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Abstract: Intermittent generations such as large-scale renewable energy increases the risk of
instability in a power grid. In this paper, we introduce the concept of observability and its
computational algorithms for power networks equipped with synchrophasors. The goal is to
estimate the angles and its derivatives around unstable trajectories, the information that is
critical for the detection of power network instabilities. The algorithm is developed to determine
the number and the siting of synchrophasors in a power network so that the state of the system
can be accurately estimated in the presence of instability. An unscented Kalman filter (UKF)
is adopted as a tool to estimate the states that are not directly measured by synchrophasors.
The theory and its computational algorithms are illustrated by using a 9-bus model with three

generators.

1. INTRODUCTION

The penetration of a large number of intermittent power
generations using renewable energy or green technologies
brings increasing uncertainties to daily operations of in-
terconnected power transmission systems. Early indicat-
ing wide-area stability problems (e.g. cascading events) is
crucially important for control centers to prevent power
outages and blackouts. In the US and many other coun-
tries, synchrophasors are being increasingly installed in
transmission systems to provide wide-area real-time mea-
surement data synchronized by GPS. In the next five to
ten years, thousands of synchrophasors will be installed
in North America. Electricity utilities are building syn-
chrophasor networks to collect data from dispersed syn-
chrophasors and then send the huge volume of data to
online stability applications at control centers. Monitoring,
analysis and control are three key operational functions
of control centers for the detection, prediction and at-
tenuation of stability problems. As of today there are
still large technical gaps in applying synchrophasor data
for online analysis and real-time network control. Most
current synchrophasor applications are based on direct
visualization for online monitoring, e.g. displaying angle
differences between selected power plants/substations and
drawing voltage/frequency contours. These methods can-
not provide the information about the dynamic behavior
of a power network with intermittent generations. On
the other hand, the data in time series collected from
synchrophasors makes it possible to reliably predict the
dynamic behavior of networks. The goal of this paper is to
develop and to validate the theory and the methodology of
designing efficient synchrophasor networks and data fusion
algorithms.
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How to evaluate networked synchrophasors in a large-
scale grid is a fundamental question in this study. More
specifically, the following issues present challenges and
opportunities that motivate the research topics in this

paper:

e What is the minimum requirement in terms of size
and siting for a synchrophasor network to guarantee
that variables at system instability are credibly ob-
servable?

e How to optimally design a synchrophasor network
based on a given number of synchrophasors to achieve
the maximum observability at instability?

e Develop computationally efficient algorithms for the
estimation of state variables that are not directly
measured by sensors.

While the theory and algorithms for the filtering and
optimal sensor design have been developed for many
years, some recent results in Kang-Xu [2009a,b] can be
used to quantitatively measure observability for large-scale
nonlinear systems such as numerical weather prediction
Kang-Xu [2012] and power grids. In this paper, we extend
these results to explore and analyze the observability
of power networks and to address some of the afore
mentioned issues on synchrophasor network design.

In this paper, we first introduce the concept of observ-
ability and its computational algorithm. This concept is
fundamental to the evaluation of synchrophasor networks.
It is used to determine the number and the siting of
synchrophasors in a network so that the state of the
system can be accurately estimated in the presence of
instability. Then, an unscented Kalman filter (UKF) is
introduced as a tool to estimate the states that are not
directly measured by synchrophasors. We demonstrate the
methodology developed in this paper using a 9-bus model
with three generators.
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2. OBSERVABILITY AND UKF

In this section, we introduce the concept of unobservability
index and a state estimation method based on an un-
scented Kalman Filter.

2.1 Observability

In Kang-Xu [2009a,b], a quantitative measure of partial
observability is defined for general dynamical systems. For
power systems, we adopt a simplified version of that defini-
tion. Consider any system defined by ordinary differential
equations

= (b (1)), )

where © € IR" is the state variable, y(t) € IR™ is the
system’s output given by sensor measurement. In this sec-
tion, we define the observability of initial conditions, x(0),
which uniquely determine the trajectories of a system. The
definition can be easily modified to define the observability
of x(tg) for any given time ¢t = ty. Suppose = and y lie in
normed spaces with norms denoted by ||z|| and ||y||y .

