has

LTk =
∂Tk

∂zk−1
zk +

∂Tk

∂zk
zk+1 −

∂Tk

∂η̂k
lk−1ẑk

=
4µ− rk−1

rk
z

4µ−rk−1−rk
rk

k

(
z

rk−1
rk

k − γk

)
zk+1

− lk−1e
rk
µ

k

(
z

4µ−rk−1
rk

k − ẑ

4µ−rk−1
rk

k

)
− lk−1e

rk
µ

k

(
ẑ

4µ−rk−1
rk

k − γ

4µ−rk−1
rk−1

k

)
(25)

where zn+1 = v(ẑ). By choosing a Lyapunov function
U = Vn +

∑n
k=2 Tk, one can obtain the global finite-time

stabilization result for (7), whose proof is similar to the one
introduced in Zha et al. (2014) with some modifications.
For the sake of space, the detailed proof is omitted here.

From the construction of U , it can be verified that U
is positive definite and proper with respect to Z :=
(z1, · · · , zn, η̂2, · · · , η̂n)T . First, we consider the following
two cases to prove that Wk is positive definite and proper,
where V1 = W1 =

∫ z1
0

s4µ−1ds.

Case 1: If z∗k ≤ zk, with µ ≥ 2max1≤i≤n{ri}, µ ∈ R+
odd

and by Lemma 5, one gets

Wk =

∫ zk

z∗
k

(sµ/rk − z
∗µ/rk
k )

4µ−rk
µ ds

≥ (2
1− µ

rk )
4µ−rk

µ

∫ zk

z∗
k

(s− z∗k)
4µ−rk

rk ds

= (2
1− µ

rk )
4µ−rk

µ
rk
4µ

(zk − z∗k)
4µ
rk . (26)

Case 2: If z∗k ≥ zk, (26) can be proved similarly.

Next, we aim to prove that Tk is positive definite and

proper. With σ = s
rk−1

4µ−rk−1 , there exists a positive constant
c0 ∈ [c, c̄], such that

Vk =

∫ z
(4µ−rk−1)/rk
k

γ
(4µ−rk−1)/rk−1
k

(
s

rk−1
4µ−rk−1 − γk

)
ds

=
4µ− rk−1

rk−1

∫ z
rk−1/rk
k

γk

(σ − γk)σ
4µ−2rk−1

rk−1 dσ

=
4µ− rk−1

rk−1
c0

∫ z
rk−1/rk
k

γk

(σ − γk)dσ

=
4µ− rk−1

2rk−1
c0(z

rk−1
rk

k − γk)
2 (27)

with c and c̄ represent the infimum and supremum

of σ
4µ−2rk−1

rk−1 in [γk, z
rk−1/rk
k ] (or [z

rk−1/rk
k , γk], if γk ≥

z
rk−1/rk
k ), respectively.

Therefore, U =
∑n

k=1 Wk+
∑n

k=2 Tk ≥
∑n

k=1(2
1− µ

rk )
4µ−rk

µ

rk
4µ (zk − z∗k)

4µ
rk +

∑n
k=2

4µ−rk−1

2rk−1
c0(z

rk−1
rk

k − γk)
2 is definite

positive and proper with respect to Z. Denoting the dila-
tion weight

∆ = ( r1, · · · , rn︸ ︷︷ ︸
for z1,··· ,zn

, r1, · · · , rn−1︸ ︷︷ ︸
for η̂2,··· ,η̂n

), (28)

the closed-loop system (7)-(22)-(23) which can be rewrit-
ten as

dZ = E(Z)dt = (z2, · · · , zn, v(ẑ), ˙̂η2, · · · , ˙̂ηn)T dt (29)

is homogeneous of degree τ . Moreover, it can be shown
that U is homogeneous of degree 4µ with respect to ∆,
under which, there exist a positive constant α1, such that

∂U(Z)

∂Z
E(Z) ≤− α1∥Z∥4µ+τ

∆ . (30)

3.2 Stability Analysis

Under the new coordinates

zi =
xi

Li−1
, i = 1, · · · , n, v =

u

Ln
(31)

with L ≥ 1 a constant to be determined later, system (1)
can be rewritten as

dz = LAzdt+ LBvdt+ f̄(z)dt+ ḡT (z)dω,

y = Cz (32)

with f̄(z) = (f1(·), f2(·)
L , · · · , fn(·)

Ln−1 )
T and ḡ(z) = (g1(·), g2(·)

L

, · · · , gn(·)
Ln−1 ).

