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Abstract: A new three-dimensional nonlinear path-following guidance law is proposed using
differential geometry. The guidance law is designed based on the look-ahead angle and the
radially shifted distance which gives an additional degree of freedom to generate acceleration
command for precise path-following. A modified Frenet-Serret frame is utilized to describe the
desired path, and the closest projection point is taken as a reference point on the desired path.
To implement the guidance law for the vehicle in a flow-field, a command modifying logic is
proposed to generate the sideways command which is orthogonal to the flow-relative velocity.
Numerical simulations are performed to verify the performance of the proposed guidance law.
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1. INTRODUCTION

The path-following problem can be stated as follows;
“Design a guidance command that makes the vehicle to
track the desired path.” The path-following is one of the
important problems for the autonomous operation of the
unmanned vehicles. Recently, the missions involving the
autonomous flight of the UAV(Unmanned Aerial Vehicle)
have become more complicated, and therefore a precise
and effective three-dimensional path-following guidance
law is especially required.

Various guidance laws have been developed for the pur-
pose of the path-following. Most of the methods have
been developed for two-dimensional path-following, which
can be classified into three approaches; the error kine-
matics/dynamics based approach, the vector field based
approach, and the virtual target following approach.

In the error kinematics/dynamics based approach, various
control laws have been applied where error variables are
defined considering the problem of the path-following.
The kinematic/dynamic model of the error variables are
derived, and linear or nonlinear control design methods
are applied to regulate the errors. (Cabecinhas et al.
(2007); Gates (2010)) The merits of this approach are the
guaranteed stability and the reliable tracking performance
from the direct error feedback. However, the guidance
command is somewhat complicated and model dependent.
Also, a singularity problem may restrict the set of feasible
initial conditions.

In the vector field based approach, a vector field desig-
nating the desired course angle or velocity at each point
is constructed so that the vehicle converges to the desired

path along the vector field. (Nelson et al. (2007); Lawrence
et al. (2008)) The strength of this approach is the global
convergence for the following of straight line and circle
paths. However, this approach is not applicable to general
space curves.

In the virtual target following approach, or ‘Look-ahead
point based approach’, guidance command is designed to
track a virtual target point on the desired path. (Park et al.
(2007); Curry et al. (2013); Yamasaki et al. (2013)) This
approach was originated from the classical line-of-sight
guidance laws. The strengths of this approach are the sim-
plicity of the guidance command, the model independence,
and the so-called ‘look-ahead effect’ which enables tight
tracking and wind effect compensation. Taking the look-
ahead point as the reference point also provides robustness
against the external disturbances. However, the initial
position of the vehicle should be inside of the specified
look-ahead distance from the desired path, and the look-
ahead point is not easy to determine when the desired path
is a combination of different types of complicated curves.

In this study, to deal with the weaknesses of the existing
path-following guidance laws, a three-dimensional nonlin-
ear path-following guidance law is proposed by introducing
the concepts of the ‘look-ahead angle’ and the ‘radially
shifted distance’. Tight path tracking can be made for
any desired path defined as a space curve satisfying some
suitable smoothness condition.

This paper is organized as follows. Path-following problem
is formulated in Section 2, and a path-following guidance
law is proposed in Section 3. The performance of the
proposed guidance law is verified by numerical simulation
in Section 4. Conclusion is given in Section 5.
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2. PROBLEM FORMULATION

The following assumptions are required to design the path-
following guidance law.

Assumption 1. (Smoothness Condition of Desired Path).
The desired path is a parameterized, twice differentiable
space curve.

Assumption 2. (Uniqueness of Reference Point).
A closest projection point on a desired path can be
uniquely determined as a reference point.

Assumption 3. (Direction of Unit Tangent Vector).
The direction of the unit tangent vector of the desired path
is determined by the desired path-following direction.

Figure 1 shows the geometry of the three-dimensional
path-following problem and illustrates the Frenet-Serret
frame of the desired path. In Fig. 1, P is a closest
projection point on the desired path, M is a vehicle, r is a
position vector defined in the inertial frame, v is a velocity
vector, (T̂, N̂, B̂) are unit tangent, normal, and binormal
vectors of the Frenet-Serret frame, p (l) is a desired path
parameterized by l, and s and σ are distance along the
desired path and the vehicle path, respectively.
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Fig. 1. Geometry of 3-D Path-Following

Definition 1. (Closest Projection Point P ).
For a given desired path p (l), the closest projection
point(footpoint) P is defined as follows

rP (s (σ)) = arg min
r∈p
‖rM (σ)− r‖ (1)

where e , rP − rM .