Definition 1. Given p > 0 and a nominal trajectory x(t)
of (1). Let

N =inf ||h(@(t)) — h(z())]]y
where Z(t) satisfies

dz .
ap = 00) @)
(50) ~ =)l = »

Then p/e is called the unobservability index of z(0).

Remark. This is a quantitative measure of observability.
The ratio p/e can be interpreted as follows: if the maxi-
mum error of the measured output, or sensor error, is e,
then the worst estimation error of z(0) is p. Therefore, a
small value of p/e implies strong observability of z(0). For
linear systems with a L?-norm, it can be proved that the
reciprocal of the unobservability index is the square root
of the smallest eigenvalue of the observability gramian.

Definition 1 can be numerically implemented for nonlin-
ear systems. In this project, two algorithms are used to
compute the observability, namely the empirical gramian
method and the method of pseudospectral dynamical op-
timization. Empirical gramian is a method of first order
approximation for the unobservability index. The idea is to
approximate the unobservability index using the smallest
eigenvalue of a gramian matrix Kang-Xu [2009a,b]. Due
to its simplicity, this method is used for most simulations
in this project. However, for the problem of robust ob-
servability the first order approximation is not accurate
enough. As an alternative, we use a more sophisticated
computational algorithm based on pseudospectral method
Kang [2006].

2.2 Unscented Kalman Filter

For systems with strong or reasonable observability, filters
can be used as virtual sensors to estimate the variables
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that are not directly measured. Kalman filter was devel-
oped originally for linear systems. Modified Kalman filters
are widely used for nonlinear systems. Extended Kalman
filters require the linearization of system models, which
may not be easily available during real-time operations
for large-scale systems like power grids. In this project,
we adopt Unscented Kalman Filter (UKF) which does
not require online computation of system linearization.
Consider a nonlinear system

Tp = f(xnflawnfl)

Yn = h(mnfhvnfl)
where z,y,w and v are the state, measurement, process
noise and measurement noise, respectively. The UKF is
“founded on the intuition that it is easier to approximate
a probability distribution than it is to approximate an
arbitrary nonlinear function or transformation” Julier-
Uhlmann [2004]. The algorithm of an UKF is outlined as
follows. Details can be found in Julier-Uhlmann [2004].

e Based on the previous-step estimation of the state,

Zn—1, and the covariance matrix, P7*,, calculate a
set of sigma points as

o' = &y £ \/NGPT i =1,2,... N,;

e Propagate all the sigma points through the nonlinear
dynamic and the output equations,

2t = f(0%,0), ¢* = h(c",0), i=1,2,...,N,

e Calculate the mean (prediction) of the state and

output,
1 2N, 1 2N,
S i i.
= g L e = g 0"
e The prediction of the covariance matrices are given
by,
AL
pxaj _ R~ i~ \T
1 2N
If)yy _ i~ i ~\T
W = N, i=1(9 Gn)(9" = Un)
] 2
pzy _ A~ i~ \T
= 3N ;(Z Fn)(g' = n)

Once the prediction of z,,, 15,3”“, 15,?{-” and Pffy are available,
the update is given by

Ty = Tn+ K(Yn — Un)
where
K = P[py|~! pr* = p* _ KpKT,
In this paper, UKF is used as virtual sensors to estimate
both state variables and uncertain parameters. It is also

used as a tool to verify the observability computed using
different methods.