We construct an observer with the scaling gain L

˙̂ηk = −Llk−1ẑk, ẑk = (η̂k + lk−1ẑk−1)
rk

rk−1 ,

k = 2, · · · , n (33)

where lk, k = 1, · · · , n− 1, are observer gains. With E(Z)
defined in (29), it is straightforward to verify that the
closed-loop system (32)-(33)-(23) can be represented as

dZ = (LE(Z) + F (Z))dt+GT (Z)dω (34)

where F (Z) = (f1(·), f2(·)
L , · · · , fn(·)

Ln−1 , 0, · · · , 0)T and G(Z)

= (g1(·), g2(·)
L , · · · , gn(·)

Ln−1 , 0, · · · , 0).
Based on the observer and controller design, the following
theorem gives the finite-time stabilization result of the
closed-loop system (34) via output-feedback.

Theorem 11. Under Assumption 7, there exists an output-
feedback controller rendering system (1) finite-time stable
in probability.

Proof. According to Definition 2, the proof of Theorem
11 is divided into four steps.
Step 1: We consider the existence of the solution to the
closed-loop system (34). The construction of the observer
and controller indicates that the closed-loop system is
continuous with respect to its variables. Since τ ∈ (− 1

n , 0),
fi(·) and gi(·) satisfy lower-order growth conditions. In
addition, if ∥Z∥ ≥ 1, with 0 < ri+τ

rj
< 1, j = 1, · · · , i,

there exists a positive constant K1 such that ∥F (Z)∥2 ≤
K1∥Z∥2. If ∥Z∥ < 1, one has ∥F (Z)∥2 ≤ K2, with K2 ≥ 0.
Therefore, by choosing K3 = max{K1,K2}, one has

∥F (Z)∥2 ≤ K3(1 + ∥Z∥2) (35)

which implies that F (Z) satisfies the linear growth con-
dition. Similarly, one can obtain that there is a positive
constant K such that

∥LE(Z) + F (Z)∥2 + ∥G(Z)∥2 ≤ K(1 + ∥Z∥2). (36)
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By Lemma 1, there exists a continuous solution Z(t) with
probability one that can be written as

Z(t) =Z0 +

∫ t

0

(LE(Z(s)) + F (Z(s)))ds

+

∫ t

0

GT (Z(s))dω(s) (37)

with the initial value Z0.
Step 2: Under Assumption 7 and the new coordinates
(31), it can be deduced that, for i = 1, · · · , n∣∣∣ fi(·)
Li−1

∣∣∣ ≤ a1
Li−1

(|z1|
ri+τ

r1 + |Lz2|
ri+τ

r2 + · · ·+ |Li−1zi|
ri+τ

ri )

≤a1L
1− 1

ri (|z1|
ri+τ

r1 + · · ·+ |zi|
ri+τ

ri )

≤ā1L
1− 1

ri ∥Z∥ri+τ
∆ (38)

with a constant ā1 ≥ 0. Recall that for i = 1, · · · , n, ∂U(Z)
∂Zi

is homogeneous of degree 4µ− ri, then∣∣∣∂U(Z)

∂Z
F (Z)

∣∣∣ ≤ n∑
i=1

∣∣∣∂U(Z)

∂Zi

∣∣∣∣∣∣ fi(·)
Li−1

∣∣∣
≤

n∑
i=1

L
1− 1

ri ρ1i∥Z∥4µ+τ
∆

≤ρ1∥Z∥4µ+τ
∆ (39)

where ρ1i, i = 1, · · · , n and ρ1 are positive constants. In a
similar way, for i = 1, · · · , n,∥∥∥ gi(·)

Li−1

∥∥∥ ≤a2L
1
2−

1
2ri (|z1|

2ri+τ

2r1 + · · ·+ |zi|
2ri+τ

2ri )

≤ā2L
1
2−

1
2ri ∥Z∥ri+

τ
2

∆ (40)

with ā2 ≥ 0, which indicates

1

2
Tr

{
G(Z)

∂2U(Z)

∂Z2
GT (Z)

}
≤1

2
r
√
r

n∑
i,j=1

∣∣∣∂2U(Z)

∂Zi∂Zj

∣∣∣∥∥∥gTi (·)
Li−1

∥∥∥∥∥∥ gj(·)
Lj−1

∥∥∥
≤ρ2∥Z∥4µ+τ

∆ (41)

for ρ2 ≥ 0. According to Definition 3, the infinitesimal
generator L of U along the trajectory of (34) is