For the closest projection point defined by Eq. (1), the
following condition is satisfied.

e ⊥ T̂P (2)

It is assumed that the vehicle has an inner-loop controller
that produces an exact acceleration as commanded by the
guidance law, that is aM = aMcmd

. The path-following
problem can be mathematically defined as follows.

Definition 2. (Path-Following Problem).
Design a guidance command aMcmd

such that the following
conditions are satisfied for a vehicle as σ →∞.

‖rM (σ)− rP (s (σ))‖ → 0 (3)

T̂M (σ)→ T̂P (s (σ)) (4)

If (3) is satisfied, the path of the vehicle will merge into the
desired path, i.e., a position convergence. If (4) is satisfied,
the vehicle will follow the direction of the desired path, i.e.,
a velocity direction convergence.

Also, “On-Track” and “Aligned” are defined as follows.

Definition 3. The vehicle is On-Track, if rM = rP .

Definition 4. The vehicle is Aligned, if T̂M = T̂P .

2.1 Differential Geometry of Space Curves

In this study, a modified Frenet-Serret frame is used for
description of the motion along the desired path curve.

The velocity and the acceleration of a particle along a
space curve can be represented as follows

v = ‖v‖ T̂ = vT̂ (5)

a = v̇ = v̇T̂ + κv2N̂ (6)

where κ is the curvature.

Remark 1. (Speed and Shape of a Space Curve).
The shape of a space curve depends only on the curvature.
The speed along the curve does not affect the shape of
the curve. Therefore, the normal acceleration component
κv2N̂ in Eq. (6) determines the shape of the curve.

Remark 2. (Binormal Component of Acceleration).
Due to Eq. (6), acceleration along a space curve has no
binormal component.

2.2 Exact Path-Following Condition

According to the Remarks 1 and 2, the acceleration
command of the vehicle generated by the path-following
guidance law should satisfy the following condition.

Definition 5. (Exact Path-Following Condition).
To maintain the vehicle On-Track and Aligned for the
exact path-following, following two command conditions
should be satisfied.

aNMcmd
· N̂P

∣∣∣rM=rP
T̂M=T̂P

= κP ‖vMI
‖2 (7)

aNMcmd
· B̂P

∣∣∣rM=rP
T̂M=T̂P

= 0 (8)

where aNMcmd
is the command for normal acceleration

which will be explained below.

Equation (7) implies that the curvature of the vehicle path
should be equal to the curvature of the desired path, and
Eq. (8) means that the acceleration of the vehicle should
not have any component binormal to the desired path.

3. GUIDANCE LAW

3.1 Form of the Guidance Law

Let us consider Fig. 2 which shows the geometry of the
guidance law considered in this study. The nonlinear path-
following guidance law is proposed as follows.

aNMcmd
= k

(
vMI

× L̂
)
× vMI

(9)

where aNMcmd
is a ‘normal guidance command’, k > 0 is a

guidance gain, vMI
is an inertial velocity of the vehicle,
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and L̂ is a look-ahead vector. The ‘normal guidance com-
mand’ is a guidance command for ‘normal acceleration’
which is the component of acceleration perpendicular to
the inertial velocity. As shown in Fig. 2, a geometric
interpretation of the look-ahead vector L̂ is a unit vector
which is rotated from the direction of d to the direction of
T̂P by an angle θL.
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Fig. 2. Guidance Geometry

Theorem 1. (Guidance Law).

The normal acceleration aNM , aM −
(
aM ·

vMI

vMI

)
vMI

vMI
can

be expressed by the following vector triple product

aNM = κMvMI

2N̂M

=
(
vMI

×
(
κMN̂M + T T̂M

))
× vMI

(10)

where T ∈ R is arbitrary.