3. OBSERVABILITY ANALYSIS ON THE
BOUNDARY OF THE DOMAIN OF ATTRACTION

To provide adequate information for stability analysis
and control, it is important to verify that the system is
reasonably observable at the time of instability. Given
a set of synchrophasors, the unobservability index can
be computed to determine if the system is adequately
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observable. This approach is tested and illustrated using
the following system of a 9-bus model.
3.1 A 9-bus model

The model is adopted from Anderson-Fouad [1994]. The
dynamical system is defined using a set of ODEs

2H, d;;i + Dijw; = Py — Pe,
a5 _ (3)
E:wi_wR’ 1=1,2,3

where

P, = EZQG“ + Z EiEijij COS(eij —0; + (5J)
J=1j#i
D,=0,i1=1,2,3;
Hy =47.28, Hy =12.8, H3 = 6.02
wr =60 - (27)
Ey =1.0566, E> = 1.0502, E5 = 1.0170;
Base =100 MV A
p— 71.6 ~163.0
'~ Base’ "? Base’
The reduced Y matrix is
0.8455 — 2.9883.J 0.2871 + 1.5129J 0.2096 + 1.2256J

0.2871 4 1.5129J 0.4200 — 2.7239J 0.2133 4 1.0879J (4)
0.2096 + 1.2256J 0.2133 + 1.0879J 0.2770 — 2.3681J

~ 85.0
3~ Base

Y =

The system has an equilibrium

[61 8 63]" = [2.2717° 19.7315° 13.1752°]"
. (5)
w; =wgr, 1=1,2,3

3.2 The domain of attraction

Around any equilibrium of nonlinear systems there is a
domain of attraction. The trajectory starting from any
point in the domain converges to the equilibrium. However,
there is no general way of computing the domain of at-
traction. Although Zubov’s equation defines the boundary
of the domain, this equation is extremely difficult to solve,
numerically or analytically, if not impossible. On the other
hand, practical criterions based on experimentations can
be used to approximate a domain of attraction. It is desired
that the data collected by synchrophasors make the system
strongly observable at the boundary of the domain of
attraction, which implies that all state information can
be reliably estimated for analysis and control before a
trajectory becomes unstable.

In the following, we find a layer outside the boundary
of the domain of attraction. Starting from this layer,
all trajectories lost its stability. After tens of thousands
of simulations, what we found for the 9-bus system is
that stability is lost quickly after at least one relative
angle becomes larger than 650°. Therefore, we use the
following practical criterion to compute an envelop outside
the domain of attraction: all initial angles so that at least
one relative angle is between 650° and 750° at t = bs.
In the computation, if we choose a time interval longer
than t = 5, the envelope is tighter, i.e. it is closer to
the boundary of the domain of attraction. For a time
interval shorter than ¢ = 5, the envelope becomes loose.
We found that t = 5 is a good time interval which is long
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enough to provide adequate information for analysis and,
meanwhile, it is short enough to achieve fast throughput
for computations.

In this paper, we focus on the domain of attraction in
010903-space with a fixed w. In this case, the equilibrium
is

5. = [2.2717° 19.7315° 13.1752° )" (6)

The domain of attraction in the w — ¢ space has higher
dimension, which is addressed in Kang-Sun [2013]. It
is omitted due to space limitation. In the computation,
the boundary of the domain of attraction is approxi-
mated by finite many points around the equilibrium (6).
The grid points for d3 is a sequence in the interval
[—92.2462° 136.9369°], i.e.

55 = —92.2462° + 14.3239°k, k=0,1,2,---,16  (7)

For each value of 3, a 360° search around the equilibrium
(6) is carried out numerically for a sequence of directions,
vj = [cos(f;) sin(f;) 0], j =1,2,---,120

0; = 37,
For each 8% in (7), one point in the envelope of the domain
of attraction is found in the direction of vj,

[2.2717° 19.7315° 65 | + rv; (8)

in which the radius r is determined as follows.