LU(Z) ≤∂U(Z)

∂Z
LE(Z) +

∂U(Z)

∂Z
F (Z)

+
1

2
Tr

{
G(Z)

∂2U(Z)

∂Z2
GT (Z)

}
≤− (Lα1 − ρ1 − ρ2)∥Z∥4µ+τ

∆ . (42)

By choosing L > max{1, ρ1+ρ2

α1
}, there exist positive

constants α2 and α3, such that

LU(Z) ≤ −α2∥Z∥4µ+τ
∆ ≤ −α3U

4µ+τ
4µ . (43)

By Lemma 4, it can be obtained that the solution of the
closed-loop system (34) is finite-time attractive and stable
in probability.
Step 3: In this step, we will prove that after the first
hitting time τZ0 , the solution Z(t + τZ0) remains zero
almost surely, ∀t ≥ 0. Define the stopping time τm =
inf{t ≥ τZ0

; ∥Z(t;Z0)∥ ≥ m,m > 0}. It is clear that τm is
an increasing time sequence. Applying Itô’s formula, one
has, ∀t ≥ 0

U(Z((t+ τZ0) ∧ τm))

=U(Z(τZ0 ∧ τm)) +

∫ (t+τZ0
)∧τm

τZ0∧τm

LU(Z(s))ds

+

∫ (t+τZ0
)∧τm

τZ0∧τm

∂U(Z(s))

∂Z
GT (Z(s))dω(s) (44)

which indicates

EU(Z((t+ τZ0) ∧ τm))

=EU(Z(τZ0)) + E

∫ (t+τZ0
)∧τm

τZ0

LU(Z(s))ds ≤ 0. (45)

Since U(Z) is positive definite, one can obtain

EU(Z((t+ τZ0) ∧ τm)) = 0 (46)

which implies that

U(Z((t+ τZ0) ∧ τm)) = 0, ∀t ≥ 0 a.s. (47)

Letting m → +∞, we get Z(t + τZ0) = 0 almost surely,
∀t ≥ 0. Therefore, the result of finite-time stability in
probability for the closed-loop system (34) is achieved
according to Definition 2.
Step 4: Since coordinate transformation (31) does not
change the properties of the system, then the solution
of stochastic nonlinear system (1) is finite-time stable in
probability. 2

4. AN ILLUSTRATIVE EXAMPLE

In what follows, we use an example to illustrate the
effectiveness of the proposed output-feedback controller.

Example 12. Consider the following stochastic nonlinear
system

dx1 =x2dt+
1

2
x

9
11
1 cosx1dt+

1

4
x

10
11
1 dω,

dx2 =udt+
1

3
x

7
9
2 dt+

1

5
x

3
11
1 x

5
9
2 dω. (48)

In the simulation, we choose τ = −2/11, r1 = 1, r2 = 9/11
and µ = 3. It is easy to verify that

|f1| ≤
1

2
|x1|

9
11 , |f2| ≤

1

2
|x2|

7
9 ,

∥g1∥ ≤ 1

4
|x1|

10
11 , ∥g2∥ ≤ 1

4
(|x1|

8
11 + |x2|

8
9 )

satisfy Assumption 7 with a1 = 1
2 and a2 = 1

4 . There-
fore, according to Theorem 11, there exists an output-
feedback controller rendering the closed-loop system finite-
time stable in probability. Specifically, the output-feedback
controller can be constructed as follows:

˙̂η2 = −Ll1ẑ2, ẑ2 = (η̂2 + l1z1)
9
11 ,

u = −L2β2(ẑ
11
3
2 + β

11
3
1 z31)

7
33 (49)

where l1 = 3.2, β1 = 2, β2 = 3 and L = 2. With initial
values x1(0) = 1, x2(0) = −1.2 and η̂2(0) = 0, Fig.1
demonstrates the finite-time stability in probability of the
closed-loop system (48) and (49).

5. CONCLUSION

In this paper, the problem of global finite-time stabi-
lization has been solved for a class of stochastic lower-
triangular nonlinear systems via output-feedback. By em-
ploying adding one power integrator technique, homo-
geneous domination approach and stochastic finite-time
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Fig. 1. The responses of the closed-loop system (48) and
(49)

stability theorem, a systematic design method has been
presented to ensure that the solution of the closed-loop
system will converge to the origin in finite time and stay
at the origin thereafter with probability one.
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