Proof. Note from Eq. (5) that vMI
= vMI

T̂M , and

aM = v̇MI
T̂M + κMvMI

2N̂M from Eq. (6), therefore we
have

aNM = aM −
(
aM · T̂M

)
T̂M = κMvMI

2N̂M (11)

Rewriting Eq. (11) gives

aNM = κM (vMI
· vMI

) N̂M (12)

Using the fact vMI
· N̂M = 0 and

(
vMI

· T T̂M

)
vMI

=

(vMI
· vMI

)T T̂M for some T ∈ R, Eq. (12) can be
rewritten as follows.

aNM = −
(
vMI

· κMN̂M

)
vMI

+ (vMI
· vMI

)κMN̂M

−
(
vMI

· T T̂M

)
vMI

+ (vMI
· vMI

)T T̂M

= −
(
vMI

·
(
κMN̂M + T T̂M

))
vMI

+ (vMI
· vMI

)
(
κMN̂M + T T̂M

)
=
(
vMI

×
(
κMN̂M + T T̂M

))
× vMI

(13)

2

Using Theorem 1, the normal acceleration command can
be generated by the triple product of vMI

and a vector q

corresponding to κMN̂M + T T̂M . Therefore, a guidance
law can be constructed by the proper selection of q. In
this study, kL̂ is proposed for q to realize the look-ahead
effect, which is explained in detail below.

Corollary 1. (Direction of the Guidance Command).
If aNM = aNMcmd

, then the direction of the guidance
command can be represented as

aNMcmd∥∥aNMcmd

∥∥ = sign (κM ) N̂M =
k

|κM |
rej(L̂,vMI

) (14)

where rej(a,b) = a− a·b
‖b‖

b
‖b‖ , which is the vector compo-

nent of a perpendicular to b, as shown in Fig. 3.

Proof. By Eqs. (9) and (10), the direction vector of aNMcmd

can be written as

aNMcmd∥∥aNMcmd

∥∥ =
k
(
vMI

× L̂
)
× vMI∥∥∥κMvMI

2N̂M

∥∥∥
=
k
(
−
(
vMI

· L̂
)
vMI

+ (vMI
· vMI

) L̂
)

∥∥∥κMvMI
2N̂M

∥∥∥
=

k

|κM |

L̂−

(
L̂ · vMI

)
vMI

vMI

vMI


=

k

|κM |
rej(L̂,vMI

)

(15)

2

L̂

IM
v

( )ˆrej ,
IM

L v

Fig. 3. Direction of the Guidance Command

Remark 3. (Look-Ahead Effect).
It can be stated from Corollary 1 that the vehicle with the
proposed guidance law, Eq. (9), tends to align its inertial

velocity vMI
with the look-ahead vector L̂. This feature,

named ‘look-ahead effect’, originates from the property of
the pursuit guidance.

3.2 Construction of the Look-Ahead Vector

The look-ahead vector L̂ is constructed by θL and dshift as
shown in Fig. 2. In the Fig. 2, C is the center of curvature
at P , W is a point defined on the line from P to C.
Therefore, rW can be represented as

rW , rP + dshiftsign (κP ) N̂P (16)

where dshift is a ‘radially shifted distance’. Since e = rP −
rM , the distance vector from M to W can be represented
as

d , rW − rM = e + dshiftsign (κP ) N̂P (17)

Let d̂ , d
‖d‖ , then the look-ahead vector L̂ can be

constructed as follows

L̂ , cos θLd̂ + sin θLT̂P (18)
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where θL is the ‘look-ahead angle’ which will be defined in
the following subsection.

3.2.1 Radially Shifted Distance (dshift)
An additional degree-of-freedom in the proposed guidance
law comes from the introduction of radially shifted dis-
tance, which is included to generate accurate acceleration
command for exact path-following. The value of dshift is
determined by the value that satisfies the Exact Path-
Following Condition as stated in Def. 5.

If the vehicle is On-Track, then e = 0, and d|e=0 =

dshiftsign (κP ) N̂P . Therefore, we have

L̂
∣∣∣
e=0

= cos (θL (‖d|e=0‖)) d̂
∣∣∣
e=0

+ sin (θL (‖d|e=0‖)) T̂P

= cos (θL (dshift)) sign (κP ) N̂P + sin (θL (dshift)) T̂P

(19)

where θL is designed as a function of ‖d‖.
In addition to On-Track, if the vehicle is also Aligned,
T̂M = T̂P , then we have

vMI
|T̂M=T̂P

= ‖vMI
‖ T̂P (20)

Substituting Eqs. (19) and (20) into the proposed guidance
law of Eq. (9), the command generated at the On-Track
and Aligned condition can be represented as follows.

aNMcmd

∣∣
e=0
T̂M=T̂P

= k
(
vMI
|T̂M=T̂P

× L̂
∣∣∣
e=0

)
× vMI

|T̂M=T̂P

= k ‖vMI
‖2 cos (θL (dshift)) sign (κP ) N̂P

(21)