(1) Find 7min and rmax so that the system is stable with
the initial condition (8) using ryin; and unstable using

Tmax'
(2) Let r = —(Tmax + Tmin)- Solve ODE (3) using initial

condition (8).
(3) Check A = max{|62(T") —61(T)|, |05(T) —1(T)|}. We
set T' = 5 seconds.
o If A > 750°, then ry.x = r, go to step 2.
o If A < 650°, then ry;, =7, go to step 2.
o If 650° < A < 750°, stop. The point (8) is in the
envelope of the domain of attraction.

N |

This algorithm is applied to 16 grid points of 65 with
120 different directions v;, a total of 17 x 120 = 2040
combinations. The envelope of the domain of attraction is
shown in Figure 2. Trajectories starting from this surface
diverge after about ¢ = 5 seconds. A typical trajectory is
shown in Figure 1.
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Fig. 1. Relative angles of an unstable trajectory. Solid line:
0o — 01; dashed line: d3 — d7
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3.8 Observability

For the purpose of detecting instability, the synchropha-
sors should be installed so that the unstable trajectories
close to the domain of attraction should be observable. In
the following, the quantitative observability in Definition
1 is applied to all points in the envelope of the domain
of attraction. The unobservability index is numerically
computed using the empirical gramian method Kang-Xu
[2009a,b]. Let us assume that a synchrophasor is installed
at Generator 1, i.e. §; and w; can be measured by sensors.
In this case the output function is
T
y=[w1 d1]
We assume that the sensor collects data at a rate of 30H z.
The norms in Definition 1 are defined as follows.

1 w
Il = 553 [er a1 |51 o)

j=1

where W is the weight matrix

W [/ 0 Ry =2m-5-107
=1 0 1/Rs|’ Rs=0.01-—

180
This weight matrix is chosen based on the assumption
that the sensor error for w is bounded by 5 x 1073 H z and
the error of § is bounded by 0.01°. The metric for state
variables is

(10)

||z]|> = 2" W3z (11)
where z = [w1 w2 w3 61 O2 53}T and the weight matrix,
Wa, is defined as follows,

50
—1I3 0
Wy = “ 50 , I3 is an identity matrix (12)
0o X,
Rs

This weight matrix implies that 50 x 0.01 = 0.5° and
50 x 5 x 1073 = 0.25 Hz are considered good accuracy in
estimation. The unobservability index, p/e, in Definition
1 is a number describing the smallest input-to-output
gain from the initial state to the variables measured
by sensors. It means that the worst estimation error
of the state variable is p/e times the sensor error, in
their corresponding metrics. For the purpose of instability
analysis, the goal is to have reasonable estimate that can
tell the trends of the state variables. For this purpose,
trajectories with p/e € [0,1] are strongly observable;
1 < p/e < 30 are reasonably observable; p/e > 30 are
weakly observable, sometimes unobservable.

The envelope of the domain of attraction computed in
Section 3.2 consists of the initial states from which the
trajectories lost stability at ¢ = 5. As shown in Figure 1,
the trends of these trajectories in the time interval [4, 5]
is important. Therefore, we compute the unobservability
index for this time interview. The result is shown in Figure
2. The value of unobservability index for each point in the
envelope is represented by different colors, cold color rep-
resenting strongly observable and warm color representing
weakly observable. The range of the unobservability index
is between 0.49 and 22.66. Therefore, all unstable trajec-
tories are reasonably observable. In fact, from the figure
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one can see that all points in the envelope are strongly
observable except for a few spots. More specifically, Figure
3 is the histogram of the unobservability index. It shows
that about 900 points in the envelope have unobservability
index close to p/e = 4, which is a good observability. Very
few points have an index larger than twenty.

Unobservability Index

22.663

20.200

17.736

15.273

12.810

10.347

7.883

5.420

2.957

0.493
-5 5

Fig. 2. An envelope of the domain of attraction in §;92d3-
space and its unobservability indices

900

o0 5 10 15 20 25

Fig. 3. The histogram of unobservability index

If the synchrophasor is installed at Generator 2 or 3, the
unstable trajectories are also observable. The results are
shown in Figure 4 and 5. In fact, the observability in these
two cases are better than the first case.