Note that Eq. (8) is satisfied by Eq. (21). Also, the
guidance command Eq. (21) should satisfy Eq. (7) as
follows.

aNMcmd
· N̂P

∣∣∣e=0
T̂M=T̂P

= k ‖vMI
‖2 cos (θL (dshift)) sign (κP )

= κP ‖vMI
‖2

(22)
Therefore, dshift should satisfy the following condition for
exact path-following.

dshift =

{
x ≥ 0 : θL (x) = cos−1

(
|κP |
k

)}
(23)

3.2.2 Look-Ahead Angle (θL)
The look-ahead angle θL should satisfy several conditions
to realize the look-ahead effect for the path-following.
Consider a virtual tube of constant radius δBL around the
axis which penetrates W and is parallel to T̂P as shown in
Fig. 2. Let us call this tube as a ‘boundary layer’ so that
δBL is the ‘boundary layer thickness’. Considering Remark
3 in mind, it can be summarized that

(1) θL should be a function of ‖d‖
(2) dθL(‖d‖)

d‖d‖ < 0 inside the boundary layer (‖d‖ < δBL)

to steer the velocity to the direction tangential to the
desired path,

(3) d2θL(‖d‖)
d‖d‖2 < 0 inside the boundary layer for smooth

incidence to the desired path,
(4) θL (‖d‖) = 0 outside the boundary layer (‖d‖ > δBL)

to make the vehicle approach to the desired path as
fast as possible,

(5) θL (‖d‖ = 0) = π
2 [rad] and θL (‖d‖ = δBL) = 0[rad]

to satisfy the boundary conditions.

Various functions satisfying the above conditions may be
introduced. In this study, following two look-ahead angle
functions are proposed.

θL (‖d‖) =
π

2

√
1− ‖d‖

δBL
(24)

θL (‖d‖) = cos−1
(
‖d‖
δBL

)
(25)

Figure 4 shows the shapes of the above two look-ahead
angle functions.
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Note that if the look-ahead angle function given by Eq.
(24) is used, dshift can be expressed as

dshift =

[
1−

(
2

π
cos−1

(
|κP |
k

))2
]
δBL (26)

On the other hand, if Eq. (25) is used, dshift can be
expressed as

dshift =
|κP |
k
δBL (27)

3.3 Properties of the Proposed Guidance Law

Note that the magnitude of the guidance command is
bounded by aNMcmd

≤ k ‖vMI
‖2. There are only two design

parameters, k and δBL, in the proposed guidance law. The
guidance gain k affects the amount of the command. If the
initial position of the vehicle is outside of the boundary
layer, the boundary layer thickness δBL determines where
the vehicle begins to steer its velocity to the direction
of the desired path. The proposed guidance law is all-
aspect, and therefore autonomous flight mode can be
engaged regardless of the initial vehicle position. Also, the
proposed guidance law is nonsingular except the case that
Assumption 2 does not hold, i.e. at the center of a circle.

The core difference between the proposed guidance law
and existing look-ahead point based guidance law is that
the proposed guidance law realized the look-ahead effect
by the look-ahead angle, not by the look-ahead point.

Look-Ahead Point based Method :
A look-ahead point based path-following guidance law
proposed in Park et al. (2007) is given as follows

aNMcmd
=

2

‖L‖2
(vMI

× L)× vMI
(28)

where L is the look-ahead vector defined by the relative
position vector of the look-ahead point on the desired
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path, which is ahead of the vehicle by the specified
distance L with respect to the vehicle. This guidance law
cannot satisfy the Exact Path-Following Condition when
the desired path is not a two-dimensional curve of constant
curvature. It is because that, even if the vehicle is On-
Track and Aligned, the followings are observed.
1) κM = 1

‖L‖ 6= κP , therefore aMcmd
· N̂P 6= κP ‖vMI

‖2,

2) L · B̂P 6= 0, therefore aMcmd
· B̂P 6= 0.

3.4 Modification for Constant Airspeed Path-Following

When the wind velocity vw is not zero, the inertial velocity
vMI

is not equal to the relative velocity vMa = vMI
−vw,

due to the wind. Therefore, the normal guidance command
aNMcmd

has a component tangential to vMa , which is not
desirable because it is not easy to change the airspeed in
practice. Note that maintaining constant airspeed is better
than maintaining constant ground speed.

Let aSMcmd
is the ‘side guidance command’ which is mod-

ified from the normal guidance command aNMcmd
by the

following command modifying logic.

To maintain constant airspeed, the acceleration of the
vehicle should be orthogonal to the relative velocity vMa ,
so that the following condition should be satisfied.

aSMcmd
· vMa = 0 (29)

As explained in Remark 1, the shape of the curve only
depends on the normal acceleration, not on the inertial
speed along the curve. Thus, whatever the tangential
acceleration is, the normal acceleration should be equal to
Eq. (9) to preserve the path-following ability. Therefore,
the following condition should be satisfied.(

aSMcmd
·

aNMcmd∥∥aNMcmd

∥∥
)

aNMcmd∥∥aNMcmd

∥∥ = aNMcmd
(30)

Rewriting Eq. (30) gives

aSMcmd
· aNMcmd

=
∥∥aNMcmd

∥∥2 (31)

The side guidance command should lie in the plane defined
by vMI

and aNMcmd
to avoid the generation of binormal

component, therefore

aSMcmd
·
(
vMI

× aNMcmd

)
= 0 (32)

Let us rewrite Eqs. (29), (31), and (32) into a matrix
equation as follows vMa

T

aNMcmd

T(
vMI

× aNMcmd

)T
aSMcmd

=

 0∥∥aNMcmd

∥∥2
0

 (33)

Finally, the modified side guidance command can be given
as follows

aSMcmd
=



 vMa

T

aNMcmd

T(
vMI

× aNMcmd

)T

−1  0∥∥aNMcmd

∥∥2
0


if vMI

· vMa
6= 0 and aNMcmd

6= 0

0 if vMI
· vMa

= 0 or aNMcmd
= 0

(34)

Corollary 2. (Nonsingularity of the Matrix).

If vMI
·vMa 6= 0 and aNMcmd

6= 0, then

 vMa

T

aNMcmd

T(
vMI

× aNMcmd

)T


in Eq. (34) is always nonsingular.

Proof. Let vMI
=
[
vIx vIy vIz

]T
, vMa

=
[
vax vay vaz

]T
,

and aNMcmd
= [ax ay az]

T
, which satisfy

aNMcmd
· vMI

= axvIx + ayvIy + azvIz = 0 (35)

Using Eq. (35), we have∣∣∣∣∣∣∣
vMa

T

aNMcmd

T(
vMI

× aNMcmd

)T
∣∣∣∣∣∣∣ =

∥∥aNMcmd

∥∥2 (vMI
· vMa) (36)

Equation (36) shows that the determinant is not zero if
and only if vMI

· vMa 6= 0 and aNMcmd
6= 0.

2

Figure 5 shows the flowchart of the proposed guidance law.
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Fig. 5. Flowchart of the Guidance Law

4. NUMERICAL SIMULATION

Numerical simulation is performed to verify the perfor-
mance of the proposed guidance law. Numerical simulation
using the existing method (Park et al. (2007); Eq. (28)) 1 is
also performed to compare the path-tracking performance.

3-DOF fixed-wing aircraft coordinated flight model is
used, and the simulation parameters are summarized in
Table 1.
1 L in Table 1 is the look-ahead distance which is the design
parameter of Park’s method.
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Table 1. Simulation Parameters [mks units]

rM (t0) =

[
140
0

20π + 2

]
vMI

(t0) =

[
4.3412
24.6202

0

]
vw =

[
5
0
0

]
k = 0.015 δBL = 100 L = 150

Desired path for the simulation is a helix defined as follows

p (l) =

[
100 cos l
100 sin l

10l

]
(37)

Figures 6 and 7 show the trajectories and guidance com-
mand histories using the proposed guidance law and the
existing method, respectively. The time histories of the
cross-track error ‖e‖ are shown in Fig. 8. It can be con-
cluded from Fig. 8 that the cross-track error converges to
zero with the proposed guidance law, but not with the
existing method. The amount of the guidance command is
similar in both methods as shown in Fig. 7. The perfor-
mance index value of the proposed method is J = 328.18,
and that of the existing method is J = 1, 016.45. Thus,
it can be concluded that the tracking performance of the
proposed guidance law is better than that of the existing
method.
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Fig. 6. 3-D Trajectory
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5. CONCLUSION

A three-dimensional nonlinear path-following guidance law
was proposed. The proposed guidance law maintained the
major advantages of existing methods, but overcame the
weaknesses. Precise path-following for a general desired
path can be achieved. For future works, the stability and
performance analysis will be performed. The guideline for
the selection of the design parameter will be given. And
the effectiveness of the guidance law will be demonstrated
by flight experiments.
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