Unobservability Index 11.964
10.649
9.335
8.020
6.706
5.392
4.077

2.763

1.449

0.134

-5 5

Fig. 4. Unobservability index of unstable initial conditions,
sensor at the 2nd generator

4. OBSERVABILITY AND ESTIMATION IN THE
PRESENCE OF SYSTEM UNCERTAINTIES

System instabilities can be triggered by two different rea-
sons, an initial state outside the domain of attraction or
a change of system parameters. The instability caused by
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Unobservability Index 9.251
8.234
7.216
6.199
5.182
4.164
3.147
2.130

1.113

0.095

-5 -5

Fig. 5. Unobservability index of unstable initial conditions,
sensor at the 3rd generator

initial states is studied in the previous section. Now we
consider systems with unpredictable parameter changes. In
the first subsection, we study the robustness of the observ-
ability in the presence of unknown parameter changes. In
the second subsection, we introduce an adaptive nonlinear
estimation method to provide accurate state estimate. In
addition, some unknown parameters can also be estimated
using sensor information.
4.1 Robustness of observability
Let 6f and w§, i = 1,2, 3, be the equilibrium point (5) of
the system in (3) with a reduced Y matrix (4). At time
t = 0, we assume that the system’s admittance matrix is
changed,

Y=Y +AY
We assume that this change is not known to the operator.
If the estimation is still based on the original ¥ matrix,
how robustness is the observability? To quantitatively
measure the robustness of observability, we use the re-
mainders of trajectories, an approach from Kang [2011].
Suppose the sensor measures 1 (t) and w1 (t). Let §;(¢) and
w;(t), i = 1,2,3, be a trajectory with the new Y matrix
starting from the equilibrium (5). Suppose 67 (t) and w(¢)
be the best estimate of §;(t) and w;(t) using the original
Y matrix,

min || [ 03 (t) — 61(t) @1(t) — wi(t) ] I, (13)
w;(t) and 6;(t) satisty (3)-(4)

where W7 is defined in (10). Let w! (¢) = w;(t) — w(t) and
Or(t) = 8;(t) — 07 (t) be the remainder, then

wilt) = W) + Wi (1), &) = () +81(1)  (14)
According to (13), ¢6(¢) and w}(t) are the best estimate
of §;(t) and w;(t) using the matrix Y and the sensor
information. The estimation error is the remainder, §7(¢)
and w (¢). This error is not directly caused by the output
noise, i.e. this error cannot be reduced no matter how
accurate the output is measured. Therefore, the remainder
is a measure of the robustness of observability. If the
remainder is small, it implies that a nonlinear estimator
is able to accurately estimate the state variables in the
presence of small unknown parameter change.

To compute the remainder and the best estimate, we
must solve (13). It is a problem of nonlinear dynamic
optimization. An analytic solution does not exist. In this
section, computational dynamic optimization is applied
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to solve (13). More specifically, we apply a pseudospec-
tral method based on Legendre-Gauss-Lobatto quadrature
nodes Fahroo-Ross [1998], Kang [2006]. As an example, we
computed the remainder for a AY in which all entries are
zero except

AY]Q = Ayrgl = T‘Ylg, r=—0.01
i.e. the entries Yio and Y3; in Y are reduced by 1%

in magnitude. For the time interval [0, 1], the remainder
is shown in Figure 6. The magnitude of the remainders

2
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Fig. 6. The remainder for ¢ € [0, 1]

depends on the length of the time interval. We found that
it increases with the final time T'. If we use the final-time
error as a metric for the remainder, i.e.

[ [w(T) wy(T) wy(T) ]| and || [67(T) 65(T) d3(T) ]|
the results for T' = 1,2,3,4,5 is shown in Figure 7. The
unit in the figure is “deg” for § and “deg/s” for w. In
this figure, “o” represents the norm of angular velocities
and “x” represents the norm of angles. The result implies
that the unobservability index is “unstable” in the sense
that the remainder’s magnitude, i.e. the error of the best
estimate, increase with time. Therefore, the observability
decreases as time goes on. The angles increase linearly and
the angular velocities increase at a higher order. Therefore,
we conclude that the observability is not robust to the
variation of system parameters.

50 e
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35r b

Errors at final time
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150 >H
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Length of time interval

Fig. 7. The remainder for T'=1,2,3,4,5

4.2 The observability of unknown parameters and adaptive
esttmation

Given the robustness study, it is important to make an
estimator that is adaptive to the unknown parameter
change. In fact, we can compute the observability of both
the state variables and the parameters in the system
model. More specifically, suppose the unknown parameter
is the magnitude of Y32, then

Yio = 1Yo
If » = 1, the nominal value of Y is the same as the
true value. If r # 1, the parameter in the system is
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Entry of 80% change | Unobservability Index
Y12 0.8572
Y13 1.7593
Yo3 0.8055

Table 1. Unobservability index of parameter
variation and state variables

Entries of 80% change | Unobservability Index
Yi2 and Yi3 1.2585
Y12 and Ya3 0.7026
Y13 and Ya3 1.3826

Table 2. Unobservability index of parameter
variation and state variables

varied. In this case, we want to estimate the change and
then adaptively adjust the estimates. For this purpose,
we define the observability of both w;, d;, and r using
Definition 1 and the following norm

|z||? = 2T Wax + War? (15)
Wy is from (12) and W3 = 1/0.05. The nominal value, r.,
in the simulations is 0.8, i.e. we assume a 20% parameter
variation that is unknown. Observability of the parameter
variation as well as the state variables is computed and
listed in Table 1. From the table we can conclude that
parameter variations are observable. For instance, if Y75 is
varied by 80%, the unobservability index is 0.9853, which
implies strong observability. If two parameters are unex-
pectedly changed by 80%, the system is still observable.
The result is shown in Table 2.

4.8 Adaptive estimation

Because the unknown parameters are observable, it makes
sense to apply an estimator that is adaptive to the system
change. In this case the sensor information serves two
purposes: for the estimation of the state variables and for
the real-time update of parameter changes. Once again,
UKF is applied to estimate the value of the state variable
as well as the parameter variation.

We tested UKF by changing one parameter in Y matrix
by 20%. For example, the true value of Yjs is 80% of
Y12 given to the UKF. Started from the incorrect model
parameters, the UKF uses the sensor information with
noise to estimate w; and §; as well as Yi5. The process
is able to correct the parameter automatically so that the
estimates gradually approach the true value. The result is
shown in Figure 8. Similar simulations are carried out for
the variation of all other parameters in Y. All estimates
are convergent with a behavior similar to what shown in
Figure 8.

5. CONCLUSION

It is justified by a large number of simulations that the
concept of observability and its computational algorithms
can be used as a tool to evaluate the effectiveness of
synchrophasor networks. For a 9-bus model with three
generators, a single synchrophasor makes the entire sys-
tem observable at the boundary of stability. Using the
data from a single synchrophasor, all angles and angular
velocities can be estimated using virtue sensors such as
a UKF. The computation shows that observability is not
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robust to model uncertainties. However, the unknown pa-
rameter variations are observable. It implies that adaptive
estimation method should be used to provide reliable state
estimates.

Since the 9-bus power system model can be considered as
a reduced model of the WECC power system, it indicates
that the results and conclusions from the study of the 9-
bus power system is potentially applicable to a large-scale
power grid having multiple control regions interconnected
by tie-lines with synchrophasors installed in only some
of those regions. For future research, the concept and
algorithms will be applied to real system models with
hundreds of buses and tens of generators. The work will
be focused on the computation of observability and the
development of real-time estimation algorithms. The goal
is to find the number and the siting of synchrophasors that
make the system observable for the detection of instability.
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